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In this paper we present a quantum mechanical theory of multiphoton photodissociation of large, collision-
free, molecules, which rests on the notion that the radiative coupling terms between adjacent sets of
congested bound molecular states in the quasicontinbum exhibit a wide variation both in terms of
magnitude and of sign. Invoking the rotating-wave approximation, neglecting spontaneous infrared decay,
and assuming that near-resonant radiative coupling prevails, the equations of motion were solved within
the framework of the random radiative coupling model for the radiative interactions in the
quasicontinuum. In the low energy range (range I) the equations of motion for the amplitudes are
determined by the effective Hamiltonian formalism, while in the quasicontinuum (range II) the
populations are governed by kinetic equations for sequential reversible decay. All the features of coherent
excitation are preserved for range I, while in range II intramolecular erosion of phase coherence effects

prevails. This model provides a set of reasonable predictions.

. INTRODUCTORY REMARKS

The experimental observation'™? of multiphoton photo-

fragmentation of collision-free polyatomic molecules is
of considerable current interest, '’ To elucidate the
gross features of these high-order multiphoton molecu-
lar processes it is convenient to divide the level struc-
ture into three energy regions, in the order of increas-
ing energy.!®? Range I corresponds to a sparse level
distribution of bound molecular states, The gross fea-
tures of range I involve a discrete spectrum with near-
resonant radiative interactions, which results in a coher-
ent, phase-preserving, multiphoton excitation., The no-
table experimental consequences of the high-order exci-
tation of range I'+18:22:25,26,30 jpy6lve the isotopic selec-
tivity, the power dependence of the excitation yield, to-
gether with the occurrence of saturation effects in a dis-
crete near-resonance spectrum, as well as the appear-
ance of multiphoton resonances. Range II constitutes
the intermediate energy range which is characterized

by a dense level distribution of bound states. When the
density of the bound nuclear levels is high, all zero-
order descriptions of the energy levels become inade -
quate and the only appropriate description is provided

in terms of the nuclear molecular eigenstates (NMEs), %
These energy levels correspond to the eigenstates of the
molecular nuclear Hamiltonian, Although the NMEs are
not known at present for any polyatomic molecule, they
constitute a basic theoretical framework for the study of
intramolecular dynamics in large molecules. The onset
of range II can be characterized by two conditions: (a) A
physical irreversibility condition®® implying the overlap
of resonances originating from infrared decay, i.e.,
yIRo(E) > 1, where yi¥ is the infrared decay width of the
NME |#), while p(E) corresponds to the density of states
of the NMEs; (b) A practical condition for irreversibil -
ity®! in a discrete congested level structure implying that
T,< ip(E), where T, is the upper limit for the time scale
of the experiment. For the celebrated SFg molecule,
condition (a) implies that for E > 10* ¢m™ the quasicon-
tinuum acts as a real physical continuum, while from
condition (b) one can infer that for a time scale of T,

~ 100 nsec practical irreversibility is obeyed for

E >5000 cm™. Once the general point of view, which
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rests on the notion of NMEs, is accepted one can essen-
tially evade the issues of intramolecular vibrational re-
laxation (IVR)":!%30 and of the energy redistribution in

a large molecule undergoing multiphoton excitation,
Obviously, once a packet of NMEs (corresponding to
some zero-order state) is “initially excited” under well-
defined experimental conditions, it is legitimate to
probe the dynamics of the IVR process, However, in
the present case of a high-order multiphoton process
one has to consider the implications of a resonant radia-
tive coupling in the congested bound level structure of
range II and we would like to argue that the notion of
IVR is irrelevant for the problem at hand. Finally,
range III located above the first dissociation threshold
corresponds to the reactive region,

