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Abstract: In this paper we advance a theory of nonadiabatic molecular group transfer processes in biological systems, which 
can be described in terms of a radiationless transition between vibronic levels corresponding to two distinct electronic configu- 
rations. The resulting multiphonon rate expression exhibits a continuous variation from a temperature-independent nuclear 
tunnelling rate a t  low temperatures to an activated rate at high temperatures. The theory is applied for the study of the recom- 
bination reaction between C O  and hemoglobin (CO/Hb) in the temperature range 2-100 K.  This process is accompanied by 
an electronic spin change of the system, is induced by weak second-order spin-orbit coupling, and involves large nuclear 
changes, whereupon the nonadiabatic multiphonon treatment is applicable. The C O / H b  recombination rate is expressed in 
terms of a product of a second-order spin-orbit electronic coupling term and a thermally averaged nuclear Franck-Condon 
vibrational overlap term. The experimental temperature dependence of the C O / H b  recombination can adequately be account- 
ed for in terms of our theory, provided that the shift in the iron equilibrium configuration between the "free" and "bound" 
states is 0.4-0.5 A, the characteristic frequency of the motion of the iron, coupled to the deformation mode of the heme group 
is -100 crn-I, the upper limit for the energy change involved in the exoergic process is --0.05 to -0.1 eV, and the second- 
order spin-orbit coupling term is 0.1-1 cm-'. These nuclear and electronic parameters concur with the available information 
concerning structural and spectroscopic data for hemoglobin and related compounds. 

I. Introduction 
Electron transfer (ET) and atom or molecule transfer (AT) 

reactions play a central role in a variety of biological systems. 
Consecutive ET reactions represent the key steps in the pri- 
mary events of p h o t o ~ y n t h e s i s ~ ~ ~  and in the respiratory chain.4 
Proton transfer is one of the most important elementary steps 
in  the action of hydrolytic  enzyme^^,^ and in the primary 
photochemical processes in some visual  pigment^.^ Ligand 
substitution, Le., the transfer of heavy molecular groups, is 
important in the binding of substrate molecules to the metal 
centers in hydrolytic metal lo enzyme^.^^^ The transfer of heavy 
molecular groups is also the dominant elementary process in 
the reversible uptake of dioxygen, carbon monoxide, and other 
small molecules by myoglobin (Mb),  hemoglobin (Hb), and 
related compounds.I0 In terms of general methodology several 
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of these processes (e.g., ET in bacterial photosynthesis,2a 
proton translocation in excited rhodopsin,2b and the recom- 
bination of C O  with M b  or HblO) may beviewed as unimo- 
lecular processes in a biological supermolecule, which are ex- 
pected to exhibit an Arrhenius-type temperature dependence. 
However, as originally pointed out by Longuet-Higgins and 
Higgs,]' in contrast to the predictions of this law, the rate 
constant is not expected to vanish for T - 0 owing to zero- 
point energy effects. In modern terminology this would be 
restated as tunnelling of molecular groups prevailing for T - 
0 and resulting in a temperature-independent unimolecular 
rate constant at  low temperatures. 

During the last decade the dynamics of some elementary 
biological processes were investigated over a broad temperature 
range from cryogenic temperatures around 2 K up to room 
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temperature. Notable examples are the light-induced oxidation 
of cytochrome c in the photosynthetic bacterium Chromati- 
um,2a.4 the recombination of CO and other small ligand mol- 
ecules produced via photodissociation of its complex with 0-Hb 
subunits with its parent deoxy form,I0 and the production of 
prelumirhodopsin from electronically exited r h o d o p ~ i n . ~  In all 
these cases the unimolecular rate is found to be finite and 
nearly temperature independent a t  low temperatures, while 
the rate changes within a narrow temperature interval into an 
Arrhenius temperature dependence, characterized by a finite 
activation energy. 

The  classification of these biological reactions as unimo- 
lecular processes which exhibit pronounced effects of nuclear 
tunnelling a t  low temperature is, however, too general. To  
proceed with the formulation of a microscopic theory for such 
processes two classes of reactions must be distinguished: (1) 
adiabatic processes which proceed on a single potential energy 
surface (Typical examples would be most A T  processes in- 
volving the transfer of heavy molecular groups (ligand sub- 
stitution, inner sphere ET)  and probably also many proton 
transfer reactions.); (2) nonadiabatic processes involving a 
transition between two zero-order potential surfaces which 
correspond to two distinct zero-order electronic configurations. 
A necessary condition for the nonadiabatic limit is the small- 
ness of the residual electronic coupling matrix element which 
c o y  ‘ :s the zero-order states. Recent theoretical a n a l y ~ i s ’ ~ - ’ ~  
has iown that this limit prevails for E T  in the cytochrome 
c-b, teriochlorophyll system in bacterial photosynthesis. 

The theory of E T  in biological systems as  nonadiabatic 
multiphonon processes is now well d e ~ e l o p e d . ’ ~ - ~ ~  It is iso- 
morphous with the general quantum mechanical theory of 
homogeneous and heterogeneous ET processes, with the 
nonadiabatic rate constant being expressed as a product of a 
square of a two-center one-electron exchange integral and a 
thermally averaged Franck-Condon vibrational nuclear 
overlap integral. This nuclear contribution represents a 
“horizontal” transition between two nuclear potential surfaces 
(in contrast to the “vertical” transitions in spectroscopy) and 
results in a temperature-independent E T  rate a t  low temper- 
ature, which passes into an Arrhenius equation a t  higher 
temperatures. This is in accord with the experimental data of 
De Vault and Chance for E T  in Chromatium.2a On theother 
hand, the theoretical framework for the description of the more 
complicated A T  p r o c e ~ s e s ~ ~ - ~ ~  is far less comprehensive. 
Analysis of experimental data commonly rests on the inter- 
pretation of the low-temperature T-independent rates on the 
basis of the Gamov tunnelling f o r m ~ l a . ~ . ~ ~  This empirical 
approach requires further justification, as the Gamov formula 
was derived for the decay of a bound state into a continuum 
and is therefore not straightaway applicable to A T  between 
manifolds of bound states. 

In the present work we shall adopt the formalism of multi- 
phonon electronic transitions to nonadiabatic A T  reactions in 
biological systems. W e  shall establish the relation between 
nonadiabatic E T  and A T  processes and also show that the 
nuclear Franck-Condon vibrational overlap factors can be 
represented in a form akin to the Gamov formula. More spe- 
cifically, we shall apply the theory to the interesting problem 
of the low-temperature recombination of CO with Hb.I0 Thus, 
rather than dwelling on general quantum mechanical treat- 
ments of model systems for rnultiphonon processes, we shall 
now proceed to formulate the theory of A T  processes with 
special reference to this interesting system. 

11. CO-Hb and CO-Mb Recombination Reactions 
The recombination of CO with both subunits of H b ,  deriv- 

atives of this compound, and protoheme, with CO being formed 
by photodissociation of the appropriate CO complexes, has 
been studied over the temperature interval 2-300 K.l0 From 

IS 
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Figure 1. Schematic view of the Hb-CO recombination process. The heme 
group is seen from the edge and located in the hydrophobic pocket. The 
“proximal” and “distal” histidine are also indicated. The figure to the left 
corresponds to the initial state and the figure to the right to the final 
state. 

previous studies of the recombination of CO with M b  it was 
shown that a t  temperatures below 180 K the system overcomes 
a single barrier corresponding to a shift in the CO position.10a 
At these low temperatures, the hydrophobic pocket which 
surrounds the heme group is sealed off, Le., CO does not leave 
the pocket. In the initial “free” state CO is likely to be attached 
to the “distal” histidine in the protein chain.lining the pocket, 
whereas it is bound to Fe2+ in the final state. Since this ele- 
mentary process is the only one observed at  low temperatures 
( T  < 180 K), it is reasonable to assume that it is also the only 
one occurring in the CO-Hb recombination in the temperature 
range 2-100 K. The detailed experimental study of this process 
has provided the following information: (a)  The rebinding 
process does not show an exponential decay but rather follows 
a power law. Nonexponential kinetics are  characteristic of a 
unimolecular process subject to “inhomogeneous broadening”. 
In the present case this effect originates from the energetic 
spread of the barrier heights due to the freezing of different 
conformational states. (b) The average half-times (or rather 
70.75, which refer to the time when the deoxy-Hb concentration 
has dropped to 75% of its initial value) is practically temper- 
ature independent in the range 2-10 K. (c) The transition from 
the tunnelling region (2- 10 K) to the temperature-activated 
region occurs in the range 10-20 K. Above this region 70.75-l  
is temperature dependent, characterized by an apparent ac- 
tivation energy of 0.045 eV. 

