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In this paper we consider the problem of intramolecular vibrational energy flow from a conventional bond
to a van der Waals bond in a linear AB-CD van der Waals molecule, where AB and CD are
conventional diatomics. A model for collinear vibrational predissociation of AB-CD on a single ground
state potential surface was developed. The vibrational predissociation of a van der Waals heterodimer,
consisting of a pair of distinct diatomics, can be described in terms of a simple exponential decay of a
single discrete zero order state which corresponds to excited bond modes, into a dissociative continuum.
The dependence on the vibrational predissociation rate of the heterodimer on the parameters of the
molecular bonds and of the van der Waals bond is elucidated. The details of the intramolecular dynamics
of a homodimer, consisting of a pair of identical diatomics, are determined by the excitation conditions.
Optical infrared short time excitation is expected to result in a coherent, in phase, superposition of
degenerate bond modes, which will subsequently exhibit a simple exponential time evolution, the decay
rate being determined by the resonance width. Collisional excitation of the dimer is expected to result in
an incoherent initial superposition of degenerate bond modes, the subsequent time evolution being
determined by the discrete—discrete coupling and by the widths of the metastable states. Model
calculations were performed for the nuclear dynamics of collisionally excited linear halogen dimers
A,AxA = F, Cl, Br, I). The linear (Cl,),, (Bry),, and (I,), dimers are characterized by negligibly
small discrete-discrete coupling terms whereupon the nuclear dynamics of these van der Waals molecules
is determined by exponential decay due to vibrational predissociation, without direct energy exchange
between the bond modes. For the (F,), linear dimer the discrete~discrete coupling terms overwhelm the
widths of the resonances and the system will exhibit efficient direct energy exchange between the
molecular bond modes before the occurrence of vibrational predissociation. Model calculations for the
vibrational predissociation lifetimes for the halogen dimers reveal remarkably long lifetimes, which can be
accounted for in terms of the energy gap law for vibrational predissociation. Our results account for the
ineffective process of intramolecular vibrational energy flow discovered by Dixon and Herschbach in the

(C1,), dimer.

I. INTRODUCTION

Dixon and Herschbach! have observed remarkably
long lifetimes for the vibrational predissociation (VP)
of a vibrationally excited Cl,- -+ Cl, van der Waals di-
mer. They were able to set a lower limit of the VP
lifetime 7 by observing that the dimer in a supersonic
beam survived the transit time from the point of colli-
sional vibrational excitation up to the point of detection,
without undergoing fragmentation. Thus, for the Cl,-Cl,
dimer, T>10"* sec and this van der Waals molecule un-
dergoes ~ 105~10° vibrations of the Cl, subunit, whose
vibrational energy exceeds the dissociation energy of the
van der Waals bond, before bond breaking occurs. The
ineffective process of intramolecular vibrational energy
flow from a conventional chemical bond to a van der
Waals bond is a problem of considerable current inter-
est in the area of intramolecular dynamics. This phys-
ical situation is relevant for the understanding of non-
statistical vibrational energy redistribution in polyatom-
ic molecules,? which pertains to basic chemical process-
es such as unimolecular reactions® and multiphoton pho-
todissociation.!

As pointed out by Dixon and Herschbach,! the surpris-
ingly long lifetime of the Cl,-Cl, dimer can be attributed
to very weak coupling for vibration to translation energy
transfer in this system, The VP lifetime T (=74Z¢y)
was phenomenologically represented!’® as a product of
the translational-vibrational energy transfer probability
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per collision Z;, and 7,2 10"'?! sec, which corresponds
to the duration of a collision. This approach for VP of
a van der Waals bond bears a close analogy to the phe-
nomenological “half-collision” concept,? which was in-
voked to describe photofragmentation of ordinary chemi-
cal bonds. We have recently investigated the intramo-
lecular dynamics of VP of linear’ and T-shaped® tri-
atomic X -+ - BC van der Waals molecules, where BC,
characterized by the frequency wge, i8 a conventional
diatomic while X represents a rare gas atom., We have
derived an energy gap law In(1/7)« w¥? for the VP pro-
cess, whereupon the mismatch between the molecular
frequency and the frequency of the van der Waals bond
severely inhibits the VP process. The stability of the
Cl,-Cl, dimer with respect to VP can be qualitatively
rationalized in terms of our energy gap law.

In this paper, we present a theoretical study of VP of
linear van der Waals dimers AB--- CD, where AB and
CD are normal molecules. We have conducted a de-
tailed analysis of the intramolecular energy flow as well
as explored the VP rates in such model systems. In
van der Waals molecules, the relevant part of the poten-
tial surface is relatively simple and may be estimated,
in principle, from spectroscopic data for the molecular
constituents and for the van der Waals molecule. Such
information is not yet available for van der Waals di-
mers, and we shall restrict our discussion to model
systems involving linear complexes. The present theo-
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FIG. 1. Coordinate system
used to describe the one-
dimensional motion of two
ordinary diatomic molecules
AB and CD coupled through a
van der Waals interaction.

ry of fragmentation of a van der Waals bond, together
with the intelligent guesses regarding the potential sur-
face, provides a fairly complete theoretical description
of VP on a single potential surface, This theoretical
approach to breaking of van der Waals bonds will be use-
ful for the elucidation of the features of iragmentation of
chemical bonds.

11. MODEL SYSTEM
A. Dissection of the Hamiltonian

We consider two ordinary diatomic molecules AB and
CD restricted to one-dimensional motion (Fig. 1). The
interaction potential between the atoms B and C repre-
sents the van der Waals bond. The Hamiltonian for the
nuclear motion on the ground state electronic potential
surface is ‘

kZ
H:—--E Z

i=4,B,C,D

m; 9%/ ax?

+Vap(Xg =X, )+ Vep(Xp—Xo)+ Vae(Xc-Xg). (1)

It will be now convenient to define the following coordi-
nates:

Xem = Y, mx/M, M= Z m,; , (2a)
{=A,8,C,D i=A,B,C,D
Xpap=Xp—-X,, Xcp=Xp-Xc, (2b)
Xap,cp=— (mpXp+myX,)/ (my+ms)
+ (e X +mpXp)/ ng +my), (2¢)

which correspond to the position of the center of mass

of the whole system [Eq. (2a)], the internal interatomic
distances of the two diatomic molecules AB and CD [Eq.
{2b)], and the distance between the centers of mass of
AB and CD [Eq. (2¢)]. After separation of the center of
mass motion, the Hamiltonian defined in Eq. (1) assumes
the form
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LI P 2 o2
H=- 2p,5 3X7AB - 2ucp 5}?%;— 2l 4B, cD 9X%m,cp
XVap(Xap)+ Vep(Xcp) + Ve (Xan, cp
~7apXas = YcpXcp), @)
where
pap=mamp/(my+mp), pep=memp/(me +myp), (4a)
tan,cp= my+mp)lme + mpl/M , (4b)
Yap=my/my+mp), vep=mp/lme+myp). (4c)

The intramolecular potentials V,5(X,5) and Vep(Xep)
for the normal AB and CD bonds, respectively, will be
represented either in terms of a harmonic potential or
of a Morse potential. The van der Waals interaction
Vac was specified in terms of a Morse potential

Vee(Xpe) =Dy {exp[-— 205 (Xpc "Xsc)]
~2exp[~apc(Xpc -X—BC)]} > (5)

where Dy and X are the dissociation energy and the
equilibrium distance, respectively. The effective fre-
quency for the van der Waals bond is wpc = (sp,cp)™

% (8%V 5. /8X%p, cp) While the characteristic inverse length
for the van der Waals bond is apc = wpc (i ap,cp/2D5c)-
Finally, the number of bound states in the van der Waals
bond is N= (Kgc + 1/2), where Kyo = (2Dgc/fiwge). In
Table I, we present a compilation of the Morse potential
parameters for van der Waals complexes X, - -+ X, be-
tween homonuclear halogen diatomics. We note in pass-~
ing that, in the present work on dimers as well as in our
previous study’ on X - - - BC van der Waals molecules,
we have represented the van der Waals bond in terms of
a Morse potential. We have recently studied®® the dy-
namics of VP of the He .- - I, molecule using both a
Morse potential as well as a modified Buckingham type
potential, the latter potential accounts properly for the
long-range part of the van der Waals inferaction. These
calculations have demonstrated that the dynamics of the
VP process is determined by the short range part of the
interaction potential, being insensitive to the long-range
form of the interaction. Thus, the Morse potential is
adequate for the study of VP in X, - - - X, van der Waals
dimers.