While the characteristics of range I in large mole-~
cules were quite extensively studied by the application
of the effective Hamiltonian formalism and are reason-
ably well understood, the nature of range II and the
physical implications of radiative coupling with such a
molecular quasicontinuum constitute an interesting
problem to which we shall address ourselves in the
present paper. In this context Bloembergen and col-
leagues'®*!® invoked the notion of IVR in range II, where
successive absorption and stimulated emission of single
photons were assumed to take place. Kolodner et al.!
and Black ef al.' have demonstrated that provided that
when the laser intensity is sufficiently high to overcome
range I the photofragmentation yield is determined by
the pulse energy, providing overwhelming evidence for
the erosion of phase memory effects in range II, Thus
for a large molecule, such as SFg, incoherent excita-
tion prevails in range II. Mukamel, ** Hodgkinson and
Briggs, * and Cantrell ef al.%" have advanced a theoreti-
cal description of multiphoton excitation in range II of
SFg by dividing the zero-order molecular energy levels
into two parts. The “relevant” part consists of the v
mode, while the “irrelevant” part consists of the vibra-
tional quasicontinuum of a]l the other modes. These
two subsystems are coupled by intramolecular anhar-
monic interactions. The time evolution of the system
was handled by the equations of motion for the reduced
density matrix,“ where the vibrational quasicontinuum
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plays the role of an intramolecular reservoir. It was
argued by Mukamel®® and by Cantrell*® that intramolecu-
lar anharmonic coupling results in erosion of phase
coherence effects, resulting in a Markovian master
equation for the small relevant subset of levels. A
serious hidden assumption underlying this treatment in-
volves the hypothesis of selective radiative coupling.
Over the entire energy range II it is asserted®® that
effective radiative coupling prevails only between the

v; states, while no radiative coupling occurs between
high-energy reservoir states. This assumption is ex-
pected to break down at high vibrational energies. Fur-
thermore, the anharmonic coupling terms are expected
to become appreciable at high energies, rendering the
harmonic basis useless, The segregation of the nuclear
energy levels may be adequate only provided that the
high vibrational overtones can be described in terms of
local bond modes, as is the case for molecules contain-
ing X—H bonds.*® This is not the case for multiphoton
excitation of SF;, We thus believe that the assumption
of selective radiative coupling, which provides the basis
for the level segregation procedure, is inadequate for a
large molecule such as SF;, We would like also to point
out that Bloembergen’s unimolecular model!® predicts
that in most cases the multiphoton photodissociation
process will result in the production of ground state
fragments, while some (though by no means conclusive)
evidence is available® for the formation of electronically
excited radicals, and recent experimental work!* dem-
onstrates the production of electronically excited states
of the parent molecule via multiphoton vibrational exci-
tation. Further work is required to elucidate the nature
of multiphoton excitation in range II and to establish the
characteristics of chemical and photophysical processes
in highly excited vibrational states of polyatomics. In
this paper we shall consider a quantum mechanical mod-
el for multiphoton photodissociation of an “isolated”
large molecule., This model rests on the notion of ran-
dom radiative coupling within a congested manifold of
bound states in range II. A preliminary exposition of
the features of this model was already provided,* From
the point of view of general methodology the random radi-
ative coupling model does not invoke the controversial
notion of IVR in a single molecule, but rather utilizes
the NMEs as a proper {“exact”) molecular basis set for
the study of high-order multiphoton molecular processes.
From the practical point of view this model is hopefully
realistic and provides a set of predictions which are con-
sistent with the experimental facts of life.

H. THE RANDOM RADIATIVE COUPLING MODEL

The novel and truly interesting feature of the problem
of multiphoton photofragmentation of an isolated poly-
atomic molecule involves the nature of the excitation of
the quasicontinuum of bound states. We shall advance
a model for this problem attempting to utilize as input
data just the relevant quantum mechanical “observ-
ables,” i.e., the energies of the molecular bound levels
and the multiphoton radiative coupling terms. Our start-
ing point rests on the set of NMEs {|m)} states, which
in ranges I and II are bound, constituting the eigenstates
of the molecular Hamiltonian so that the only residual
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FIG. 1. Energy level diagram for the dressed states in the
random coupling model. Black arrows correspond to radiative
coupling, white arrows denote random radiative coupling terms,
while the wiggly line represents the intramolecular coupling to
the dissociative continuum.

coupling involves the radiative interactions. Range I
(see Fig. 1) consists of a small number, N, of discrete
states characterized by the molecular energies E (a=1,
2,...,N), which are well separated in energy, being
near resonant with the laser frequency #w. Range II
consists of a series of @ dense molecular manifolds
{12(B)} with energies E,4,, where 8=1,2,...,Q labels
the particular dense manifold. Each of these discrete
manifolds is in resonance with the laser energy 7w.
Thus the minimum number of laser photons required
for photodissociation is now M -1, where M=N+@Q,