We shall next consider the nuclear configurational changes 
and the electronic states involved in the recombination process. 
Crystallographic data  suggested that in the CO-free five- 
coordinated state the iron atom is located 0.75 8, out of the 
puckered heme plane.20 This value has been questioned by 
more recent data, which suggest a displacement similar to that 
for CO-free Mb.*’ The distance of the iron atom from the 
mean of the heme lane in this compound has been reported 
to be about 0.3 1?,q2, although recent data suggest the 
somewhat larger value of 0.55 A24 which is also found in cer- 
tain model corn pound^.^^ In view of this discrepancy of re- 
ported values we shall prefer to leave this nuclear displacement 
of the iron atom as a parameter which will subsequently be 
estimated from the experimental kinetic data. In the bound 
CO-Hb state the iron atom is shifted into the heme plane 
(being only 0.02 8, out of the plane toward CO in model com- 
pounds26), while the CO molecule moves, probably from the 
“distal” histidine, to its bound state a t  the iron atom (Figure 
1). The geometry of this bond is not known with certainty for 
the Hb-CO complex, but structural data26a show that for the 
Mb-CO complex the Fe-C-0 angle is 13S0,  while for some 
related model compounds the Fe-C-0 unit is linear.26b 

Finally, we consider the relevant electronic states. The  
CO-free five-coordinated heme group is in the high-spin state 
(S = 2), while the heme group is in the low-spin state ( S  = 0) 
in the bound Hb-CO and Mb-CO c~mplexes .~’  This is also 
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supported by recent theoretical calculations which provide 
strong evidence that the ground state of both complexes does 
correspond to the (Fe(S  = 0) + C O ( S  = 0)) S = 0 state.28a 
In our treatment we shall consider just two electronic states, 
the “free” S = 2 state with the Fe outside the heme plane and 
the “bound” S = 0 state with the Fe within the heme plane. 
The location of the S = 1 state a t  different nuclear configu- 
rations is a t  present unknown. The calculations of Gouterman 
and colleagues28b indicate that for the planar configuration 
of the “free” Fe-porphine the S = 1 state is stable. However, 
recent spectroscopic studies28c indicate that the S = 1 state is 
located a t  high energies and should not be considered in rela- 
tion to the dynamics of the recombination process. 

The central features of the low-temperature CO-Hb and 
CO-Mb recombination processes which form the basis for our 
nonadiabatic A T  theory a re  then the following: (A) The pro- 
cess involves a change in the electronic state of the system from 
S = 2 in the “free” state to S = 0 in the bound state. (B) The  
change in electronic state is accompanied by an appreciable 
change in the equilibrium nuclear configuration of the 
system. 

111. Nonadiabatic AT Theory 
Our approach toward a theory of nonadiabatic A T  processes 

will now be specified as  follows. 
(1) The entire electronic-nuclear system can be adequately 

characterized by two distinct zero-order electronic states. 
(2) For each of these electronic states we can construct a 

multidimensional Born-Oppenheimer potential surface de- 
termined by the nuclear displacements of the entire system. 

(3) Two sets of vibronic levels for the nuclear potential 
surfaces can subsequently be found. These two sets constitute 
the quantum mechanical initial and final (zero-order) states 
of the system. 

(4) A microscopic rate constant is derived by considering 
the system to be initially present in a vibronic level on the initial 
potential surface. Residual interactions which were not in- 
corporated in the zero-order Hamiltonians couple the initial 
vibronic level to a manifold of vibronic levels belonging to the 
final potential surface, and which a re  quasi-degenerate with 
the initial vibronic level. Consequently, the initial vibronic level 
is metastable and undergoes a decay process. When the man- 
ifold of final state levels is dense, which is the case for solid- 
state systems such as the Hb-CO or Mb-CO systems, the 
decay is irreversible. 

( 5 )  Provided that the residual coupling which induces the 
process is weak relative to the characteristic vibrational 
frequencies, all the microscopic decay processes can be de- 
scribed in terms of time-dependent perturbation theory. This 
is the basic feature of the nonadiabatic description of the rate 
process, where the residual coupling is sufficiently low that the 
zero-order potential surfaces and the vibronic levels do not lose 
their identity. 

(6) The time-dependent perturbation theory results in mi- 
croscopic rate constants determined by Franck-Condon nu- 
clear vibrational overlap integrals which can be handled by the 
theory of multiphonon processes. 

(7) The macroscopic nonadiabatic rate is finally expressed 
in terms of a thermal average of the microscopic rates, the 
Gibbs averaging being taken over the manifold of initial vi- 
bronic levels. 

The nonadiabatic A T  process is thus essentially viewed as  
a nonradiative multiphonon process analogous to  a variety of 
other nonadiabatic processes in solid-state physics, molecular 
physics, and solution chemistry including nonadiabatic 

We now turn to the quantum mechanical formulation of the 
nonadiabatic A T  problem. The Hamiltonian, H ,  of the entire 
system is 

ET, I3,29-32 

where T is the nuclear kinetic energy, Ho is the total electronic 
Hamiltonian at  a fixed nuclear configuration, and Hso is the 
spin-orbit coupling operator which has to be incorporated, 
since we shall be concerned with coupling between different 
spin states. r represents the collection of all electronic coordi- 
nates, while q denotes the collection of all the nuclear coordi- 
nates. Following the procedure generally applied in the theory 
of nonradiative processes in a dense medium we now separate 
the electronic and the nuclear motion defining Born-Oppen- 
heimer electronic states, @l(r,q), which are  eigenfunctions of 
Hdr,q), i.e. 

Ho4Ar,q) = cl(q)4l(r,q) ( 2 )  
@l(r,q) ( I  = 1 ,  2 ,  . . .) represents an orthonormal set of elec- 
tronic wave functions, and c,(q) the corresponding nuclear 
potential surfaces. For the sake of simplicity we shall moreover 
limit ourselves to consideration of the two lowest electronic 
states of the CO-Hb system, which will be denoted by &(r,q) 
(representing the high-spin state of the “free” H b  + CO) and 
&(r,q) (corresponding to the low-spin state of iron bound to 
CO). The corresponding Born-Oppenheimer nuclear potential 
surfaces are  thus ca(q) and Eb(q), respectively, while the 
energies of all other electronic states are  considered to be 
sufficiently high to give only perturbative contributions. As 
we are concerned with the dynamics of the two-electronic level 
system we shall subsequently expand the total time-dependent 
wave function as  

(3)  

where x,(q,t) is a set of coefficients to  be determined subse- 
quently. Inserting this in the time-dependent Schrodinger 
equation, multiplying from the left with &, and integrating 
with respect to  the electronic coordinates we then obtain 

C (4p lp+  fm(q) + H s o  
a = u . b  

- ih b/bt 1 x d a )  = 0; j3 = a, b (4) 

where ( ) denotes integration with respect to  the electronic 
coordinates r. 

Introducing the nuclear kinetic energy operator, ?, as  

( 4 p l Q X a 4 a )  = rj‘Xolbcup + (4pli14a)xm (5) 

= d24ddq2  + Z(d4ddq)dIdq (6) 

where 

we get the coupled equations 

[ p +  d q )  + ( 4 p l i  + Hso(4p) - ihd/dt]xp(q,t) = 
- ( 4 p l i  + H S O I 4 a )  xa(q,t) (7) 

and a similar equation in which a and j3 are  inverted. The 
perturbation terms which couple the pure spin states on the 
right-hand side of eq 7 thus involve nuclear kinetic energy 
terms reflecting the breakdown of the Born-Oppenheimer 
separability as well as spin-orbit interaction. 