The Hamiltonian (3) will be now separated in the fol-
lowing manner:

TABLE 1. Potential parameters for X, **X, van der Waals dimers.
Parameters of the Parameters of the van der Waals bond®

diatomic fragments?® Number of
Dimer  wap (em™) wXyp (em™) wpe (em™)  Dpc (em™)  apc (A7) bond levels
{Fy)y 802 4 27.3 77.8 1.64 6
(Cly)e 564.9 4 33. 334. 1.3 20
(Bry), 325.2 1 24,7 361.4 1.41 29
(Iy)s 214.6 6 17.2 382, 1.2 45

aThe frequencies and anharmonic factors for the diatomic fragments have been taken from Ref. 9.
®The parameters for the VDW bond for (Fy),, {Bry);, and (Iz); have been obtained from viscosity
data reported in Ref. 10, For (Cly);, we have used the estimate given in Ref. 1.
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H=Hy+7 . (6)
We define the zero-order Hamiltonian

XIS Y e 92
Touap X5 2Wcp OXep  2kap,cp 9Xam,cp
+ Vas(Xap) + Vop(Xep) + Ve (Xaz,0p

HO:

~¥apXas~YcpXcn) s (7)

where X,y and X, are the equilibrium interatomic dis-
tances for molecules AB and CD, respectively. This
zero-order Hamiltonian incorporates three independent
contributions; two contributions from the vibrating AB
and CD normal bonds and a third contribution which cor-
responds to the relative motion of the fragments. This
zero-order Hamiltonian is separable and its spectrum
consists of discrete and continuum eigenvalues corre-
sponding to the eigenfunctions |n,p ficp, 1) and 1n,p,

nep €, respectively, where n,p and ncp are quantum
numbers associated to the internal vibrational motion

of molecules AB and CD, respectively, [ is a discrete
quantum number characterizing the bound states of the
van der Waals bond, and € is the relative kinetic energy
the diatomic fragments AB and CD. Such a representa-~
tion of zero-order states in terms of bond modes is ade-
quate for the heterodimer. The residual perturbation
term is

V=H-Hy= Vg (XAB,CD ~¥a8Xas ~YepXcp)
- VBC(XAB,CD —VAB)?AB ~YepXep) - ®)

In what follows, we shall be interested in the nuclear
dynamics of a heterodimer which consists of a van der
Waals pair of distinct diatomic molecules AB and CD.
Under these circumstances, the zero-order basis con-
sisting of discrete states {ln,g, ncp, £)} and of continuum
states {}n,p, ncp, €)} provides an adequate starting point
for the study of the VP process. In the case of a homo-
dimer, consisting of two identical diatomic molecules,
the situation is more complicated because of degeneracy
and we shall return to this problem in Sec. IV,

B. Intramolecular coupling for a heterodimer

The VP dynamics of a heteronuclear dimer on the
ground state potential surface can be considered by de-
fining a preparation process where only the discrete
zero-order states |n,g, ncp, [) are amenable to excita-

tion, while the continuum states |n,g, npc, €) are inactive.

This assumption is justified for optical infrared excita-
tion of the dimer and seems to be sensible also for col-
lisional excitation. To provide a complete picture of
the VP of a heterodimer, three types of coupling terms
between the zero-order states, which are induced by

the perturbation (8), have to be considered (see Fig. 2).
These consist of discrete-discrete (d-d), discrete—con-
tinuum (d-c¢), and continuum-continuum (¢c~c¢) interac-
tion. The coupling terms

D:;vg,ncna,nka,nbp,ﬂ = {npphicp® "U ,n.'ABnC’DB) ’
u,v=dand ¢, o,3=land ¢ )]

can be evaluated in an analytical form for the potential
surface defined by Eqs. (5)-(7). The technical details
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FIG. 2. Zero-order states and coupling terms for a hetero-
dimer AB-++CD. The manifolds are labeled by the vibrational
quantum numbers (nyp, ncp) associated with the two diatomics
AB and CD,

are similar to those given in our previous work.” The
d—d coupling will turn out to be of minor interest in the
case of a heterodimer; however, it may be crucial in
determining the nuclear dynamics of homodimer and
therefore we shall present the result

~d A . . oD
U""AB"C phnancpl = (AHABnCDmAB"CDC”'
- ZA;;)Bncn.nkan'c;:')) ’ (10)
where
A:lI:BnCD,n'ABan = (nastcp I (exp {Pﬂi sclYan (X "'XAB)
+YCD(XCD—X_CD)]}_l)ln.,ABnéD>; p=12 (11)

and

-2 - -971! _ 172
C:l,:): (DBC/ZKBC) [(ZKBC 21 1)(2KBC 21 1)] ,
(12)

1NN T(2Kpe - )T (2Kpe -~ 1)

Cil= (C(x:')/szc)[Z'(ZKBc -1"-1)~1(2Kpe - 1= 1)+ 2Ky ],
U'>1-~1, (13)

These discrete~discrete terms were found on the basis
of numerical calculations to be exceedingly small rela-
tive to the energy spacing between the discrete energy
levels of the heterodimer

|E E [ » vi-a

naBrep? T maBnbpl naBncDhABRCD! ¢ (14)
Condition (14) is expected to be satisfied for most of the
bound vibrational states of the heterodimer excluding
perhaps only those n,zncp states near the dissociation
limit of the normal chemical bonds in which we are not
interested at present. Accordingly, d-d interaction can
be safely neglected.

Next, we briefly consider the continuum-~continuum
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coupling. Our previous calculations® on the X - -+ BC
van der Waals molecules demonstrated that the effects
of ¢—c interactions somewhat modify the quantitative
features of the VP at high vibrational energies of the
molecular bond. For vibrational quantum number of
the molecular bond = 10-20, the c-c interaction leads
to a retardation of the VP rate by a numerical factor of
~ 2-3 relative to the simple golden rule expression,’
As we shall be interested in VP following low vibration-
al excitations of the heterodimer, i.e., ngpncp=1-5,
the effects of ¢—c coupling can be safely disregarded.

We are left with the effects of discrete—continuum in-
teractions which determine the VP rate of the hetero-
dimer. The d—c coupling terms can be expressed in
the form’

d=c —A (2)

(2)_gall) (1
nABRCD!y PABNCDE ”AB"CD!"AB"CDC” 24 Cic'

MAB"C D' TAB"CD

(15)
where the coefficients A;i )ancn:uancn (p=1,2) are given
by Eq. (11) while

Cit= (1/2)[(03(:/2)51[11’1(2776 )(__z_c_gl_‘_.)]m

HT(2Kge = 1)
lr‘(z +KBC_ZGQ)| (16)
[cos ("K 5c) + sinh®(z6 ) |1
and
C¥=(CV/2Kpc)[ Kpe =1 ~1/2 + 62+ 2Ky}, (1T)

where I'(Z) stands for the Gamma function of the com-
plex variable Z and where we have introduced the follow-
ing definitions:

Kpe= (ﬁasc)-l(zﬂAB.anBc)MZ2D3c/ﬁwnc , (18a)
Wpo = asc(ZDBc/“AB,CD)UZ , (18b)
8= (Hanc) (24 4p,cp€) /2= 2V Dpc€/Hwpc (18¢)

€ being the final relative kinetic energy between irag-
ments AB and CD, i.e.,

€=E-W,gnip) -

where E is the total energy, W,z(nip) is the internal
vibrational energy of AB in the state corresponding to
nap, and Wep(nldyp) is the internal energy of CD in the
vibrational level labelled by n{,. Provided that we are
interested only in the coupling on the energy shell, then

ch(n(l:p) y (19)

(I){A(‘Z)

d~c
v NABACD: MABTCD

nARRCDh MABTCDE T

[1 + (thB/h'ch)(nAB - nQB) + h_wcp/ﬁac)(ncn
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E=W,g(nap) + Wepligp) = (iwpe/2Kpe ) Kpe 1 - £)%.(20)

The half-width for the decay of the metastable state
| nagncpl) of the heterodimer via VP is given in terms
of the familiar golden rule result

Llé=c ’2
"AB"CD’ Z Z "AB"CDI "AB"CDE ’
"aB "CD

(21)

where the energy € is taken on the energy shell, accord-
ing to Egs. (19) and (20). The summation in Eq. (21) is
taken over all open channels. Now, provided that inter-
ference effects can be neglected, i.e., the spacing be-
tween resonances originating from various |n,pncpl)
zero-order levels considerably exceeds their widths,
the decay of each metastable state is exponential, being
characterized by the decay time

"AB"CD' N ’
We are now in a position to provide simple explicit re-
lation for the VP rate of a heterodimer.