The photofragmentation process will be described by
adding a single real continuum {Ic)} to represent range
III, the continuum state being characterized by the en-
ergies E,. Each of the (discrete) states in the Qth dense
manifold is coupled via nonadiabatic intramolecular cou-
pling to the states in this dissociative continuum, Next,
we turn to consider the laser field. An intense electro-
magnetic field will be specified in terms of a state |n)
containing (> 1) photons of frequency w in a single
mode, which is switched on the time scale 0 s¢t<T. We
note in passing that the results obtained for »> 1 (or
rather for »>> M) using the quantum description of the
radiation field are equivalent to those derived by using a
classical field.?” The Hamiltonian for the problem will
be expressed in the conventional form

H=Hy+ V+W ,
H0=HM+HrId s

Y

where Hy is the molecular Hamiltonian, W the intramo-
lecular coupling to the dissociative states, H,, corre-
sponds to the Hamiltonian of the radiation field, while
V represents the radiation-matter interaction term,
taken in a time-independent representation,

We shall now introduce three basic assumptions,
which were previously utilized to derive the effective
Hamiltonian formalism, First, the rotating wave ap-
proximation (RWA)* is invoked, allowing us to consider
the time evolution of the “dressed” molecule -radiation®®
eigenstates of H, (Fig. 1). These correspond to the dis-
crete, sparsely spaced, “dressed” states |a)= |a,

n —a+1) with energies E(a)=E_ +(n —a+1)fiw, (a=1,
...,N)for range I, the @ dense manifolds of discrete
states {12(8))} = 11(8), n —B =N +1) with energies E(1(8))
=E;@ +in~N-g+1)w, (8=1,..., Q) for each state in
range II, and the continuum states in range III corre-
spond to {Ic)} ={lc, n ~ M + 1)} with energies E(c)=E,
+(n =M+1)hw. Second, we shall neglect spontaneous
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infrared radiative decay. Third, we shall assume that
effective radiative coupling prevails only between adja-
cent states in range I, between adjacent dense manifolds
in range II, and between the | N) state and the { 12(1))}
manifold (Fig. 1). This assumption together with the
RWA enables us to consider one set of dressed states,
characterized by a single value of . The time evolu-
tion of the system can be expressed in terms of the
dressed states

N
W= 3 0, 0]0) + 3 Va0 + T a0ler, @)

with the initial condition a;(£=0)=1. In order to ex-
press the equations of motion we have to specify all the
coupling terms, In ranges I and II these correspond to
radiative interactions and will be denoted by

(a|V]a’)=uN,e 60'.0:*1 (33-)
for range 1
(N|V[IQ) = py, 0y 5 all 21) (3b)

for the interaction between ranges I and II, as originally
proposed by Letokhov and Makarov, % and

<Z(B)| Vlm(y»=“l(ﬂ),m(r)€ ﬁ) Y=N+1’ .. '9M
|8-7|=1

for the coupling between states in the dense manifolds
in range II. Here p is the projection of the dipole oper-
ator in the direction of the field and € denotes the mag-~
nitude of the electric field. Finally, for the interaction
with range HOI we take

U W) =w(i (@), ¢) . (3d)

The equations of motion for the amplitudes in Eq. (2)
are

(3c)

z‘?:(ﬂo+v+w)a , 4)

di
where a is the vector of all the amplitudes and the ma-~
trices Hy, V, and W are expressed in the representation
of the dressed states.

As is evident from Fig. 1, Eq. (4) represents the
time evolution of a manifold of discrete states which are
feeding a set of adjacently coupled quasicontinua which
finally terminate by decay into the final continuum. The
problem of a discrete state coupled to a manifold .of ad-
jacently coupled continua has been extensively studied
in relation to the dynamics of a “conventional” one-pho-
ton induced photochemical process. Rice et al.® (RMJ),
Lefebvre and Beswick, ** and Nitzan et al. *! have explored
the sequential decay problem where the intercontinuum
coupling is a smooth weakly varying function of energy.
The decay pattern is dominated by interference effects,
which result in the retardation of the decay of the dis-
crete state and in a simultaneous population of all con-
tinua, This physical picture has been recently utilized
in the theories of (one-photon) molecular photofragmen-
tation®? and vibrational predissociation of van der Waals
molecules.?® Another extreme involves the sequential
decay model when each state decays into its own, pri-
vate, continuum, Nitzan et al.** (NJR) have demon-
strated that the sequential decay model obeys conven-
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tional kinetic equations. The relation between RMJ*®
and the NJR* models was investigated by Heller and
Rice, ** Kay, *® and Tric,*" who invoked the assumption
of random coupling in the RMJ model deriving a set of
kinetic equations for sequential decay. However, as re-
cently shown by Carmeli and Nitzan, *® the Heller—Rice
solution®® is restricted to the case of a low density of
states in the intermediate continuum. Carmeli and Nit-
zan*® extended the Heller~Rice treatment®® of separable
random coupling for the RMJ model which results in a
two-way master equation. It is now well established
that random coupling effects result in erosion of inter-
ference effects, ** ™% whereupon phase coherence phe-
nomena can be washed out.