W e  complete the formal scheme by introducing the two sets 
of zero-order vibrational wave functions {xouu(q)\ for the po- 
tential surface fu (q)  and {xobw(q)) for the surface cb(q). 
Within the Born-Oppenheimer scheme they are obtained from 
the equations 

[?+ h ( q )  + (4 , l i  + Hsol4u) - E o a u l ~ o u u ( q )  = 0 (8) 

[ p +  cb(q) + ( 4 b l i  + HSOl$b) - Eobw]Xohw(q) = 0 (9 )  

where Eobo and Eobw are the energies of these vibronic 
levels. 
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W e  can now adopt Holstein’s treatment of the mobility of 
small polarons, expanding the time-dependent coefficients 
xa(q,t) and Xb(q,t) in terms of the complete basis sets (xoac(q)] 
and {Xobu>(q)\ in the nuclear space33 

Xa(9.t) = ca,(t)Xoac(q) exp(-iEOa,l/h) (10) 

Xb(q,t) = Cbw(f)Xobw(q) exp(-iEObwt/h) (1 1) 

c 

U’ 

The expansion coefficients then obey the equations of mo- 
tion 

3747 

+ H s o ~ & )  exp[-i(Eoa, - E0bw)t/h] (13) 
We are  now interested in the microscopic rate constant for 

the decay of a single vibronic level in the a manifold, i.e., l a c )  - ( I  bw)]. The initial conditions are then CaL,(f = 0) = 1, while 
C a l ~ ( t  = 0) = 0 for c’ # c and CbW(t = 0) = 0 for all w. Pro- 
vided that the perturbation ( @a I L + Hsol @I,) is weak we can 
apply time-dependent perturbation theory for the solution of 
eq I 2  and 13. The microscopic rate is then 

27r 
W O l  = h c I ((4a(r,q)XoaL ( s ) l R l  

W 

x c b b ( r , q ) X 0 b w ( q ) ) ) ( 2 6 ( E o a L  - Eob%) (14) 

where () denotes integration over the nuclear coordinates. R 
is the transition operator (the level shift operator34) which can 
be expanded in a perturbation series 

R = ( L  + H s o )  

+ c # a , b  

( L  + Hso) 1 4c(r9qoo ) ( 40 (r,qoa) I ( L  + Hso) 
ea (SOtl) - cc (qoa 1 

( L  + HSO)I4c(r,qOb))(4r(r,qObI(L + H S O )  + .  . . 
(15) I + 

c b  (qOb) - Cc(q06) 

where the summation over all the  electronic states c involves 
only the highly excited electronic configurations of the system. 
The  electronic wave functions and potential energies of these 
c states can be taken with sufficient accuracy a t  the nuclear 
equilibrium configurations, qOa and qOb of the two lowest po- 
t p t i a l  surfaces (crude adiabatic states35). The first term of 
R in eq 15 yields the Fermi golden rule. When this term 
identically vanishes, the second-order term acquires a special 
importance being the lowest term of finite value. Finally, the 
6 function in eq 14 ensures energy conservation. For real sys- 
tems they serve rather as a “bookkeeping” device since the 
discrete levels are “broadened” by coupling to the medium. The 
6 function should thus in effect be replaced by a Lorentzian the 
width of which expresses the finite decay probability of the 
individual levels.] 

In order to simplify the nonadiabatic rate constant given by 
eq 14 we shall invoke the Condon approximation separating 
the integrations over the nuclear and electronic coordinates. 
This procedure is expected to be adequate for the spin-orbit 
coupling since this operator is of electronic origin and therefore 
only weakly dependent on the nuclear coordinates. On the 
other hand, the Condon scheme requires some modifications 
for the L operator.36 Since, however, we shall be interested 
primarily in the spin-orbit coupling we shall assume that the 
Condon scheme is adequate and write the microscopic rate 
as  

2 K  
W a c  = f i  I Vab) ’  I (xoau(q) Ixobw(q))126(E0a~ - Eobw) 

W 

(16) 
where the electronic coupling term is 

V a b =  ( @ a l R l $ b )  (17 )  
When the first-order contribution to R is finite, then the 
electronic coupling is 

Case I prevails when 40 and 4 b  belong to the same states, and 
case 11 applies when they belong to different spin states. If the 
first-order contribution to eq 15 vanishes because of spin se- 
lection rules, or selection rules for spin-orbit coupling, the 
electronic coupling term in second order becomes 

Vab in eq 16 thus incorporates direct spin-orbit coupling terms, 
second-order mixed spin-orbit-vibronic terms, and second- 
order vibronic contributions. 

The microscopic rate constant for nonadiabatic AT, eq 16, 
is now expressed as products of an electronic coupling term, 
eq 18 or 19, and a Franck-Condon vibrational overlap factor. 
The microscopic rate constant is subsequently obtained as the 
thermally averaged probability for the process ( l u ~ i ) ] ~  - 
{ I  b o ) ] ,  where ( ( u l i ) ] ~  now denotes thermal averaging. The 
resulting macroscopic rate is then 

x ew(-PEoau)I  (Xoac\ Xobw)\’6(E0au - Eobw) 
c w  

(20) 
where Z = 2,  exp(-PEouu) is the partition function for the 
initial manifold of vibrational states, and p = ( k s T ) - ’ .  The 
macroscopic nonadiabatic rate constant is thus expressed as  
a product of the electronic coupling term and a thermally av- 
eraged Franck-Condon vibrational overlap integral, segre- 
gating the nuclear and the electronic contributions to the 
transition probability. 

The question now arises whether the nonadiabatic approach, 
represented by eq 20, is in fact applicable to the low-temper- 
ature unimolecular recombination between CO and Hb. This 
requires that three basic conditions are  satisfied. Firstly, re- 
garding the electronic contribution, the process must involve 
a change in the electronic state of the system. We have already 
seen that this is indeed so, as the electronic states and 4 b  
correspond to S = 2 and S = 0 (zero order) pure spin states 
(section 11, point A). The residual interaction which induces 
the coupling between the zero-order vibronic states now in- 
volves the spin-orbit interaction. Secondly, concerning the 
nuclear contribution, the Franck-Condon vibrational overlap 
factors have to be appreciable in order that the relaxation 
process is efficient. This is ensured by the nuclear geometrical 
rearrangement accompanying the process (section 11, point B). 
Thirdly, the nonadiabatic limit must be applicable, which rests 
on the notion of “weak” coupling (small Vab). We shall return 
to this point in section IV after the analysis of the experimental 
data  for the CO-Hb system. 

The theoretical treatment of the low-temperature CO-Hb 
recombination is now conceptually straightforward, although, 
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Figure 2. Three-dimensional potential surfaces spanned by the two coor- 
dinates q ,  and qz. The two-dimensional interaction "surface", the saddle 
point of this surface, and a trajectory via this point are indicated. 

as  we shall see in section IV, this task is fraught with consid- 
erable technical difficulties. Before alluding to any, necessarily 
simplified, specific model for the electronic and nuclear con- 
tributions to the nonadiabatic A T  rate, it is, however, appro- 
priate to consider some general characteristics of the rate ex- 
pression of eq 20. 

1. The Low-Temperature Limit. At sufficiently low tem- 
peratures the level spacings between the lowest initial vibra- 
tional zero-order state EoUo ( u  = 0) and all other zero-order 
states in the initial manifold are  much larger than the thermal 
energy, i.e. 

(21) (Eouu - Eoaol >> kBT 

The A T  process then proceeds, from the lowest state &xa0,  
and this is only possible if the A T  process is exoergic, i.e. 

A E  = Eo,o - EObo > 0 (22) 
The low-temperature rate constant is then WUo, or more ex- 
plicitly 
W ( T -  0)  = woo 

The finite temperature-independent low-temperature rate is 
determined by the Franck-Condon vibrational overlap of xoao 
with all the X b w  states which are  isoenergetic with this state. 
Physically, this corresponds to temperature-independent nu- 
clear tunnelling from the lowest zero-point energy state of the 
initial nuclear configuration to the final vibronic states which 
are  nearly degenerate with this level. 