IIl. VIBRATIONAL PREDISSOCIATION DYNAMICS
OF A HETERODIMER

We shall now consider the features of the VP process
of the heterodimer. We shall handle a simple model
where the intermolecular AB and BC potentials are taken
to be harmonic and where a linearization approximation
is introduced for the d-c interaction, which is handled
to first order in the internal displacements. The d-c
coupling within the framework of the linearization ap-
proximation was previously conmdered by Coulson and
Robertson,!'® by Ewing!!‘® and by us.” The linear ap-
proximation together with the harmonic model for the
intramolecular potentials are adequate for low vibra-
tional excitations of the normal bond modes X 45 and Xcp,
in which we are interested. In the harmonic model for
the AB and BC potentials, we have

Weplngp) = Bweplnen +2)

(23)
where w,p and wgp are the frequencies of molecules AB
and CD respectively. Substituting Eq. (23) into Eqs.
(19) and (20), and using this relation in Eqs. (18), we
obtain the discrete—continuum coupling (15) in the har-
monic model

Wap(nap) =fiw,p (e + 3);

- nep)] = ZA:"A)B"CD'"AB"CD} (24)

Next, we utilize the linearization approximation, expanding the exponentials in Eq. (11) up to linear terms in the
intramolecular displacements (X ,p —X 4p) 2nd (X¢p —Xcp), resulting in

A =pape{yan Ui/ 20 4w an) 230

.
"AB"CD'"AB"CD nABsMAB*

1+(nAB+1) 6

. 16 '
"AB*I'"AB] nephep

172
+ YCD(K/Z#CD(‘)CD)UZ[ 1,25"CD' "CD’1 + (nCD + 1) "CDA""CD]G"AB"'AB} » P= 1’ 2. (25)
The discrete—continuum coupling on the energy shell assumes the form
- . 1 L .
VS oo pn e = (@nc/ wpc)M(Dac/2)sinh (276 J2K pc - 21 - 1)/1'T(2Kpe - 1)2| TG + Kc —i6)|
x [co8? (1K pc) + sinh? (18,)] ™ *[wap (2an = 74n) + wWep b2ep — #p))Cn, ooty pmoprip 2 (26)
with
172
anBn'AB.nCDnE;D—YAB(ﬁ/Z“ABwAB)“z[nuz NABrMap* at (n st 1) ! G"AB'I'"kﬂlé"cp"éD
+ 'yCD(h'/ZMCDwCD)“z[ ,ZG"CD' "CD'I -+ (nCD + 1)1,26 '1'"&D]6”AB"'AB . (27)
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Consequently, Eqs. {26) and (27) result in the propensity and
rules for discrete—continuum coupling P'('i)a"cp' =~ 1 fwepneptta (N =1 —1)/11 2N -1 - 1)!]
Angp=0, Ancp==%1, X yi¥1 exp (=~ 7y,) . (35b)
Ancp=0, Anpp=x1, @8) e VP rate is roughly given by
with the condition that Ty, o™ PN =1-1)/1V@N = 1 = 1)1] [iw s gmmy y2!
[4 t
©= Roaniue = nia) + Ruenficn = nén) X exp(- 1y + Fwcomopmy 33 exp(- ). (36)
- hwpc/2Kac)Kpe —1-31>0, 29)

which implies, therefore, that nonvanishing discrete~
continuum coupling originates from two combinations
An,p=0, Ancp=+1and Ancp=0, An,z=+1. These
propensity rules determine the channels which contrib-
ute to the resonance width (21), and to the decay time
(22). According to Eg. (28), the decay problem reduces
just to the simple case of parallel decay of a simple dis-
crete state into two continua. From Egs. (26)-(29) to-
gether with Eq. (21), we obtain the total width for VP of
the heterodimer

r = +®

naB"cp? — " Papfcpt napficp! ?

(30)

where the partial widths for the channels specified by
the propensity rules Eq. (28) are given by

'('IA)B"CDI =0 ot (npp-lincpe I’
= (1/8)iw xpnanmy[ QK pc — 21— 1)/1' T (2K g - 1]
x{sinh(2my,)/[cos? (@K pc) + sinh®(my,) ]}
x| Kpc+2-iy))|?, (31)
where
my= mg +mp)m,/mgM , (32a)
yi=[B81- Kpc-1~32"2, (32b)
B1=4Dgcw,p/Hwhe= 2wap K ap,cn/ Hohe (32¢)
if y§>0; otherwise I'\),,. ;=0, and
:'i)s"cn‘ = IU""::!"CD""AB("CD‘“‘ ‘ i
= (/8w pnepmyl @K g — 21 - 1)/11 T (2K 5 - 1))
x{sinh(2my,)/[cos® (@K pc) + sinh?(ny,)]}
X|TKype+3 - iy,)|%, (33)
with
My = {m,+ mplmp/mcM , (34a)
y2=[8y~ Kpe ~1-32)*1'", (34b)
Br=4Dpcwep/fiwhe = szD#AB,CD/ﬁOIZBc » (34c)

if y§> 0; while, otherwise, ;2.

Equations (30)-(34) constitute our final result for the
VP of a heterodimer. To explore the characteristics of
the VP dynamics of this system, we shall be interested
in the situation y;>1 and y,> 1, as for the van der
Waals dimer w,p/wpc > 1 as well as wep/wpe > 1, s0
that according to Eqs. (32c) and (34c), By,8,> 1. Utiliz-
ing the expansion of the gamma function, the partial
widths T,/ . . (j=1,2) can be recast in the approxi-

'IAB'lq
mate form?1

=0,

T nept =10 spnasm [(N = 1~ 1)/11 @N ~ 1 = 1)1]
xyi"! exp(-my() (35a)

From these relations, the following conclusions emerge:

(1) Energy gap law (EGL): For large values of ] in the

range ] SN -1, we can take y; ~8}/? and v, ~p}/* and the

VP rate assumes the form
L pnopi © FWapn AR exp[~ 78}/* + (N - £) Ing,]

+ Bwepnopms expl~ 1832 + (N - $) Ing,] .
Utilizing Egs. (32c) and (34c), we get

- (172) -1 127 3y, 172
“ﬁwm”mmlﬁp’ r ]exp[—Z?rk' n(DBIC/wBC)wAB

(37

"sp"cp?
+ Rwcpncpmy Bgﬁ-“/z” exp(- ZWK‘UZ(D}B,%/WBC)‘-"::/%] .
(37a)

Equation (37) exhibits the EGL for the VP of the hetero-
dimer. Each of the partial widths which together deter-
mine the VP rate exhibits a strong exponential depen-
dence on the vibrational frequency of the corresponding
molecular modes.

(2) Energetic parameters of the van der Waals bond:
The two partial widths are determined by the parameter
(D}E/wge) for the weak intermolecular bond.

(3) Dependence on I: From Eq. (36) together with
Egs. (32b) and (34b), it is apparent that, for high values
of I S(N~1), the two partial decay widths increase with
decreasing 1.

(4) Dependence on the internal vibrational quantum
number: It is evident from Eq. (36) that each of the two
partial widths exhibits a linear dependence of the corre-
sponding vibrational quantum number n,p and nqy of the
two bond modes. This linear dependence is, of course,
common to all problems involving harmonic oscillator
models, and is a consequence of the harmonic approxi-
mation. For low values of n,5 and of ngy, this linear
dependence constitutes a reasonable zero-order descrip-
tion; however, in general, anharmonicity effects for the
local bond modes are expected to result in a superlinear
dependence of the VP rate on n,5 and on ngp,.

(5) A limiting situation: For a heterodimer charac-
terized by the bond frequencies w,p <« Wcp, then for a
metastable state characterized by n, #0 we have

2) )
F”AB"CD’ > r"u nep
and we obtain for the VP rate

r (n/8)w ypnpanmy[ (2K pe =~ 21~ 1)/11 T (2K 5 - 1))

(37

"ABRCD
x{sinh(2my,)/[cos? (MK 5) + sinh® (1y,)]}
X|TEpc+3-iy)]? . (38)

This is just the result for VP of a linear triatomic van
der Waals molecules AB- - - X,” where the high-frequency
molecule CD is now replaced by an effective atom X,
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where mass equals m. + mp and the B- -+ C van der
Waals bond,

{6) Nature of the linearization approximation: The
linearization approximation amounts to retaining only
the first-order linear terms in nuclear displacements
for the intramolecular contributions to the d-c¢ coupling
A" [Eq. (11)]. Such approximation results in one-quan-
tum transitions, as is evident from Eq. (28), resulting
in the conversion of vibrational energy to translational
energy, i.e., a V— T process. A cursory examination
of Eqs. (11) and (25) indicates that the first-order ex-
pansion of the intramolecular contribution is justified
provided that Z = azc(R)Y? <1, where apc is the range
parameter for the van der Waals bond and (R%)!/?= (#/
pw)’?, with u(= u,p or pep) and w(= w,p Or weyp) repre~
senting typical molecular reduced mass and molecular
frequency, respectively, and (R%)!/? represents the rms
displacement of the zero-point intramolecular vibration.
For typical values of agc~2 A and R)V?~0.1 4,

Z~ 0.)05 and the linear term dominates in the expansion
of A,

(7) Vibration-vibration transfer. High-order terms
in the expansion of A'”’ [Eq. (11)], may sometimes lead
to significant contribution to the VP rate and, in partic-
ular, result in 2 new mechanism for the VP process.
For example, the second-order term in nuclear dis-
placements {X 45 - X ,5) and (X ~Xcp) will result in
two-quantum jumps An,p=x1 and Ancp=+1. Such sec-
ond-order contribution corresponds to the conversion of
vibrational energy of AB to vibrational energy of CD
{provided that Zw,p > Bweyp), while the energy balance is
made up by translational energy. This mechanism in-~
volves a V-~V + T process. The relative kinetic energy
of the two fragments can now be considerably lower than
for the case of V-~ T transfer. Under these circum-
stances, the intermolecular contributions C‘*’ and C**
[Egs. (12) and (13), respectively]to the d-c coupling,
which essentially determine our energy gap law, will
result in an appreciable contribution of the second-order
term to the VP rate. We conclude that, for some sys-
tems when 7i{w 5 — wep) 15 relatively low, the V-V +T
process can be efficient.