The sequential coupling models with interference®*

are obviously inappropriate for the problem of multipho-
ton photodissociation as this model requires that the
coupling terms between the quasicontinuua be “smooth,”
being weakly varying with energy. The radiative cou-
pling terms Vy ,q, = K, ;)€ for the interaction between
the bound state and the quasicontinuum and V(g m a1,

= |18y, measty € fOT the interaction between pairs of dense
manifolds are expected to vary widely with respect both
to magnitude and to sign between various matrix ele-
ments. We propose®® that this variation of the radiative
matrix elements can be described in terms of a random
radiative coupling model and this lack of correlations

in sign and in magnitude of the radiative coupling terms
in the quasicontinuum will result in erosion of coher-
ence effects in range II., We must now explore the con-
sequences of the random radiative coupling on the in-
tramolecular dynamics. The Heller-Rice model® as
extended by Carmeli and Nitzan*® is too restricted, as
it rests on a separable interaction scheme. The con-
ventional derivation which rests on a brute-force solu-
tion of the equations of motion for randomly coupled
quasicontinua, Eq. (4), which was attempted vefore, *
does not lead to a self -consistent solution.*® The most
promising avenue is to adopt the Wigner ~Weisskopf ap-
proximation for range I, while in range II we shall adopt
Kay’s procedure?® for random intercontinuum coupling.

To specify the nature of the random coupling terms
we shall invoke a2 mathematical definition of randomness,
asserting that the off -diagonal matrix elements of the
level shift operator are considerably smaller than the
corresponding diagonal terms, The complementary re-
lations in the time domain for the coupling between con-
tinua are

(m(¥)| VA(@)V[1(8)) = 8 646 (m(¥) | VA(@)V [y ,
where

Ala)= Z [n(@)y et Bt (n(ar) |

(5)

(6)

is a function of the eigenvalues of H,. We also assume
that the coupling between the highest N state and the
quasicontinuum is random in the same sense,

(N|vA@V]IG) =0 .

This definition of randomness given in terms of Eqs.
{5)~(7) for coupled quasicontinua bears a close analogy
to the celebrated Van Hove diagonal singularity condi-

(
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tion®** for infinite systems. We now proceed to explore
the implications of the random radiative coupling model
(RRCM).

The mathematical manipulations involved in the deri-
vation of the equations of motion in range I are similar
to those utilized for the self-consistent derivation of the
Wigner-Weisskopf approximation.3 The time evolution
of the amplitudes g, **+ ay-; is given by Eq. (4). For the
amplitude ay of the highest dressed state in range I, we
utilize Eq. {4) together with Condition {7) to get

iﬂ;N=U'N,N-1 €ay- - (iTx/2)ay , (8)
where
FN=27T<l“‘N.I(1)Iap(1).>€z ()

is the width of the Nth {discrete) state due to radiative
coupling to the quasicontinuum, Here ( ) denotes aver-
aging over the (random) {1(1))} manifold and p, is the
density of states in this manifold, Thus the quasicon-
tinuum provides an irreversible decay channel for the
IN) state. This result is not surprising. However, it
should be noted that the independence of T'y, Eq. (9), on
the coupling in range II is a consequence of the random
coupling assumption.