2. The High-Temperature Limit. At sufficiently high tem- 
peratures the rate constant can be expressed in terms of the 
adiabatic potential surfaces ca(q) and eb(q) rather than the 
quantized vibronic levels.37 For rather general forms of ca(q) 
and fb(q) the condition for this limit is equivalent to the vari- 
ation of the potential energy in the initial state within the av- 
eraged De Broglie wavelength, h/(pkgT)1/2 (where 1.1 is a 
characteristic nuclear mass), being negligible compared with 
the thermal energy,37 i.e. 

(24) [ h/ (I.1k B T )  '2 a/ aqj 1 ?I €0 (q ) << k B  T 
Exploiting the classical form of the Franck-Condon principle 
we can then write the transition probability, eq 20, in the 
semiclassical form 

and the integrations carried out over all the nuclear coordi- 
nates, q = {qa . . . q ~ ]  in  the N-dimensional space. The occur- 
rence of the 6 function in eq 25 implies that the only nonvan- 
ishing contributions to the integral are  provided by the inter- 
section points of the potential surfaces (Figure 2) and the ex- 
ponential function moreover means that the dominating con- 
tribution is proportional to exp[-e,(qs)/k~T], where qs is the 
lowest point on the intersection surface. The high-temperature 
rate expression assumes an Arrhenius-type form with the ac- 
tivation energy being determined by ea(qs). For the particular 
case where the potential surfaces are characterized by a single 
coordinate q,  and the surfaces intersect a t  the point qs, the rate 
expression is 

This activated rate expression is derived without invoking the 
concept of an activated complex, since qs is just a particular 
point on the initial state potential ~ u r f a c e . ~ ~ , ~ *  

In summary we emphasize that eq 23 and 25 are  both lim- 
iting cases of the same general quantum mechanical rate ex- 
pression, eq 20, which passes from a tunnelling rate constant 
a t  low temperature to an activated rate constant a t  high tem- 
peratures. The overall rate should therefore not be expressed 
as the sum of a tunnelling rate and a thermally activated 
rate.1° 

W e  shall conclude this section by comparing the rate 
equation for the nonadiabatic A T  process, eq 20, with the 
corresponding result for nonadiabatic E T  processes both in 
biological  system^'^,^^ and for homogeneous ET processes in 
general.'7-19,30,39,40 The important analogies involve several 
of the general features of multiphonon processes. 

(1) Both nonadiabatic E T  and A T  rate constants are ex- 
pressed as  products of an electronic coupling term and a nu- 
clear Franck-Condon factor. 

(2) The nuclear Franck-Condon factor appears in the theory 
of both E T  and A T  processes, since both categories are viewed 
as transitions between nuclear states of the system. 

(3) The temperature-independent tunnelling process man- 
ifested a t  low temperatures involves nuclear tunnelling both 
for ET and for AT.  

(4) In both cases the high-temperature activated rate in- 
volves thermal activation to the lowest intersection point of the 
nuclear Born-Oppenheimer potential surfaces. 

However, two qualitative differences between nonadiabatic 
AT of the kind considered in the present work and E T  processes 
should be emphasized. 

(5) The electronic coupling term, Vab. for a nonadiabatic 
A T  process involving the transfer of a heavy atom group (such 
as  the CO-Hb recombination) is associated with spin-orbit 
interaction. The  corresponding electronic coupling for ET 
involves a two-center one-electron exchange integral. 

(6) The nature of the changes in the nuclear configurations 
which determine the Franck-Condon vibrational overlap 
factors is qualitatively different for ET and many AT pro- 
cesses. For ET the changes in the nuclear configuration of the 
entire system consisting of the electron donor, the electron 
acceptor, and the external medium can be separated into two 
groups. One group corresponds to the long-range coupling with 
the optical phonons of the outer medium which responds to the 
change in the charge distribution. For a variety of E T  processes 
coupling to these polar modes give a dominating contribution 
to the activation energy. The early work of Marcus39 and of 
Levich and D o g ~ n a d z e ~ ~  considered exclusively these long- 
range interactions. The second group involves coupling with 
high-frequency molecular vibrational modes of the electron 
donor and/or acceptor centers. This short-range coupling is 
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crucial in determining the characteristics of the nonadiabatic 
E T  in Chromatium. l 3 , l 4  On the other hand, for A T  processes 
involving the transfer of an electrically neutral group the nu- 
clear configurational changes in the immediate vicinity of the 
reaction center are expected to be of primary importance, while 
the effects of long-range coupling a re  negligible. For the 
Hb-CO reaction these nuclear modes involve Fe-ligand 
bending and the motion of the CO molecule relative to the iron 
atom. In addition, short-range coupling to low-frequency 
acoustic phonon modes4’ may also be important for the A T  
process. 

IV. Model Calculations for the Hb-CO System 
In order to exploit the theory outlined above we shall have 

to characterize two sets of quantities, i.e., the  electronic cou- 
pling, Vab, which is determined by the nature of the electronic 
states involved in the process, and the Franck-Condon vibra- 
tional overlap factors, which can be evaluated from the ap- 
propriate structural information regarding the nuclear con- 
figurational changes and from spectroscopic information 
concerning the characteristic force constants for the molecular 
motion. In  practice, a priori calculation of these quantities is 
prohibitively difficult by the lack of detailed information of 
both the electronic wave functions and the relevant vibrational 
spectroscopic data. In  what follows we shall therefore consider 
some general features of the electronic coupling term and 
subsequently provide some simple model calculations for the 
nuclear contribution. 

The electronic coupling term, v g b ,  for the Hb-CO and 
Mb-CO recombination processes (eq 18 and 19) combines 
(S  = 2 )  and &, ( S  = 0 )  zero-order pure spin states. It is im- 
mediately apparent that the first-order contribution of the 
nonadiabaticity operator L to eq 18 vanishes. Furthermore, 
as the spin-orbit coupling is a one-electron operator, it obeys 
theselect ionruleAS = f 1 , 4 2 ~ ~ t h a t  (4,(S = 2))HsoI&(S 
= 0 ) )  = 0. Thus, the first-order contribution to Vab, eq 18, 
vanishes, and we must consider case 111 (eq 19). The nonvan- 
ishing perturbative contributions for the excited & electronic 
states can originate only from & (S  = 1 )  states. Consequently, 
the operator L contributes neither to the coupling between @b 
(S = 0 )  and & ( S  = 1) nor between (S = 2 )  and & ( S  = 
1). The resulting electronic coupling appropriate to the system 
is then the second-order spin-orbit coupling contribution 

where ( H s o ) , ~  are  the integrals of spin-orbit coupling be- 
tween the electronic states $, and @@ (a ,  0 = a, b, c) and 4 6  
the energy gap between 

Typical values of spin-orbit coupling terms for first-row 
transition metal ions a re  (Hso),@ = 100 cm-I 42,43 which 
together with A6 = lo4 cm-’ give the crude estimate of vab = 
1 cm-’ for the Hb-CO and Mb-CO systems. W e  notice here 
that  such an analysis would be more involved for the Hb-02  
recombination, as the Hb-02  complex, unlike the Hb-CO 
complex, is characterized by a large number of low-lying 
electronic s t a t e ~ . ~ ~ % ~ 5  

Next we turn to a rough estimate of the nuclear vibrational 
overlap factors. In this context we have to consider vibrational 
modes exhibiting a large change in their equilibrium config- 
uration when going from the CO-“free” to the bound state. 
Two such “intramolecular” modes have to be considered 
(Figure 2). Firstly, the motion of the iron atom can be con- 
sidered as  a metal-ligand kending mode coupled to  deforma- 
tional motion in the puckered heme plane. The corresponding 
frequency is unknown but frequencies in the range 150-200 
cm-’ for simple heme complexes have been ascribed to this 
motion.46 Also, force constants for this mode obtained from 
a b  initio calculations on model compounds give frequency 
values in the range 100-150 cm-’ depending on the effective 

or @b and &. 