The theory of VP of linear heterodimers AB- - CD
constitutes an extension of the theory of the nuclear dy-
namics of linear triatomic van der Waals molecules pre-
viously considered by us.” The characteristics of the
VP process of the heterodimer bear a close analogy to
that of the triatomic van der Waals molecule, except
that in the present case two parallel effective decay
channels for each metasiable state are involved. Of
considerable interest is the problem of the nuclear dy-
namics of a homodimer, which will exhibit some new
physical features, and which will now be considered.

IV. VIBRATIONAL PREDISSOCIATION DYNAMICS
OF A HOMODIMER

A. The degeneracy problem

The VP dynamics of a heterodimer involves essen-
tially the decay of a single, isolated, discrete zero-
order state into several continua. In this case, the
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discrete—~discrete coupling terms are negligible accord-
ing to Eq. (14), whereupon the VP process can be ade-
quately characterized in terms of a simple single expo-
nential decay law. In the case of a homodimer, a new
physical effect should be considered, which stems from
the degeneracy of some of the zero-order state. Con-
sider, for example, the local mode description of a
homodimer whose bond zero-order states will be denoted
by |mml), where n; and #, represent the vibrational
quantum numbers of the two diatomic fragments. The
pairs of zero-order states |mm,l) and |nynl) are degen-
erate. Under these circumstances, even a small dis-
crete~discrete coupling term between zero-order de-
generate states can go a far way in determining the in-
tramolecular dynamics of the homodimer. In what fol-
lows, we shall address ourselves to the problem of the
intramolecular VP dynamics of 2 homodimer in an at-
tempt to answer the following questions:

(1) What are the energetic parameters which deter-
mine the VP dynamics? They are evidently the reso-
nance half-width and the d-d coupling.

(2) When are the VP processes characterized by an
oscillatory nonexponential decay which is amenable to
experimental observation?

To answer these questions, we shall proceed in three
steps. First, we shall discuss some zero-order basis
sets which can be used for the study of the VP of the
homodimer. These basis sets will be introduced with-
out alluding to any real physical situation. For each
basis set, we shall obtain different values of the reso-
nance half-width and of the d-d coupling term, How-
ever, now the resonance half-width does not represent
an exponential decay probability, different basis sets
will result in different energetic parameters, and the
characteristics of the VP dynamics depends on the ini-
tially excited metastable state. Second, we shall define
excitation processes which result in physically meaning-
ful initial conditions for the dynamic problem. These
initial conditions will determine the subsequent time
evolution of the system. Third, we shall develop 2
complete theory of intramolecular dynamics and apply
it to the problem at hand.

B. Basis sets for the homodimer

We shall now consider three sets of zero-order states
which are appropriate for the description of the intra-
molecular dynamics of the homodimer. For each basis
set, we shall provide explicit expressions for the dis-
crete—discrete coupling terms and for the half-width of
the resonance.

1. The local mode basis

This basis set consisting of discrete states |nmnl)
and of continuum states |nym€) was already considered
in Sec. II and is displayed in Fig. 3(a) for the AB--- BC
or for the AB- -+ AB homodimer. When a harmonic
approximation is adopted for the potential energy sur-
faces of the two AB subunits, all the states with the
same [ and for which n, + n,= M are degenerate, Part
of this degeneracy is accidental and can be lifted by de-
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FIG. 3. Local mode basis sets for the study of intramolecular
dynamics of the homodimer AB-++AB: (a) Harmonic approxi-
mation; (b) anharmonic molecules, The labels (nyp 7ip)
specify different vibrational levels of the individual subunits
AB,

scribing the molecular bond modes in terms of more
realistic anharmonic potential. Now the (permutation)
symmetry determines that degeneracy prevails between
the pairs of discrete states {nynyl) and |nynl), and simi-
larly for continuum states [see Fig. 3(b)]. As anhar-
monicity defects for the intramolecular AB modes are
expected to be of the order of a few cm", the accidental
degeneracy is practically completely lifted and we can
disregard d~d coupling between states which were acci-
dentally degenerate in the harmonic description.

Consider now the half-widths of the resonances for a
homodimer consisting of two identical AB diatomics.
These half-widths of the resonances will be presented
in the harmonic approximation for the bond modes, which
is adequate for low values of n, and of n,. For the lin-
ear arrangement AB- - - BA which is characterized by
a center of inversion symmetry, we can immediately
utilize Eqs. (30)-(34) to obtain

Cpyngr= (r/8)fiw \pmy[ (2K pp —~ 21 - 1)/ T(2K 5 - 1)]
xsinh(2my,)/[cos? (1K p) + sinh?(1y )]}

Xlr(KBB'*'%-iyl)lz(m"’nz), (39)
with my=m,/2my. For this homodimer, T,,,;=
as the two molecular subunits are equivalent. For the

configuration AB(n)- -+ AB(n,), the half-width is given
by
Ty 1= (1/8)70 45 (2K 5 - 20— 1)/1I T (2K 5 = 1)]
x{sinh(2ny,)/[cos? K nc) + sinh?(ny,)]}
X |PWpe + 3 = iyy) | mymy + nymy) (40)
where
(40a)

The resonance half-widths given in terms of Eqs. {(39)
and (40) for the homodimer exhibit a characteristic en-
ergy gap law, a typical dependence on the parameters
of the van der Waals bond and of the molecular bonds,
which is similar to that obtained for the heterodimer.

my=m,/2my, my=mp/2m, .
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In order to predict the time evolution of the degenerate
discrete levels such as |mnyl) and inyml), it is neces-
sary to study the appropriate discrete~discrete cou-
plings which may no longer be negligible, Obviously,
we shall have to consider only coupling term of the type
Vi1, mny 1 With the same value of /; all the other d-d
couplings are still negligible, The general form of the
d—d coupling terms is given in terms of Eq. (10) and
(11), where we now set n,p=nip="ny and nep=npp="y.
We are interested in the case I=1’, whereupon Egs.
{10) and (11) yield

cocwm 41)

Equation (41) implies that utilization of the linearization
approximation, i.e., expanding A%, . (p=1,2) [Eq.
(11)], to first order in the intramolecular displacements
results in V45, »n:=0. The linearization approxima-
tion results in the vanishing of the d—d coupling between
degenerate states which are characterized by the same
value of I; this effect will be exhibited irrespective of the
specific form of the potential for the bond modes and it
will happen both for harmonic and anharmonic descrip~
tion of the AB potential. We conclude that the coupling
between zero-order discrete degenerate levels origi-
nates from high-order terms in the intramolecular dis-
placements which contribute to Eq. (10). These calcu-
lations have to be carried out by direct integration of
Eq. (11), which was performed by us (see Sec. VI).

2. The miniexciton basis

A traditional way to treat degenerate zero-order ex-
cited states involving vibrational or electronic excita-
tions in dimers and in molecular aggregates12 rests on
the construction of symmetry adopted wave functions
with the interaction lifting the degeneracy. We shall
adopt a similar approach here, which bears a close
analogy to exciton theory applied to the homodimer, i.e.,
a miniexicton. We shall consider the subset of discrete
zero-order states [nynyl) and, in this subspace of the
Hilbert space, we shall construct the symmetry adapted
functions from each pair of degenerate bond-mode states

| Fymply = 2712 mympl) + | mymy 1)),
[ (SImymgly = 27V (| mymyly - | mpmyl)) (42)

This basis will be referred to as the miniexciton basis
set. As we shall be interested in the homodimers of

the halogen dimers A,~A, (A=F,Cl, Br,I), we shall
avoid unnecessary complication and from now on consid-
er the linear AB--- BA dimer only. Each pair of the

[ (+)) and | (-)) states in Eq. (42) is now uncoupled with
respect to d-d interaction

(43)
The degeneracy is split and the (zero-order) energies of

the discrete states are E(+) ~ Vi, mngs and
E(_) fUd-d

U?:fnpql, Ingny 1= 0.

nimgl =
The half-widths of the resonances

nimi= Y niml,mn i

are readily obtained from Eqs. (39) and (40) in the form
Ciormme= 21",,1,,2, ’
Tesngmr=0. (44)

It is interesting to note that each {(~)) discrete state is
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stable with respect to direct decay into the continuum
due to destructive interference. As these |(-)) states
are not coupled to | (+)) states in view of Eq. (43), we
expect the | (-)) levels to constitute truly “isolated”
states which are stable with respect to intramolecular
decay.