Next, we address ourselves to the central problem of
the dynamics in range II. To consider the time evolu-
tion in range II it will be convenient to write the equa-
tions of motion for the density matrix

Pray,min ) =aTi5 () 8 @),

(10)
pN,m(r)(t) =a;(t) am(r)(t) )

so that the population of the |N) state is Py(t)=py, 4 (t),
while the entire population P,(t) of the dense manifold
(8) is

Pylt) = 12 Pus).t(s)(t) . (11)
For the sake of simplicity we shall now congider the
dynamics of state N coupled to range II, disregarding for
the moment the dissociative range IlI., The time evolu-
tion of the system over a period ¢--- £+ T is given in the

conventional form
Wt +7)=e 7 9(t) | (12)

Utilizing Eqs, (1) and (10)=(12), simple manipulations
result in the general relations

Py(t+7)= zm: Z Z Ze: 18 men(T) Py, ney )

+ E 2 Il(\P.)m(r)(T) pm(r).”(t) +I}VB.)N(T) pN.N(t)l ’ (13)
m 4
where
Ly mon (T) = Zt: € nor,1m €18y minr
I uin (1) = Z‘: CAR) PN Co b M (14)

I}»'B,)N(T)zz ,(e"")ﬂ.t(ﬂ) [* .
7

Equation (13) contains diagonal contributions, which
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represent level populations, as well as off-diagonal
terms, which account for coherence effects. Van Hove**
has reduced formally equivalent expressions to a diag-
onal form by invoking the random phase approximation
for the amplitudes a,,(!). However, Van Hove’s diag-
onal singularity condition®*® as well as Zwanzig’s weak
coupling theory®*® rest on the notion of “smooth” cou-
pling, where the coupling terms V exhibit weak energy
dependence. Such an approach does not apply for the
RRCM. Instead, we assert that as a consequence of the
randomness of the radiative coupling terms the off -diag-
onal interference functions in Eq. (14) vanish and only
the diagonal terms survive, This is essentially Kay’s
assumption, 6 which we adopt for the RRCM. To pro-
vide a justification for this ansatz we utilize the conven-
tional expansion of the time evolution operator for the
system characterized by H=Hy+ V,

e~ HT = gmHGT _ f’dtl e HOT(TtY) ity (15)

0

It is now a straightforward matter to verify that Egs.
(5)-(7) imply that all the contributions to Eq. (14) of the
form VA{a)V, VA(a) VA(B) VA(y) V, etc., which contain
an even number of the radiative coupling terms V, are
diagonal. For terms which contain an odd number of
Vterms, e.g., VA(a)VA(B) V, we have to invoke an ad-
ditional diagonality assumption, or rather rely on the
mutual cancellation of these odd V, off -diagonal contri-
butions. The RRCM now results in the diagonal contri-

butions to Eq. (14)
I:la(%).m(r)('r) =I$:(),,,m(,,(1') 6nmbrﬁ ’ (141)
I min(T)=0 .

Thus Eq. (13) assumes the form of a generalized mas-
ter equation

Pa(t + T) :E E Pmr .m(r)(t) Ymr~ (B)(T) +pN,N(t) Y- (Bl(T) )

(186)

where
‘ym(r)‘(B)(T)=Z [ N mimim [® (17a)
YN-1a1(T) = IZ ,(edﬂf)ﬂ.us) ,z s (17b)

are the total probabilities for the transitions during the
time interval T from the state | m(y)) to the 8 manifold
and from the state | N) to the 8 manifold, respectively.
As we consider now a system consisting of the | N) state
and the set of quasicontinuua {l (8))} (8=1-.- @), Eq.
(17) now obeys the unitarity conditions

Q
3, o)+ lonle |y =1

Q (18)
S a6l |y =1

which reveals that the basic probability conservation law
Q
Z;P(B,(t+r)+PN(t+r)=1 (19)

is preserved, demonstrating that the RRCM is self-con-
sistent,
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To recast the master equation (16) in a more trans-
parent form we can approximate the probabilities to
second order in terms of the golden rule rates

Yr-1a(T) =T [N={g}] 7, (20a)

Ymn- 81T =T [m(n)={6}7 , (20b)

P[m(“/)*{ﬁ}]:zﬂzl le(r),z(B)lab(Em(r) -E,5), (212)

F[N"{B}FZTTZ | Viio |2 6(Ex ~E ) (21b)
This second -order expansion is expected to be valid for
a quasicontinuum provided that T < (pg) and I' > (pe,)",
where {p@,) is an average density of states in the