Figure 3. Simplified view of the four-atom group representation of the 
Hb-CO recombination process. The interaction between the various 
molecular fragments is indicated by the “springs” or the wiggly lines. 

mass associated with the mode.47 Moreover, as  noted, the 
equilibrium configuration of this mode is shifted by 0.3-0.5 
A during the recombination process. Secondly, CO is initially 
weakly associated with the “distal” histidine, while it is bound 
to  Fe in the final state. The configurational changes, if any, 
involved in the CO-histidine motion are unknown. To provide 
some intuitive feeling for the nature of the nuclear dynamics 
of the process we shall advance a grossly oversimplified model 
(Figure 3 )  for the nuclear motion consisting of a linear four- 
atom array H-F-C-I, where H is the five-coordinated heme 
site, F is the iron atom, C is CO,  and I is the histidine group. 
Furthermore, we assume that the masses mH, ml >> mc, mF 
where the indexes indicate the appropriate molecular groups. 
The nuclear Hamiltonians in the initial and final states, ha and 
hb. are then 

(28) 
a = a.6 

(cf. eq 8 and 9 ) ,  for which we shall now provide explicit ex- 
pressions. 

Introducing the coordinates X, of the various groups 0’) in 
the linear array we can write generally 

ha  = T + f,(S) 

h2 1 
2 i mi 

h, = - - - d 2 / d X i 2  + P H F ( X F  - X H )  

+ V a ~ c ( X c  - X F )  + Vaci(Xi - Xc) ( 2 9 )  
where Vij is the appropriate effective potentials of interaction 
between the groups. After separation of the center-of-mass 
motion the nuclear Hamiltonian is 

h a  = [-(h2/2pHF)d2/dXH F 2  

+ vHF(XHF)] + [-(h2/2CLCI)d2/dXC12 
+ vci(Xcd1 + [ - ( h 2 / 2 ~ ~ ~ , ~ i ) d 2 / d X ~ ~ , c i 2  

+ v,FC(XHF,CI - Yl.CIXC1 - YH,HFXHF)] (30) 
where we have defined the following coordinates 

X H F  = XF - X H ;  Xcl  = Xi - X c  ( 3 1 )  

X H F , C I  = (mcXc + m I x d / ( m c  + md 

which correspond to the internal distances in the HF and C I  
“fragments” and to the distances between the centers of mass 
of HF and CI.  The reduced masses a re  

PHF = mHmF/(mH + mF); CLCI = mcml/(mc + ml) ( 3 3 )  

C L H F , C I  = (mH + mF)(mc + md/(mH + mF + mc + mi) 
( 3 4 )  

and the mass ratios 

Y I , C I  = ml/ (mc + ml); YH,HF = mH/(mti + mF) ( 3 5 )  
in the limit of very large masses of H and I this becomes 

X H F , C I  X I  - X H ;  CLHF mF; C L C I  mc  ( 3 6 )  

- (mHXH + mFXF)/(mH + mF) ( 3 2 )  
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PHF.CI = mHml/(mH + m d  and Y L C I  = Y H , H F  = 1 (37) 
At  this stage we separate the interaction potential V a ~ c  into 
an interaction between rigid H F  and CI units a t  their equi- 
librium configurations X,HF and Xac1 and a residual term. 
The  Hamiltonian for the nuclear reaction is then h ,  = ho, + 
V,, where the zero-order nuclear Hamiltonian, jo,, is 

hoe = [-h2/2PHF)b2/3XHF2 + VaHF(XHF)] 
+ [- (h2/2PCI)d2/ bXC12 + V"cr(Xc1)l 

+ [ - ( t22/2PHF,CI)b2/2aXHF,C12 

+ V a ~ ~ ( X ~ ~ , ~ ~  - XOHF - X*ci)l (38) 
while the residual contribution, V,, is 

V ,  = V a ~ ~ ( X ~ ~ , ~ ~  - XHF - Xci) 
- V~FC(XHF,CI  - X,HF - Xaci) (39) 

W e  assume that the residual term, V,, is small and can be 
disregarded in this preliminary analysis of the nuclear dy- 
namics. The nuclear coordinates are  then XHF, XCI, and 
XHF,CI, and the nuclear Hamiltonian, eq 30 and 38, is sepa- 
rable in these coordinates giving three independent contribu- 
tions. The nuclear eigenstates for the electronic configurations 
@a and 4 6  can thus be written 

x o a o  (9) = fu I (XH F)fu2(XCl)fu3(XH F,CI) (40) 

x O b w ( q )  = g,,(XHF)gw,(XCI)gw,(X",CI) (41) 
where the u's and w's are  appropriate vibrational quantum 
numbers. The nuclear wave functions appearing in eq 40 and 
41 are  eigenfunctions of the following equation (cf. eq 38). 

and the corresponding total energies of the vibronic states are 
EObu = toul 4- tou2 + tou3 and EObw = towl + towz + tow3. W e  
notice here that, if we would go beyond the present crude ap- 
proximation and incorporate the V,  term (eq 39), all we have 
to do is to form combinations of the basis sets, eq 40 and 41, 
of the form 

X a u  = c c",u2u,f"IfL'2.fu3 (48) 

X b w  = 1 Cw,w2~3gw,gw2gw3 (49) 

U I U 2 U 3  

W l W Z W 3  

and to diagonalize the total Hamiltonian, eq 30. This extension 
is similar to incorporating configuration interaction effects in 
the theory of electronic structure. At present we shall, however, 
refrain from pursuing this. 

Within the simple model outlined we have been able to 
represent the nuclear states of the Hb-CO reaction center as  
products of three "molecular" functions, eq 40-47. The  
heme-Fe motion is thus represented byf , ,  and g,,, the CO- 
histidine motion by fuz and gw2, and the relative motion of heme 
and histidine by fu3 and gw3. The  vibrational wave functions 

h,, fu,, and fu, thus represent the initial H b  + CO state, while 
g,,, gw2, and gw3 represent the final Hb-CO bound state. The 
Franck-Condon factors contained in the rate expression, eq 
20, are  then obtained in the factorized form 

( X o a r ( q ) I X o b w ( q )  = 771(ul,w2)772(L.2,W2)773(L.3,W3) (50) 
where 

771 ( u  I vwl) = SdXHFfv ,(XHF)gwI (XH F) (51) 

The  introduction of the crude four-atom group model and 
the resulting single-bond nuclear states avoids the explicit use 
of the language of normal modes. This is convenient, as the A T  
process involves such large modification of the bonding that 
transformation of normal modes between the initial state and 
the final state would otherwise have to be involved. I n  addition, 
we also have to consider the role of low-frequency acoustic 
phonon modes. If some of these modes are  subject to equilib- 
rium coordinate shift during the process, they would have to 
be incorporated as  accepting modes, but, as no direct infor- 
mation about this is available, we shall not do so. However, the 
low-frequency medium phonon modes are also expected to play 
a crucial role by inducing vibrational relaxation in the final 
state manifold {XObw). In the exoergic xoU1. - { x o h v )  process 
this manifold is produced in highly vibrationally excited states, 
and the low-frequency medium modes induce fast vibrational 
relaxation subsequent to  the electronic process, ensuring the 
irreversibility of the A T  process. An analysis of this problem 
for small polaron motion, Le., for a symmetrical nonadiabatic 
ET,  was recently given by Holstein,49 who concluded that in- 
corporation of the consecutive vibrational relaxation process 
provides a justification for the rate equations of nonadiabatic 
processes involving a small number of molecular vibrations. 
With reference to eq 20 and 50 the quantum mechanical rate 
expression for the nonadiabatic A T  process can then be 
written 

x 1772(u2.w2)121Ti3(u3.w3)126(tOr, - t o w ,  + E O c 2  
- towj2 + tocj  - tow3 - A E )  (54) 

where it is understood that the low-frequency phonon modes 
act as  "hidden variables" inducing vibrational relaxation 
subsequent to the electronic transition, ensuring the irrevers- 
ibility of the process. 