3. The normal mode basis

This basis is obtained by adopting the conventional
procedure for constructing normal modes for the intra-
molecular motion of the homodimer, which rests on the
formation of symmetric and antisymmetric combination
of the displacements in the bond modes.'® This approach
rests on the harmonic model for the AB bond modes.
Thus, in this description, both accidental and symmetry
determined degeneracies will be exhibited for the homo-
dimer. This intrinsic limitation of the normal mode
basis prevents us from using it in our general treatment
of the VP dynamics. Appendix A is devoted to a compre-
hensive discussion of the normal mode basis and to a
comparison of the results obtained for this basis with
those derived for the harmonic bond mode basis.

C. “Preparation” of metastable states of the homodimer

We have first defined two useful basis sets, the bond
mode basis and the miniexciton basis, which will be
used for the subsequent treatment of intramolecular dy-
namics of the linear homodimer on its ground state po-
tential surface. The physical preparation of the “ini-
tially excited” state is of cardinal importance, as this
will determine the intramolecular dynamics. For ex-
ample, we have already noted that the | (-)nynl) miniex-
citon states are stable with respect to time evolution.
Thus, if such a | {~)nm,!) state could be initially pre-
pared, it will not exhibit intramolecular time evolution.
This is not surprising, as other examples of states
which are stable with respect to subsequent decay are
well known in related areas of molecular and of solid-
state physics. To provide a simple analogy, let us re-
call that, in the simple didactic theory of Frenkel'® ex-
citon states, all the states with k#0 are stable with re-
spect to radiative decay to the ground state. The cardi-
nal question in relation to our problem is whether such
a stable state can be excited in a heterodimer. The
answer usually is negative. To be more specific, let
us consider two limiting excitation modes of the homo-~
dimer, which result in reasonably well-defined “initial”
metastable states.

1. Optical excitation

We shall consider optical excitation of the homodimer
by infrared radiation as we are concerned with vibra-
tional excitation on the ground state potential surface.
To consider properly a “short time” excitation process,
we have to specify which of the zero-order states car-
ries oscillator strength from the ground state, We in-
voke the reasonable assumption that only the discrete
zero-order states earry oscillator strength from the
ground state I1n;=0,7,=0,1=0). Accordingly, we have
to consider radiative coupling with the discrete subspace
of the Hilbert space where the miniexciton basis pro-
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vides a diagonal representation of the Hamiltonian.
Thus, two optical excitation processes should be con-
sidered for each nearly degenerate pair

[m=0,m=0,1=0)~ | (+)mml) ,
,nlzo, nZ::O, l= O)" ‘ (-)n1n2l> .

(45a)
(45b)

For the linear homodimer, only the optical transition
(45a), where the transition moments of the two subunits
are in phase, is allowed while the transition (45b), where
the transition moments of the time subunits cancel, is
forbidden. This state of affairs bears a close analogy
to exciton theory.!® On the other hand, when the optical
excitation of a nondegenerate state is considered, such
as |ny=n, ny=nl), this discrete zero-order state is ini~
tially prepared by optical excitation. We conclude that
optical excitation results in the initial selection of the

| (+)nymyl) state from each degenerate pairs and in the
initial excitation of a discrete nondegenerate state.
These metastable states will exhibit subsequent time
evolution,

Finally, we would like to comment on the nature of
the transition moments of the two subunits {TMTS) whose
superposition determines the total transition moment
for infrared excitation. For a homodimer consisting of
two heteronuclear diatomics AB, each of these TMTS
corresponds to the infrared transition moment of the
AB molecule. For a homodimer A, ** A; consisting of
a pair of homonuclear diatomics, the infrared transition
moment of each “isolated” A, molecule vanishes. In
this case, charge transfer vibronic type mixing** will
lead to finite TMTS. Infrared absorption of several
homodimers, such as (H,),;, (Np),, and (0,),, has been
recorded.!®

2. Collisional excitation

Excitation of the homodimer by collision will result
in an incoherent superposition of zero-order degenerate
states, which can be expressed as

\a):A]nmzl}+B‘n2nil) s {46)

where the constant coefficients determined by the ex-
perimental collisional excitation A and B are uncorre-
lated, in contrast to the case of optical excitation. We
can immediately construct the complementary state to
Eq. (46) which cannot be initially excited in that particu~
lar excitation experiment

|b)=C|nymply+ D|mml) , @

where the constant coefficients C and D are related to

the “experimental” coefficients A and B via the conven-

tional orthonormality relations
cl?+|D|*=1,
AC*+BD*=0. (48)

The relevant energetic parameter which determine the
intramolecular dynamics of the homodimer are

Ug:d= ‘Uz;:zl.nzn[ch'D* +BC*) 4

r,=(A*+B)r I,=(C*+ DY) (50)

mngl ? nmi
As the coefficients A and B do not bear any phase rela-
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tionship, it is apparent from Egs. (49) and (50) that a
reasonable description of the intramolecular dynamics
can be based on a bond mode state as an initial state,
This is justified as now for incoherent excitation (A?
+B%* ~1 and (AD* + BC*)~1, so that the energetic pa-
rameters calculated for an initially excited bond mode
and thus the subsequent time evolution of the system
will faithfully reproduce the VP dynamics of the colli-
sionally excited homodimer.

V. TIME EVOLUTION OF QUASIDEGENERATE
STATES

From the foregoing discussion, we conclude that a
reasonable description of a physically meaningful exci-
tation condition of the homodimer in an energy range
containing a degenerate (in the bond mode basis) or
nearly degenerate (in the miniexciton bond) pair of zero-
order discrete levels can be specified by the initial con-
dition

¥(0)= | (+)nynyl) (51)
for a coherent optical excitation, and
¥(0) = | mymy1) (52)

for collisional incoherent excitation. In defining these
initial conditions, we have asserted that the duration of
the short time optical or collisional excitation is short
relative to the energy spread of the two zero-order
levels. Such separation between excitation and subse-
quent time evolution is acceptable in the modern theory
of relaxation phenomena.!®!" The problem we are facing
is essentially that of the dynamics of two coupled levels,
which will be denoted by | @) and 18) and which are cou-
pled to a common continuum {Ie)}. These time coupled
levels are given by Eq. (45) for the case of optical exci-

tation and by Eqs. (46) and (47) for collisional excitation.

We shall first consider the general formalism of the
dynamics of such two-level systems. The discrete—
continuum coupling terms are v, and v, and the corre-
sponding half-widths, which specify the discrete—con-
tinuum couplings, are given in terms of the elements of
the off-diagonal decay matrix. The diagonal terms are

Taa=17|Vae|?, (53a)

Coa=1|vge|?, (53b)
while the off-diagonal terms are given by

Poeg=Th =1V, V. (53¢)

These off-diagonal terms [Eq. (53c)] are related to the

diagonal terms by
P‘,BFB‘, = l"aa rm/ﬂ . (53d)

The discrete-discrete coupling among the states |a) and
(8) is denoted by V,a. The initial condition is ¥(0)= |a),
where |a) is given in terms of either Eq. (51) or (52).
The probability P'*’(#) for the system to remain in the
initial state |a) at time ¢ is

PX ()= |(a|e ¥ ay|?, (54)
while the probability to populate the |3) state at time ¢ is
Pé“’(t):l(me"”""(a)lz. (55)

4745

The VP probability P{% (#) is given in terms of the popu-
lation probability of all the continuum states, which in
view of basic conservation relations is given by

PR =1- P20 - PN,

The time evolution of the two level system is well
kmown.!® In Appendix B, we present a detailed treatment
of the dynamics of two discrete levels interacting among
themselves and coupled to a common continuum, In
what follows, we shall just quote the essential results.
Two limiting cases will be of interest for the elucidation
of the VP dynamics of heterodimers.

(56)

A. Case (A)

Two quasidegenerate levels are coupled to a common
continuum

Fay I‘a>> Vaﬁ (57)

so that the resonances widths considerably exceed the
d-d coupling. Under these conditions, the decay pattern
of the system is exponential and no oscillatory terms
are exhibited. As we demonstrate in Appendix B, in
this case

PENt)= (Tyq + T) {Tag+ Lyq expl~ (T, + Teg)t/A]F,
Py ()= (Tyq + Tag) 2Ty Taa{l - exp[= (Tyq + Tept/H)}*.

(58)
The VP probability is
Py (=1 = (Fpq+ Tag) [Ty + [, qexpl=2yt)],
Y= (Lo + Tee)/7, (59)
while the VP yield at = « is given by
PP (t=)=T,o/(Tyq + Taa) . (60)

Four comments are now in order. First, the time evo-
lution of a two-~level system where the resonance widths
exceed the d-d coupling exhibits a nontrivial decay pat-
tern, not just a simple exponential decay. Second, in
the limit I';= 0, the simple exponential decay law

P& ()= exp(~ 2T, t/7),

Péa ! (t) =0 ’
Py (=1 exp(- 2T, /%) (€1

is regained while the |8) state is not populated. Third,
in general, when I';#0, the |B) state is populated not
by direct coupling between |a) and |8) but by indirect
coupling between these discrete states via the continu-
um. Fourth, in general case, the VP yield is smaller
than unity.