{11(8))} manifold, Expanding the lhs of Eq. (16), utilizing
Egs. (18), (20), and (21), and disregarding a small back-
transfer contribution [which is of the order of 1/2, n
being the number of (8) quasicontinuum states] now re-
sults in a conventional master equation

8Pat ('t") "'; 27: F[m(Y)-’{ﬁ}] Pm(y),m(y)(t)

- Z ZY B~ {Houe, 1@

+ F[N"{B}]PN,N(t) . (22)
Equation (22) provides us with a set of kinetic equations.
To bring these equations into a manageable form we
shall invoke a coarse-graining hypothesis for the decay
widths in Eq. (21). We assume that these widths are
independent of the particular initial states. Bearing in
mind that the delta functions appearing in Eq, (21) are
introduced in the case of a discrete spectrum only for
bookkeeping purposes, we shall express the coarse-
grained widths in terms of the densities of states p

in the quasicontinua. Introducing the explicit form of
the radiative interactions, Eq. (3c), the intercontinuum
coupling prevails between adjacent quasicontinua and the
relevant terms are

Kg.pa =(TIB) = {82 1}])

=21 | s ey, reaaty 1% pegary) € (23)
Finally we set
ry=(CN-{8}]) , (24)

where Ty is given by Eq. (9). The averaging { ) in Egs.
(23) and (24) is performed over final states.

Replacing the microscopic widths in Eq. (22) by the
average values and utilizing Eq. (18), we obtain the fol-
lowing set of birth and death kinetic equations:

Py =TyPy—=Ki.;Pyy+Ke.1 Py
Py =Ky.g Py +Ks.g Pgy = (Kgus +Kpoy) Py

.
.
.

Pgy =Kg1.8 P(g-1) *Kpa1-8P ge1y (25)

~(Kg.po1 +Kgp-1)Pesy , B=2'""Q=1.
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Finally, we shall briefly consider the dissociation in
range IlI. We adopt the NJR sequential decay model**
assigning to each level in the highest {17(@))} manifold a
constant independent decay width

Kp=2r|Wlc, @) % p, , (26)
where p, is the (average) density of states in the disso-
ciative channel. The time evolution of the population of
the {11(@)} manifold is characterized by the irreversible
decay

P(gy=Kg1-oP o1y —Kq-0-1 Py =Kp Pq) - 2m
The population of the decay channel P, =Y, la,(¢) %,
where a,(#) is defined by Eq. (1), is now governed by
the simple equation

ﬁ(c)'_'KDP(Q) . (28)

IH. RESULTS

To summarize, let us express the time evolution of
the system in a concise manner. In range I we get the
effective Hamiltonian equation for the amplitudes

ia(t) =H,,alf) , (29)
where
al(t)
az(t)
aN(t)
(He!f)a,a =E(a)—% rnﬁa'N , (30,)
(Hygrda,s = ta,s 0,01 € - (30"")
In range II the populations are given by
P(t) =S() +K P(t) , (31)
where
Py(®)
Py(#)
P(f) = . (31"
Poft)

is the vector of the populations; the feeding vector is

Ty Py(t)

0
5(1) = . ,

0

(31")

where P,{¢) is obtained from the solution of Eq. (30).
Finally, the kinetic matrix is
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=K.z 0 0 0 .0
K., ~(Kp.3+K;.q) K., 0 .0
K= 0 K,;.3 —(K3-4 +K3-a) Ki3:..0 (31""")
0 0 0 - (Kq. o- 1 +Kp)

In range III, Eq. (28) determines the population rate
of the true dissociative channel so that the photodissocia-
tion probability during the pulse is
T
W1=K,,f P,H)dt (32a)
0
while the probability for photofragmentation after the
termination of the pulse is

W2=P(Q)(T) ’ (32b)

where the population P q,(t) is obtained from the solution
of Eq. (31).

Equations (30)-(32) constitute the final results of the
RRCM. The following conclusions emerge:

(a) All the features of the coherent excitation in range
I (see Sec. I) are preserved.