The  three-bond equation can now be expressed in terms of 
a triple convolution of line-shape functions corresponding to 
the individual three molecular modes30 

27r W = y 1 Vab( 'Sdt'"t''FI(E - t')F2(t' - ~")F3(t") 

(55) 

where 

E =    EO^, + tou2 + tou3) - (tow, + towz + tow3) - AE 
(56) 

FI(X) = z/-' c c I77,(U/,W,)12S(X) I = 1 , 2 , 3  (57) 

z/ = c exp(-tO,.//kBT) (58) 

U I  W I  

u t  
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However, in view of the absence of structural and spectroscopic 
information, especially regarding the CO-histidine interaction, 
this equation is not very useful, and to obtain tractable results 
we are  forced to introduce further simplifying assumptions, 
which can be relaxed when the appropriate information be- 
comes available. Firstly, the relative motion of the groups H F  
and CI is characterized by a very low frequency due to the large 
reduced mass p H F , C ] .  This low frequency motion which es- 
sentially mimics the medium modes is not likely to exhibit large 
configurational changes, and it is therefore reasonably incor- 
porated with the other medium modes and its contribution to 
eq 55 disregarded. Secondly, in view of the lack of information 
about the CO-histidine motion cf, and gw2) we shall also ig- 
nore the contributions of this mode to eq 55 and only consider 
the displacement of Fe relative to the heme plane. The omission 
of the contribution of the CO-histidine motion involves the 
most serious approximation inherent in the derivation of our 
final rate expression. This approximation is likely to be ade- 
quate in view of the presumably much larger nuclear dis- 
placement of the Fe-heme mode. The A T  rate equation then 
simplifies to 

27f 
w = - Z ~ - l ( v , b l ~  xexp(-co,,/kBT) 

h L I  M I  

X ( ~ i ( c i . w i ) ( ~ & c ~ ,  , - t o w i  - A E )  (59) 
Thirdly, by adopting the harmonic approximation for the Fe 
motion we can also exploit a vast literature on multiphonon 
processes in other fields to evaluate the nuclear contribution 
to eq 59. Thus, if the single surviving nuclear mode is charac- 
terized by two harmonic potentials of frequency w in both 
states 4, and &,, for which the electronic energy gap is AE 
(<O) ,  then the configurational change is specified by the re- 
duced displacement as A = d(pNFW/h)’/2 where d is the 
coordinate distance between the minima of the two potential 
surfaces. The coupling strength of the mode is then S = A2/2 
and the vibrational reorganization energy E, = Shw.  The 
temperature dependence is reflected in the Bose occupation 
number 0 = [exp(hw/kBT) - l]-I, and the single-mode rate 
expression becomes’ 

W =  A exp[-S(ZE+ I)Z,,(2SE(E+ 1)]’/2)[(E+ I) ,G]P/~ 

where A = 2 ~ 1  V,b I 2/h2w, p = I h E I / h w  is the normalized 
energy gap, and I , , (z)  stands for the modified Bessel function 
of order p .  Equation 60 is well-known in the theory of line 
shapes and of nonadiabatic solid-state processes. I t  exhibits 
a continuous transition from a low-temperature tunnelling 
expression 

W = A exp(-S)Sp/p! (kBT << hw) (61) 

determined by the low-temperature harmonic Poissonian 
overlap, to a high-temperature activated rate expression 

W = Ah/(kBThwS/a) 
( ~ B T  >> ha)  (62) 

with a Gaussian-type activation energy EA = (Shw + 
AE)2/4Shw. Although the appearance of eq 60 is thus formally 
identical with the result13~30,39~40 for E T  processes, this just 
reflects the common features of nonadiabatic processes in the 
harmonic approximation for the nuclear motion. However, as  
noted in section 11, E T  and A T  processes display some im- 
portant differences with respect to both the electronic coupling 
and the nuclear states. 

In  view of the large coordinate shift of the XHF mode the 
harmonic approximation may seem inadequate for quantitative 
estimates of the parameters of the system. Thus, it was previ- 
ously noted that anharmonicity in a single mode may modify 

(60) 

exp[-(Shw + A E ) 2 / 4 S h w k ~ T ]  

both the absolute values of the calculated rate constants (by 
many orders of magnitude) and the qualitative appearance of 
the fundamental phenomenological kinetic laws, i.e., the 
Brqnsted and the Arrhenius r e l a t i o n ~ h i p . ~ ~ ~ ~ ~ ~ ~  I For this reason, 
even though we shall generally apply the harmonic approxi- 
mation, we also present a few calculations based on a repre- 
sentation of the XHF mode by Morse potentials of the form 

(63) Ua(qHF) = D[1 - exP(-aqHF)l2 

Ub(qHF) = Dl1 - exp[-a(qHF - -k A E  (64) 

in the initial and in the final states. D is here the dissociation 
energy, a (= ( ~ w / ~ D ) I / ~ )  is the anharmonicity constant, qHF 
= X H F ( / . L H F W / ~ ) ’ / ~ ,  and A is the reduced displacement as 
previously defined. Our  model calculations for the Morse po- 
tential are  based on recasting eq 59 in the form 

W = -  Zl-’II/at11~ Cexp(-~0,,/kBT)1771(L’I,Wl)l’ (65) 
27f 

h2W [ I  

(e,, , = 6, I + AE) 
where the Franck-Condon factors take the form43-s0 

~ I ( U I , W I )  = [( 1 - y)( 1 - y)(q(L) 
L‘I WI 

/!k!(p - 1 - k - /)! 
X [cosh ( ~ / 2 ) ] - ~ p  5 (-I)’+‘  

h = O  

(66) 

where p = 2a-2 - 1 .  W e  notice that the magnitude of 
~ ~ ( u ~ , w ~ )  now also depends on the sign of the reduced dis- 
placement, as generally expected for asymmetric potentials. 
For exoergic processes negative values of A yield Franck- 
Condon factors which are  larger than those for harmonic po- 
tentials. Such anharmonicity enhancement effects originate 
from a highly “stretched” nuclear mode in the final state. For 
positive A, opposite effects of anharmonicity retardation effects 
a re  expected. 

Completion of our analysis would require that we consider 
the effects of “inhomogeneous broadening” (section 11, point 
a) .  This effect originates from the spread of the energetic and 
structural parameters AE, hw, and S which specify the two 
potential surfaces involved in the recombination process. The 
distribution of the barrier heights can be characterized by an 
empirical distribution function, which can be extracted nu- 
merically from the experimental (nonexponential) decay 
curves,Io a t  least a t  high temperatures. In  our present for- 
malism we have assumed that the globular protein medium is 
weakly coupled to the reaction center and that the dominating 
accepting mode is the motion of Fe relative to the heme group 
(which is expected to be only weakly affected by the different 
conformational states). Accordingly, we assert that the major 
effect of inhomogeneous broadening involves the spread of the 
energy gap AE and we shall average the rate expressions, eq 
59 and 60, over all values of AE but not over S .  The concen- 
tration of the deoxy form a t  time t ,  N ( t ) ,  should then be 
written 

N ( t )  = Jm dIAEIP(IAEI)exp[-W(S,)AE))tl (67) 

where P ( l A E ( )  is the (normalized) probability, so that the 
reaction center in the individual conformational state would 
give rise to a recombination process characterized by a given 
value of I AE 1 .  

The two functions, W(S,  1 AE I ) and P( I A E  I), can in prin- 
ciple be separated.IO Thus, inserting the high-temperature 
Arrhenius form, eq 62, in eq 67 and representing N ( t )  em- 
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Figure 4. Model calculations of the temperature dependence of the 
Franck-Condon factors for nonadiabatic AT. The solid curves represent 
the theoretical plots of log (" /A)  v5. .Y = keT/hw,  with h o  = IO0  cm-I, 
for various S and p ,  calculated from eq 60. The numbers correspond to 
the following parameters: ( I )  S = 60, p = 30; (2) S = 45, p = 20: ( 3 )  S 
= 2 O , p = 2 ; ( 4 ) S = 3 0 , p = 8 : ( 5 ) S = 2 5 , p = 2 ; ( 6 ) S = 8 0 , p = 3 0 : ( 7 )  
S = 30, p = 2; (8) S = 80. p = 20. The circles represent the experimental 
values ( re f  I O )  of log ( T ~ . , ~ - I )  vs. log T wi th  the limiting values at T - 
0 matched with curve 5 ( 7 0  7 5 - l  = 5 s- I  for T - 0). 

pirically by a functional form which reproduces the experi- 
mental curves well ( N ( r )  = N(O)(  1 + r/to)-" where to and n 
are  empirical parameterslo), P( I A E  1 )  can be extracted from 
eq 67 and the high-temperature rate expression. Subsequently, 
by assuming that the same distribution over the conformational 
states prevails a t  low temperatures, the procedure can be in- 
verted to calculate W( I A E l )  numerically from the experi- 
mental low-temperature decay curves, N ( t ) ,  and the distri- 
bution function P (  1 AEl)  estimated from the high-temperature 
data,I0 without invoking any particular model for the low- 
temperature process. 