B. Case (B)

Two effectively coupled levels weakly are coupled to
2 joint continuum

Faa’ I‘BB « Vth 3 (62)

thus, the d~d coupling considerably exceeds the decay
widths, For short times ¢ <AL, Al'5S, the time evolu-
tion of the system, is oscillatory

Pt(!" ,(t) = cos? (Uagt/ﬁ) 3
Py (t)=sin? (v 4t/7), (63)
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with U, determining the oscillation frequency (see Ap-
pendix B). The intramolecular dynamics will now in-
volve quasiperiodic energy exchange between the zero-
order states |a) and 138). Only for sufficiently long
times of the order of the decay widths T', and I'y will
effective damping be exhibited. The decay is so slow
relative to the period of the oscillations that in this
limit the oscillatory behavior cannot be observed by
monitoring the VP decay as the fast oscillations will be
smeared out.

In Appendix B, we provide a general solution to the
dynamics of the two level system, which in general ex-
hibits oscillatory decay. Several additional interesting
features of the dynamics are known!® such as the ap-
pearance of a double pole when I, = [gg=2V,,. How-
ever, for the elucidation of the main features of VP dy-
namics of homodimers, the two limiting cases consid-
ered above are sufficient at present.

Optical excitation of a metastable state of the homo-
dimer corresponds to the initial state |a)=|{(+)nnl);
the complementary state g is just |{~)mn,l), whereupon
V,e=0and Iy=0. As the d-d coupling vanishes identi-
cally, it is apparent that the time evolution following
optical excitation of the homodimer corresponds to case
(A) of a pair of quasidegenerate levels coupled to a com-
mon quasicontinuum, Furthermore, as I';=0, the decay
pattern of the optically excited initial state is described
in terms of a simple exponential decay, the VP rate
being given by 2T, /7i=4T /.

Collisional excitation of a metastable state of the
homodimer can be described as resulting in the initial
state |a)= Innyl), the complementary state being |8)
= lmml). Now, UVi3="U4t, nn is finite and Ty =T}

=Ty [Eq. (39)]. The nuclear dynamics can corre-
spond either to case (A) or to case (B) or even to an in-
termediate situation of oscillatory decay. In order to
confront the theory with the experimental results of
Dixon and Herschbach,! where a collisional excitation
of the C1,~Cl, van der Waals homodiimer was performed,
it will be interesting to obtain information concerning
the energetic parameters which determine the VP dy-
namics of this and similar systems.

V1. MODEL CALCULATIONS OF VIBRATIONAL
PREDISSOCIATION OF HALOGEN DIMERS

We shall now consider the VP of halogen dimers
A,-A, (A=F,Cl, Br,I) on the ground state potential sur-
face, adopting our simple model for nuclear dynamics
of homodimer excited by collisions. The structures of
the halogen dimers are not yet known, so that we have
resorted to model calculations for linear homodimers.
The energe’uc parameters which determme the VP dy-
namics were evaluated numerically, U ,,1,,2,',,2,,1, was cal-
culated using Egs. (10) and (11) without invoking the lin-
earization approximation, while I, , was calculated
from Eq. (39). The spectroscopic and structural input
data are summarized in Table I. To explore that gross
features of the nuclear dynamics, we present in Table II
some numerical results for the discrete~discrete cou-
pling terms and for the half-widths of the resonance for
VP of halogen dimers in the low lying vibrational states
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of the bond modes. From these results, it is apparent
that off resonance interactions between zero-order states
characterized by different values of I are negligible rela-
tive to the energy spacing between the zero-order levels.
Thus, we have to consider discrete-discrete coupling
only between degenerate zero-order ievels,

From a cursory examination of the energetic data for
degenerate zero-order states for the halogen dimers, it
is immediately apparent that they fall into two categories
(a) The (Cly),, (Bry),, and (I); homodimers are charac-
terized by negligibly small discrete—discrete coupling
terms. For these dimers, condition (57) is well satis-
fied and the nuclear dynamics of these systems following
collisional excitation is characterized by case (A). Thus,
the VP process of these dimers will exhibit a nontrivial
exponential decay determined by Egs. (59) and (60). In
this case, no oscillatory energy exchange between the
bond modes will be exhibited as the discrete-discrete
coupling is too weak. The only exchange mechanism
between the bond modes pertains to high-order coupling
via the common dissociative channel. The widths T',,,,
provide a proper rule of the thumb characterization of
the VP decay rates. All the states of these homodimers
listed in Table II are metastable with respect to VP, ex-
cept the |y =1, ny=0,1=0) state of (Bry),, which is lo-
cated below the dissociation threshold that corresponds
to the |ny=0, =0, €=0) state. (b) The (F;), homo-
dimer is characterized by discrete—discrete coupling
terms which overwhelm the widths of the zero-order
degenerate states, whereupon condition (62) is strictly
obeyed and this system corresponds to case (B). In this
case, collisional excitation will result in direct energy
exchange between the bond modes as the VP decay is in-
efficient. The dimer collisionally excited into one bond
mode will play a game of “musical chairs,” oscillating
10%-10° times between the two bond modes, before VP

occurs. In this case, the oscillations are too fast to be
interrogated by following the VP decay, which will oc-
cur on the time scale ~7/Tp 1.

To gain some insight into the time scale which char-
acterizes the VP process in linear halogen dimers,
some further numerical model calculations were per-
formed. In Fig. 4, we portray the ! dependence of the
half-width of the resonances of the (Cl,), homodimer for
several vibrational states. These results qualitatively
demonstrate the enhancement of the VP rate with in-
creasing the excess vibrational energy of the dimer.
The dependence of the VP rate on the vibrational quantum
number 7 of the bound states in the van der Waals bond
reveals an increase of the VP rate with decreasing ! at
high [ values until a maximum is reached at I=1. This
pattern is analogous to that previously obtained by us
for VP of triatomic linear van der Waals molecules.’

To gain some insight into the semiquantitative aspects
of the VP dynamics, we present in Fig. 5 the reciprocal
decay widths for the VP of the In = 1,n,=0,1) zero-
order state at I=1{ for the halogen dimers. For the
(Cly)s, (Bry),, and (i,), dimers which correspond to class
(A), these reciprocal decay widths indeed represent the
lifetimes with respect to VP, while for the (F,), dimer
which belongs to class (B), again the reciprocal width
marks the time scale for VP, after averaging over the
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TABLE II. Discrete—discrete coupling terms and half-widths of resonances for VP of linear
van der Waals dimers of the homonuclear halogen diatomics.

Energy
Levels differegnce d—d Couplings
Molecule mp ncp %hs  nkp 1 (em™) (em™h) Ty 5nep! (cm™
(Fy), 1 0 0 1 0 0 0.15x10™! 0.62x10°"
1 22,5 0.43x10™
1 0 0.25x1073 0.26x107!
2 17.7 0.48x1073
2 0 0.14x1072 0.56%x1071!
3 12.9 0.19%107?
3 0 0.35%10°? 0.74x107H
4 8.1 0.35x10"
4 0 0.44%1072 0.59x107!
5 3.4 0,20%x1072
5 0 0.11x 107 0.11x10"1
(Cly), 1 0 0 1 0 0 0.48x10™% 0.18% 1071
0 31.4 0,30x10™%
10 0 0.20x107% 0.80%107%
11 15.1 0.30x107%
19 7.6 0.49x107%
19 0 0.36%107% 0.28x107%
(Bry), 1 0 0 1 0 0 0.19x10"" 0
1 23.7 0.14%10""
1 0 0 1 10 0 0.66x107% 0.2x107"
11 15.4 0.13%x10°%
1 0 0 1 20 0 0.19x10%® 0.1x10%¢
21 7. 0.24%10™%8
(L), 1 0 0 1 11 0.46x10°
16 0.22x1077
20 <10~ 0.50% 10"
24 0.88x107"
28 0.12x10°
32 0.13x107"
36 0.11x10°
fast energy-exchange oscillation. The effective life- efficient intramolecular energy flow between the bond
times for VP of linear {(A,), halogen dimer exhibit the modes is not exhibited on the remarkably long time
following features: (1) The lifetimes are remarkably scale of 10%~10"° sec. (3) The low values of the life~
long, being in the range of 10°! sec for (F,), to 10°° sec times and their dependence on the chemical composition
for (I,);. (2) For the (Cly),, (Bry);, and (i), dimers, of the dimer can be adequately rationalized in terms of
our energy gap law for VP, i.e., Intxw'/?. (4) The
1078
3 1t (sec)
17 (Fy),e
_w? \
%, \% >
g \ \\ 2
< AL
85" /J }]\ %
3 i
c / -1
[ / 410
L1 /
10 /
41
g 1 . | ,
%% 5 10 15 R o l 2™
FIG. 4. Dependence of the half-width of the resonances of the 10 15 20 25 30
(Cl,); homodimer for several vibrational states on the quantum FIG. 5. ‘Reciprocal decay widths and lifetimes for vibrational
number [, corresponding to bound motion along the van der predissociation of the |ny=1, ny=0, I) zero-order state at
Waals coordinate. ¢ =7 for the halogen dimers.
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lifetime of 10°® sec evaluated for the [n =1, 7, =0, l_—_l—)
state of the (Cly), dimer is in fortuitous agreement with
the experimental value 7> 10™* sec of Dixon and Hersch-
bach.! This numerical agreement should not be taken
seriously because of four reasons. First, the structure
of the (Cly), homodimer is unknown and the linear model
utilized herein provides only a qualitative description of
the VP process. Second, the potential parameters of
the van der Waals bond were not yet established and the
VP rate is very sensitive to these parameters, as is
apparent from our energy gap law. Third, rotational
effects were not incorporated in our treatment. Fourth,
the experimental collisional excitation method employed
by Dixon and Herschbach! does not select a single [ state
and, as is apparent from Fig. 4, the VP rate exhibits a
strong dependence on I. The lifetime of =10 sec
evaluated for linear (Cl,), at =17 constitutes a lower
limit for the VP lifetime of 2 model system, which is
consistent with the currently available information on
the nuclear dynamics of the (Cly), dimer in real life.
The goal of the present theory is not to provide numerical
results, as it is too primitive for that purpose, but ra-
ther to elucidate the characteristics of the intramolecu-
lar dynamics of a new and interesting class of chemical
systems.