(b) The effective Hamiltonian formalism for range I
is applicable only within the framework of the RRCM,

(c) The “leaking” from range I to range II is deter-
mined by the transition probability I'y, Eq. (9), which
is proportional to €, i.e., to the laser intensity I. The
concept of the leakage into the quasicontinuum was orig-
inally advanced by Letokhov and Makarov,

(d) The dependence I'y «I raises the definite possibil-
ity of damping of the coherent excitation in range I at
high laser intensities, Utilizing the analysis of Eberly
and Ackerhalt’®® we note that when (a) I'y exceeds all the
Rabi frequencies and (b) Stark shifts compensate for the
energy defects, coherence effects in range I will be
eroded. This situation will prevail near saturation of
the leaking from range I to range II. Then the necessary
condition is I'y > pg.qu€ for all @. As Iy« € and the
Rabi frequency is determined by ¢, it is possible, at
least in principle, to achieve erosion of coherence ef-
fects in range I at high intensities. Only then can region
I be treated also in terms of a master equation,

(e) The time evolution of the populations in range II
is described in terms of a conventional kinetic master
equation. Random coupling is sufficient to erode all
coherence effects in range II,

(f) The rates K,.4,, for excitation in range II are
proportional to the laser intensity. Thus excitation in
range II will be essentially determined by the laser en-
ergy, i.e., €T, rather than by the laser power.

(g) The kinetic equations in range II correspond to
the simple reversible sequential decay process

|y B {fiant={ i@} - = 1ent S {lo}
(h) In the first stage of the sequence (33), IN)

(33)

~{12(1))} induced by the radiative coupling Ty the decay
of the single |N) state to the {11(1))} dense manifold is
practically irreversible on the time scale of the experi-
ment®! and no stimulated emission, which is analogous
to the reversible {II(1))}~ |N) process, is expected to
be exhibited.

(i) The radiative coupling between adjacent quasicon-
tinua results in reversible absorption and stimulated
emission which can be described as reversible process.
The self-consistent treatment of the RRCM model pre-
sented herein concurs with the relation proposed by
Black et al.” Obviously, we are concerned here with
“long time” excitation of the quasicontinuum disregard-
ing interesting, time-resolved, transient effects.

(j) The RRCM model opens some interesting possibil -
ities for the theoretical study of medium perturbations
in multiphoton photodissociation. Medium effects fall
in general into two categories: (1) Phase destruction
processes, and (2) population modifications. At low
pressures of an “inert” gas (excluding V-V transfer)
phase destructive collisions dominate and range I can
then be treated in terms of population rate equations for
a discrete manifold which involve absorption and stimu-
lated emission, while the behavior of range II is prac-
tically unmodified before effective vibrational deactiva-
tion sets in. When medium effects at higher pressures
are considered the effects of vibrational relaxation in
both ranges I and II have to be incorporated. This open
problem of medium induced population changes is of con-
siderable interest in relation to the recent observation
of multiphoton photodissociation of a guest molecule in
a rare-gas solid,*?

IV. CONCLUDING REMARKS

What is significant from the point of view of general
methodology is that the RRCM provides the first step
towards a self -consistent microscopic theory underlying
collisionless excitations of a molecular manifold, which
rests on the notion of the genuine (although unknown)
molecular level structure, evading dangerous and not
well-defined issues such as IVR. In particular, we have
demonstrated that random radiative coupling in a con-
gested level structure can result in erosion of coherence
effects, without alluding to the notion of intramolecular
T,-type processes. The RRCM constitutes a theory
which attempts to provide physical insight, on the basis
of minimal physical information, and which will hope-
fully be useful in correlating a variety of experimental
data for multiphoton photofragmentation of large mole-
cules. It is important to emphasize at this point that the
RRCM is applicable for the study of large molecules.
Indeed, the “transition” from range I to range II bears
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a close analogy to the transition from the small mole-
cule case to the statistical limit in the theory of elec-
tronic relaxation,3 The onset of range II is essentially
determined by the size of the molecule, i.e., the num-
ber of atoms, as well as by the excess vibrational ener-
gy. Obviously, for a diatomic molecule range II does
not exist. For triatomics it is an open question whether
range II exists at all and, in any.case, range I will con-
tain a large number of levels and the properties of range
I will dominate the characteristics of the multiphoton
excitation process. In large molecules like SF, the
onset of range II is low and for such molecules the
coarse-graining procedure inherent in the RRCM is
physically acceptable. Finally, it should be noted that
the RRCM makes possible the accessibility of electron-
ically excited configurations, so that electronically ex-
cited levels of the parent molecule or electronically ex-
cited fragments may be produced.
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