A disentanglement of eq 67 to provide W a s  a function of the 
barrier height in the low-temperature region without intro- 
ducing additional models for the barrier itself was given ex- 
plicitly for the p-HbPMB, Le., a @-Hb subunit bound to par- 
amercuribenzoate (PMB).loC This derivative differs from its 
parent compound by a stabilized high-spin "CO-free" state 
relative to the low-spin bound state. As a consequence, the peak 
barrier height for the recombination of CO with this compound 
is about twice as high as for @-HbIoC (0.088 vs. 0.045 eV), 
whereas the high-temperature preexponential factors are  ap- 
proximately equal (log A (s-') values are  9.2 and 9.4, re- 
spectively). The dynamics of the process contributing to  the 
averaged Franck-Condon factors in the rate expression are  in 
both cases primarily associated with the X H F  mode. The  ap- 
parent temperature dependence for the resolved rate constants 
a t  different but fixed barrier heights (or IAE 1 )  referring to the 
HbPMB-CO process displays essentially the same features as  
the recombination between H b  and CO (apart from additive 
constants the experimental plots of log  EA) vs. log T for the 
HbPMB-CO process and of log (70 .75 - I )  vs. log T for the 
Hb-CO process a re  in fact identical). Analysis of the data  in 
terms of eq 60 also give almost the same physically plausible 
parameter values for the two cases. For these reasons, and in 
view of the narrow distribution functions calculated,1° we shall 
advance an analysis of the Hb-CO system representing the rate 
constant in terms of ~ 0 . 7 5 - l .  Such a n  analysis is expected to  
result in  average (peak) values of the parameters S and p .  

We now attempt to analyze the Hb-CO low-temperature 
( T  = 2-1 00 K) recombination datal0 in terms of eq 60, which 
rests on the harmonic approximation. No reliable information 
regarding the energy gap AE for the Hb-CO recombination 

Table 1. Nuclear and Electronic Parameters for the Dynamics of 
Hb-CO Recombination" 

- A E ,  eV 0.05 0.1 0.2 0.4 0.5 
Shw, eV 0.27 0.35 0.50 0.77 0.30 

S 15-25 17-35 25-50 35-70 45-90 
P 2-5 5-10 10-20 20-40 25-50 

1lt~(o,p)l2 10-9-10-7 I 0-6- I 0-7 
Vah, eV 10-5- 10-4 I 0-6-  I  0-5 

V n h .  cm-' 0.1-1 0.0 I -0. I 
~ ~~~ ~ ~ ~ 

a The energy gap AE was introduced as a variable parameter which, 
together with the experimental high-temperature data, was utilized 
to estimate S .  From the onset of the temperature dependence we es- 
timate hw = 100 cm-l. Finally, the electronic coupling Vob was 
evaluated from the low-temperature experimental data. 

process is available a t  present. Austin et alSioa have estimated 
AE = -0.92 eV for the Mb-CO system from the combination 
of thermodynamic data and of kinetic results. W e  have as- 
sumed that the Hb-CO recombination reaction is exoergic and 
viewed AE as a parameter, choosing the reasonable values 
-A,!? = 0.05 to -0.5 eV (Table I) .  From the Arrhenius form 
of the high-temperature rate expression, eq 62, and the ex- 
perimental activation energy (0.045 eV) we can subsequently 
find the corresponding values of Shw which are  collected in 
Table I .  This provides a sufficient basis for the model calcu- 
lations of the Franck-Condon factors. In Figure 4 we portray 
the dependence of ( W/A) on kBT/hw according to eq 60 which 
were calculated for some reasonable values of the parameters 
S and p .  These plots reveal the following features. 

(1 )  The curves display an "activationless" region a t  tem- 
peratures up to k ~ T / h w  GZ 0.1-0.2. This region is followed 
relatively abruptly by a thermally activated region. 

(2) The temperature dependence becomes more pronounced 
with increasing S a t  fixed p (S > p )  and with decreasingp for 
a given value of S .  

(3) The experimental transition region for the Hb-CO 
systems is 10-20 K ,  thus giving hw = 0.01-0.02 eV or w = 
80-160 cm-I.-The resulting phonon coupling constant S and 
the value o f p  = I A E  I / h w  are shown in Table 1. This estimate 
of hw is not far from the values expected for the metal-ligand 
bending modes of heme complexes estimated from infrared 
~ p e c t r o s c o p y ~ ~  and from model  calculation^.^^ 

(4) A cursory examination of the results of our model cal- 
culations, together with the experimental data,I0 which are  
portrayed in Figure 4, reveals that a reasonable reproduction 
of the experimental temperature dependence of the Hb-CO 
recombination reaction can be accomplished with the pa- 
rameters p = 2-5 and S = 20-25. Taking hw = 100 cm-' 
results in A E  N -0.05 to -0.1 eV. This fit of the experimental 
data is not unique, as any set of S and p parameters, which are  
given in Table I ,  will result in a fair agreement with the ex- 
perimental facts of life. For example, as  is evident from Figure 
4, the parameters p = 40-50 (AE = -0.5 eV) together with 
S = 80-90 provide an adequate numerical fit of the experi- 
mental data. However, the large value of S = 80-90 together 
with hw = 100 cm-I implies a displacement of d = 1 A in the 
equilibrium position of the Fe atom between the free and the 
bound states. This estimate for the value of d is too large. On 
the other hand, the value of S = 20-25 for the phonon coupling 
strength together with hw = 100 cm-I results in d = 0.4-0.5 
A, which is consistent with the available structural data.22-25 
We thus conclude that the nuclear contribution to the Hb-CO 
recombination rate constant can be adequately described in 
terms of the parameters = 2-5 ( A E  = -0.05 to -0.1 eV), 

pointed out, however, that the present analysis disregards the 
contribution of low-frequency medium modes and of the 
CO-histidine motion to the nuclear Franck-Condon facto:, 
which is solely assigned to the configurational change in the 

S = 20-25 (d = 0.4-0.5 A) ) ,and hw N l00cm-I. It should be 



Jortner, UIstrup / Carbon Monoxide Binding to Hemoglobin 

Fe-heme motion. Accordingly, the value of S as well as  of A 
and of d ,  resulting from the simple present analysis, is some- 
what overestimated. The value of d (obtained at  a fixed value 
of AE) should be viewed as an upper limit for the actual dis- 
placement of the Fe atom outside the heme plane. Accordingly, 
the value of I AE I = +0.05 to +O. 1 eV estimated for the “best 
fit” of the structural data constitutes a lower limit for the actual 
absolute value of the energy gap. A more refined analysis, 
which will go beyond the one-dimensional motion prescribed 
by eq 59 and 60, will result in higher values of I A E  I while d 
will remain in the physically acceptable range of 0.4-0.5 A. 

(5) From the “best” values of the parametersp and S we can 
estimate the  low-temperature Franck-Condon factor 
lvr(O,p)l* = 10-7-10-9. Utilizing the low-temperature ex- 
perimental result W( T - 0 )  = 5 s-’, we can provide an esti- 
mate  of the electronic coupling term Vob, which is presented 
in Table I .  The value Vob = 0.1-1 cm-l resulting from the 
analysis of the kinetic data is in good agreement with our rough 
estimate Vab 1 cm-’ (see section 11) for the second-order 
spin-orbit coupling. 