Note added in proof: After the completion of this work
we have become aware of a recent theoretical contribu~
tion, by G. Ewing, !® to the related field of VP of hydro-
gen bonded molecules. He shows that the VP process
is inefficient when there are unfavorable Franck—Condon
overlaps between the vibrational wave functions for the
bound complex and the wave functions which describe the
fragments. Also the effect of internal degrees of free-
dom of the fragments on the VP rate is discussed, in ac-
cord with our general conclusions and which rest on the
energy gap law.

ACKNOWLEDGMENTS

We are indebted to Professor D. Dixon for a provoca-
tive discussion and to Professor D, R, Herschbach for
communicating to us some of his results prior to publi-
cation and for stimulating correspondence. One of us
(J. A, B.) is indebted to the Chemical Physics Depart-
ment, the Weizmann Institute of Science, for their kind
hospitality during the completion of this work.

APPENDIX A. THE NORMAL MODES BASIS

We consider a van der Waals homodimer AB-:- CD,
where B=C and D=A, We shall define the normal co-
ordinates!®

R,=2""X,p+Xcp), (A1)
Rgy=2""*(X,p=-Xcp) - {a2)

After separating the motion of the center of mass, the
Hamiltonian is

A2 Bk 9° 8’
H:“"'E'[ W"'IJ’ (~RZ+3R2 )]+V(R:R31Raa),

as (A3)
where
m
R=Xp¢ +m (Xap+Xcp). {A4)

The reduced mass is

p=m,mp/(my+ mg) (A5)
and m is the average mass
m:(mA+mB)/2. (AG)

If we assume now that the interaction V can be repre-
sented as the sum of three interatomic potentials be-
tween neighboring atoms, i.e.,

V(RiRs:R:xs): VAB{z-ilz(Rs+Ras)]
+ VBC (R - YRs) + VCD[2-“2(R.; _Ras)] ’ (A7)

then, in the harmonic approximation for the interatomic
potential V,g,

V(R, R33Ra3) = %kAB[(Rs - ﬁs)z + (Ras - R‘“)Z]
+Vgc (R —-YR,) , (A8)

with y = 2%m,/(m, + my), so that the asymmetric mode
becomes separable. The substitution

Zp(Rs’RusaR):¢(R’R5)X(«Ras) (Ag)
in the Hamiltonian (A3) with V given by Eq. (A8) results
in

8t B 9 ~
B 20 ok Skan e =) +ve -,

x‘b(R,Rg):Esd)(RyR,) (Aloa)
and

A =
[ "_2—“_ ﬁr"’" ELY (Raa —Rns)] X(Ras): E X (Ras) . (A10p)

The zero-order discrete states are now written in the
form

Ungrast = Bas Rags B | Bettag€) = Xn, B )Xny, Ras)0 R), (A1)

with x, (R,) and X, (R,,) representing harmonic oscil-
lator wave functions with energy fiw,p(n, + %) and

Bw a5, + 3), respectively. The frequency w,p of the
diatomic molecule AB is w,p = (kas/1)"%. The func-
tions ¢ ,;(R) are the bound solutions of the equation

i
[ o sm2 TR IR )]%(R) €9;R) (a12)

and we have for the total energy of the bound states
E:€,+ﬁwAB(n3+n“+1), €,<0. (A13)

The continuum wave functions are written in the same
form as Eq. (A11):

Zl)"s,.asz an(Rs)Xnas (Rns)(Pe(R) » (A14)
with the energies of the continuum states being given by
E=¢e+huw,pln,+n+1), €>0, (A15)

Equations (A13) and (A15) imply that levels obtained by
interchanging n, and n,, or from any other combination of
of n, and n,, Which gives the same total value of M= (n,
+n,,) Will be degenerate. However, all the states which
correspond to different values of n,, are completely un-
coupled. As the total Hamiltonian is separable in the
R,, coordinate, then all the eigenvalues which corre-
spond to a single value of n,,, which constitutes a good
quantum number of the system, span an independent
subspace in Hilbert space. Thus, all states character-
ized by different values of #, (discrete) and € (continu-
um) quantum numbers for the n, zero-order states and
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which correspond to the single value of n,, will exhibit
an independent time evolution.

The discrete—continuum coupling in the normal mode
basis is

VI7E o= (0l | [VR - vR,) - V(R ~yR )] | me€) ,

where we have omitted the quantum number 7, for the
reasons given above. It should be understood that we
are dealing with a particular subspace corresponding to
a given value of n,,.

(A16)

Using a Morse potential of the form given in Eq. (5)
(with BC=BB) for the van der Waals bond, we obtain

VIS o= Bin O - 2B, CfU (A17)

ngl,nge ngng
with
B;:BQ: <728H8Xp[j015c‘)/(R, -ga)] - 1H ﬂfq> , =12, (A18)
while C{’, j=1,2 is given in Eqs. (16) and (17) (with
BC=BB everywhere). We have on the energy shell

/1
SUBC (Ko -1-1) .

Al9
T w19

€=Hwapalng—ny) ~

We must impose the condition €>0, so that x,>#}.

In the linearization approximation, we get for the co-
efficient in Eq. (A18) the following:

j=1,2  (A20)

and substituting this result into Eq. {A17) and using
Eqs. (16) and (17), we obtain on the energy shell

- Dggwm
U:af.nf,ez Wne chY(h—n.q/m-‘-wAB)“z

(1) N 1
Bn:ns o3 :Yord (Ens/zuwAB) /zcns,n;ol ’

. (2Kpg ~21-1) )17
X [ch/z) smh(21r05) ﬁm]

| TG +Kge —i0)| /[cos® @K pe) + sinh?(n8 ) ]1/2 .
(a21)
The width for a discrete level (n,, n,, ) is then given by

Dy ngt =T | Vet e | 2= 2(1/8)hw  gmyn,[ (2K g ~ 21 = 1)/
I'T(2K - 1){sinh(27y,)/[cos? (7K 5c)
+sinh?(my;)]}| T Kpe + % - dy,) |2

if ${>0, and T
defined

(A22)
;=0 otherwise. In Eq. (A22), we have

Nggns

my=m,/2my , (A23a)
=081~ Kpc -1~ 212, (A23b)
B1=4Dpcwrp/liwvkc . (A23c)

We shall now confront the result for the resonance
i

4749

width in the normal mode basis with the result obtained
in Sec. IV for the local mode basis comparing Eqs. (39)
with Eq. (A22);we conclude that

Cpymt/ 1+ 1) =T g 1/ 20, (A24)

where nyn, refer to vibrational quantum numbers for the
two AB bonds, while ng and #n,, refer to the quantum
numbers corresponding to the normal coordinates R
and R,,, respectively.