This low value of Vab justifies the use of the nonadiabatic 
approach for Hb-CO recombination reactions. The  validity 
condition for this approach, as  expressed in terms of the 
semiclassical Landau-Zener formalism, is52.53 

(68) 

where A F  is the difference between the slope of the zero-order 
potential surface a t  the intersection point and v is the velocity 
with which the system passes this intersection point. Inserting 
the thermal velocity ( 2 k ~ T / p ~ ~ ) l / *  the validity condition, eq 
68, takes the form 

2x1 Vahl */hI A F J  << 1 

K = 2x1 Vo/abl * / ( f ~ ~ w ~ k s T S ) ~ / ~  << 1 (69) 

K = 10-5-10-7 (70) 

For the parameter values of Table I ,  we get 

providing an adequate justification for the applicability of the 
nonadiabatic formalism. 

A similar analysis of the experimental results can be carried 
out going beyond the harmonic approximation for the XHF 
mode. W e  have performed few calculations using the rate ex- 
pression, eq 65, with Franck-Condon factors for Morse po- 
tentials, eq 66, which are  available in a relatively compact 
form.50 These results a re  presented only for the sake of com- 
parison since, in addition to introducing still another param- 
eter, the calculations performed using Morse potentials cannot 
be conducted in a consistent fashion. The  small vibrational 
frequency value appropriate for the Hb-CO system, together 
with any reasonable values of the anharmonicity constant a, 
would result in too low values of the dissociation energy of the 
iron-heme bond (0.3-1 eV). However, for sufficiently small 
AE this difficulty can be ignored in the present discussion. 
Since the Franck-Condon factors for Morse potentials with 
a negative coordinate displacement are larger than for har- 
monic potentials, the  application of the Morse potentials will 
then modify the previous conclusions primarily in either of two 
ways: (a) The electronic integral will be smaller than the value 
estimated on the basis of harmonic potentials for the nuclear 
contribution. Thus, using the values of hw = 100 cm-I, A E  
= -0.05 eV, and A = -5 to -7, the resulting Franck-Condon 
factors for Morse potentials (with a = 0.15) are 3 X lo-’ and 

for A = -5 and for A = -7, respectively, which consid- 
erably exceed the Franck-Condon factors based on the har- 
monic model. (b) Larger displacement values, 1 AI, than those 
obtained from the harmonic approximation are  now required 
for a reasonable fit of the experimental results. Thus, A values 
of about -10 and hw 100 cm-’ can reproduce the experi- 
mental data  and, furthermore, provide reasonable values of 
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the electronic coupling term, Vab 0.1-1 cm-l. This would 
:ive a shift distance for the Fe atom of 0.75 A, which coincides 
with the value reported by PerutzZ0 but which now is generally 
believed to be too high.21+44,47 

V. Relation of Multiphonon Theory to Gamov Tunnelling 
The low-temperature rate constant for nonadiabatic mul- 

tiphonon A T  or E T  processes considered in the present and in 
previous work13,30 represents in both cases nuclear tunnelling 
between two bound vibrational manifolds. In the single-mode 
harmonic approximation the resulting low-temperature ex- 
pression is W = AF, where the Franck-Condon factor F = 
exp(-S)Sp/p! (eq 61). On the other hand, the nuclear tun- 
nelling effect for A T  processes is commonly described by 
means of the Gamov tunnelling for the tun- 
nelling probability so that 

w = V o  exp(-yd(pEA)1/2/h)  (71) 
where vo is a characteristic frequency with which a particle of 
nuclear mass hits a barrier of height EA and width d. y is a 
numerical factor which depends on the shape of the barrier. 
For a arabolic barrier y is n / f i  and for a square barrier it 

of this functional form for nonadiabatic A T  by showing that 
the exponential term in the Gamov equation is equivalent to 
the nuclear vibrational overlap factors. 

For larger values o f p ,  which are sppropriate in the present 
context, insertion of Stirling’s approximation p !  = exp[p(ln 
p - l ) ]  in eq 61 gives 

W = A exp(-S) exp(-yp); y = In ( p / S )  - 1 ;  

This can be recast in the form 

W = A exp[-(Shw - l A E l ) / h w ]  

Introducing the relations E A  = (Shw - lAE))2/2Shw and A2 
= d2(pLw/h), eq 73 can be rewritten as 

W = A e ~ p [ - f i d ( p E ~ ) ~ / ~ / h ]  exp[-(I + y ) ( l A E l / h w ]  

The second exponent in eq 74 is of minor importance since 1 + y is a negative quantity, the numerical value of which in the 
present case is 3-4, but generally smaller the closer p is to S .  
Thus eq 74 bears a close formal analogy to the Gamov formula, 
eq 71. However, the preexponential factor, V O ,  in the heuristic 
expression, eq 71, is now different. This simple analysis shows 
the following. 

(1) The low temperature rate constant for A T  can be recast 
in terms of a product W = AF, of a nuclear contribution F and 
a n  electronic contribution A ,  according to  eq 61. 

( 2 )  Equation 74 establishes the equivalence between the 
nuclear contribution to the A T  rate constant and a tunnelling 
formula. The Franck-Condon nuclear overlap factor, F ,  for 
exoergic processes can be recast in a form very close to the 
Gamov formula. This result is useful but not surprising as  it 
just shows that the WKB approximation (and the represen- 
tation of the nuclear wave functions by the quasi-classical 
a p p r o ~ i m a t i o n ~ ~ )  is applicable for the calculation of 
Franck-Condon factors both between two bound states and 
between a bound and a continuum state as  for the original 
Gamov t~nnel I ing .5~ 

(3) The preexponential electronic factor A in the exoergic 
rate expression, eq 74, cannot be expressed in terms of Gamov’s 
preexponential factor vo of eq 71. Rather, the multiphonon 
expression A = 2x1V0b12/h2w has to be utilized for the 
preexponential factor. 

(4) Equation 74 provides an interesting alternative expres- 

is 2 P 2 . We shall provide here some justification for the use 

A = 2x1 Vab) * / h * ~  (72) 

x expI-(l + r)(IAEO/hwl (73) 

(74) 
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sion for an energy gap law (EGL) for exoergic processes. The 
common EGL for multiphonon processes relates the low- 
temperature rate to the energy gap AE in the form In W = 
const - y(AE/ho), as is evident for eq 72. Equation 74 pro- 
vides a useful relation between the low-temperature rate and 
the activation energy E A  in the approximate form In W = 
const' - (u(E,,)'/* with a = f i d y ' / 2 / f i .  

(5) For quantitative analysis of low-temperature A T  data  
the fully fledged multiphonon rate expression has to be uti- 
lized. 

VI. Concluding Remarks 
The purpose of this work is to provide a theoretical scheme 

for the description of nonadiabatic multiphonon A T  processes 
involving two well-defined electronic states and to apply this 
scheme to an analysis of the interesting and important 're- 
combination processlo between H b  and CO,  for which many 
of the basic assumptions of the theory seem to be valid. W e  
should note, however, that nonadiabaticity in A T  processes is 
likely to be the exception rather than the rule. Thus, apart from 
the Hb-CO recombination and related processes, nearly all 
other A T  processes a re  likely to proceed on a single potential 
surface and therefore correspond to the opposite limit of adi- 
abatic A T  processes. Typical adiabatic A T  processes involve 
ligand substitutions8 and other heavy atom group transfer,59 
configurational and interstitial relaxation and diffusion of ions 
in  insulating solids,b0 the diffusion of hydrogen atoms in 
metals,6' tunnelling between low-frequency phonon states 
which determines anomalous heat capacity and ultrasonic 
attenuation effects in amorphous solids,h2 tunnelling in mol- 
e c u l e ~ ~ ~  (e.g., the ammonia inversion), and nuclear tunnelling 
between chiral isomers.64 Most previous attempts to formulate 
a theory for adiabatic A T  rest on a nuclear adiabatic approx- 
imation and semiclassical rate theory. The development of a 
quantum mechanical theory for this class of adiabatic processes 
would constitute a challenging theoretical goal, being of con- 
siderable interest in the context of a variety of chemical, 
physical, and biological phenomena. 
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