It is now easy to prove the equivalence of the normal
mode expansion and the harmonic local mode basis. We
note that there is a unitary transformation between the
two sets of wave functions

M
|74y M = mgy = }:0 CH oIy M =nyy (A25a)

ng=

M
{74, M ~ ) = Eo CH ol ng M=ny) (A25b)

ng=

with
LM = )1 72 R M~ny\l n
- 2-”/2["§ 8 ] — 1)4-ng-4 X
" !l (M~ my)! g‘o( a i Nn-j

(A26)

The proof follows from the explicit form of the harmonic
oscillator wave function

Xn(x) = C H,(x) exp(- x%/2), (a27)
with
a* o
H,,(x):d—g—,, e thase I;,o »
__oen/t -172 (LW 1
C,= 221} (m) (A28)

A wave function (Ry,Ryin, M ~n) is, in our case,
dnz d‘"'"l
(RDR‘Z l"l!M -ny)= cn,Cu-q 7&? :izz"rﬂl
Xexp(~ £ = & + 201 & + 2008~ x1/2-53/2)] 1, 10>
{A29)

where

Xy= (MwAa/ﬁ)Uz(R1—§1), x2=(HwAa/ﬁ)lm(Rz-Ez),

(A30)
defining the dimensionless normal coordinates

Xe= (‘J'wAB/ﬁ)Uz (Ra - Rs) s Xgg= ("lwAB/ﬁ)”z(Ras - R_as) ’
(A31a)
and

8= 2-“2(51 + 52) ’
We obtain

Eas= 27125y — &) (A31D)

<RR1 M =C.C 4 4\ mef 4 a '™ 2.2 2 2
1l Ny -111)— ag Y Manyg dg_,+ z di. 9E. 2 19X‘p(— ga"gas+2xs§s+2-xas§as"xa/z'xus/z)les(as-o

8 gd! dg.! 8 gd!

and therefore

@Ry | mM = ) = (pw /B 2LH [0} (M = )1 T2

Now,

(A32)

L L RN Y P s aM=Uie))
ditd gh-tie
xz _5_ -1 xp(- £2 — £+ 2¢ % a2 2
i= 1=0< Z)( i ) =0 deg dga; XD (= £y = fag 208, + astas x"/z—x“/z)l{a‘as‘o'

(A33)
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(Rs’Raa'ns!M —ny= (“wAB/ﬁ")Uzz-Mlz[ns! o1~ ns) ! ]-”2
so that

Ry, Ry | myy M = )= 2% Py 1 (M ~ ) 1] ‘”Z -Zﬂl ( " )(

ng=0 J=0 ng—j

From Eq. (A25), it follows that

2
:E: (: 1/2
"I'M'"l' 1= ning ns.M-n_,, 1 »

and using Eq. (A24), we obtain

M
P2
_ M 172172 172 2] __4 1/2
Fq,ﬂ-q,l"(% Cnlnsz FnI,M-nt,lna /M ) _M(Z C"i" ) "1""'"1" »

so that

Z Cll‘ﬂs 1/2

ng=0

which implies that

M\V?
-(3)"
M M-y

Z E[n,'(M n ) M2l (- 1)

nged  j=0

Hg—~]

APPENDIX B. TIME EVOLUTION OF TWO CLOSE-
LYING LEVELS COUPLED TO A CONTINUUM

We consider two discrete levels | a) and |8) coupled
to a common continuum {i€)}. Let P be the projection
operator

= Ja)(a| + [BXB] (B1)

and @ its supplement in the space defined by the Hamil-
tonian

H=Hy+7v, (B2)
where H, does not couple P with @.

From the definition of the resolvent operator

(E-H)G=1, (B3)
we obtain

(E - PHP)PGP - PVQQGP=1 (B4)
and

(E -QHQ)QGP - QVPPGP=0, (B5)

where the only assumption is PHy@Q=0. Note that H
need not to be diagonal in the subspaces spanned by the
projection operators P and . In fact, these relations
are completely general and it is not necessary to write
H=H,+U., Then in Eqs. (B4)-(B5), we replace PVQ
and QVP by PHQ and QHP, respectively, and the rest
of the argument is invariant. From Eq. (B5), we get

QGP=(E - QHQ)Y'QVPPGP (B6)

(M;’H)( n .)lz[z”"Mm!W—m)l]“z-

Goo(E)=[E -~ Eg— 8gy(E) +iTgs (E))/{[E - E, = Ayy (E) +il, o (E)]J[E ~ Eg —
+[Vap+ 8qp(E) = ilog(B)][Vay + Agg (E) = il (E)]}

and

Ba = [Vﬂa + Aﬂa (E) - irBa (E)]/{[E - Eu - Aaa(E) +irau(E)][E _EB -
+iTga(B)]+ (Vg + Agg(E) = iTos (B)Y Vio + Bgq (E) — il (B)]} .

Intramolecular dynamics of van der Waals dimers

g M=ng
T A e B 2+ B2y /2= /D) (A34)
M-~ n
_ ) (= 1043 [} (M = n ) V2R, Ry 0gM ~my) . (A35)
j
(A36)
{A37)
(A38)
(A39)
|
and substituting Eq. (B6) into (B5),
PGP =[E - PHP - PVQ(E - QHQ)'QVP]™! . B7)

For the special form of the projection operator (B1) and
(B7), these general relations result in

[E"Ea -Raa(E)]Gaa —[VaB+RaB(E)]GBa=1 (Bs)
and
- [VBQ+RBG(E)]GGQ+[E—EB-RBB(E)]GBazo’ (Bg)

where we have defined

E,={i|Hy|)+ G| V|)=(G|H]D) , (B10)
R,(E)=(i| VQ(E - QHQY'QV|j) (B11)
Vy=4vli, ij=a,8. (B12)
From Eqs. (B8) and (B9), we obtain
% G, (B13)
and

Gpa= {E—-Ea -R,, (E)-

[Vys+ Ry (B)][Vag + Ryg (EV]]™*
E - Ea _Rﬂﬂ(E)
(B14)
and similar expressions for Gg and G,,.

If the @ subspace belongs completely to a continuous
spectrum, then

R,,(E):A”(E)—ir’“(E) (B15)
and we obtain finally
Agg(E) +iTgs(E)]
(B16)
Agg(E)
(B17)
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The Green’s functions (B16) and (B17) which deter-
mine the time evolution of the system can be expressed
in the compact form

G,oE)=[E~-Es+ilg(E))/(E-ENE—~E.), (Bl6a)
GBa (E)= (; _ ;Z)I(‘E _(_EE?\_) » (Bl'-la)

where E, and E_ are the poles of the Green’s functions
obtained in terms of the roots of the quadratic equation

[E-E, +iCy o EVE ~ Eg+iTss(E)]
+ [I-/aﬂ - ir&B(E)][f}Ba - irﬂa (E)]: 0 ’

where we have defined the shifted energies and coupling
terms

(B18)

E,=E, +,,(E), (B192)
Eg=Ey+ 8g(E), (B19b)
Vos= Vas + A6s(E), (B19c)
Vau = Vag + Aga (E) . (B19d)

Assuming that the level shifts A(E) and the level widths
T(E) are slowly dependent functions of E, we obtain the
explicit solutions

By +Eg-i(Ty,+ g . { [Em —Eg~ iy, - rﬂ;)]z

- 2 2

E

S

- - 1
- (VaB - iF‘,B)(VBu b iPBa)} (BZO)
Invoking the initial condition ¥(t=0)= ia), the proba-
bility P.%’(¢) to be in the |a) state at time ¢ is

2

P&()= , (B21)

(@mi)? J " dE exp(~ iEt/K)G, . (E)
0

while the probability to be in the |{B) state at time ¢ is
given by

Péa )(t)'—-‘

@ 2
eyt | dEexp(-iEt/h‘)Gaa(E)’ . ®22)
0

Now, the total probability for VP up to time ¢ is
P ()=1-P2 (1)~ P (1) (B23)

From Eqs. (B16)-(B22), we obtain the general results
for the time evolution of the system

P ()= |(E, -~ E.)| | (E, - By + iTs) exp(~ iE,1/h)

- (E. - Eg+iTy) exp(~iE.1/R)|?, (B24)
Pe®(t) = (Vi + T3, )| (B, - E.)|"2| exp(~ iE,t/h)
-expl(-iE.t/m)|?, (B25)

and ‘
P (B)= | (B, — E)["*[|(E, ~ Ey +iTsg) expl iE,t/R)
~ (B. - Eg+iTygs) exp(~iE.t/B) |2+ (VE, + T2)
x |exp(-iE,1/h) ~exp(~iE.t/B)|?) .  (B26)

Two limiting cases will be now considered.

1. Case (A)
We have two quasidegenerate levels (l:?a ~I§‘B) with
Pa’ FB > Vaﬂ ] (B27)

so that the resonances widths considerably exceed the
d—d coupling. Under these conditions,

E, ~ E‘a ~ E‘B ’ (B28a)
E.~E, -i(Dyq+ Tgs), (B28b)

and replacing Eq. (B28a) and (B28b) in Eqs. (B24)-
(B26), we obtain the final results for this case given in
Eqgs. (58)~(60) of Sec. V.

Il. Case (B)

The d-d coupling considerably exceeds the decay
widths, i.e.,

Foor Tag < Vg« (B29)
In this case, we get
E,=E, +i| V.| , (B30)

and introducing Eq. (B30) into Egs. (B24)-(B26), we
obtain the results given in Eqs. (63) of Sec, V.
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