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In this paper we explore the effects of off-diagonal disorder on electronic energy transfer (EET) in an
impurity band of an isotopically-mixed, organic solid at low temperatures. We have considered the
localization of an elementary excitation in a system characterized by both diagonal disorder, originating
from inhomogeneous broadening W of the site-excitation energies, and of off-diagonal disorder arising
from the energetic spread o of the transfer integrals. We have utilized an exact expression for the self-
energy of a disordered system where both the site-excitation energies and the transfer integrals are
characterized by a Lorentzian distribution, together with the localization function method of Liciardello
and Economou to establish the localization condition in the center of the impurity band. Model
calculations were performed for a Bethe lattice and for the Hubbard density of states, demonstrating the
enhancement of delocalization due to off-diagonal disorder, whereupon the Anderson transition (AT) will
be exhibited at higher values of W than in the original Anderson model (DAM), when o = 0. For large
values of the ratio W/o X 12 the effects of off-diagonal disorder are negligible. Numerical calculations of
o were performed for a random distribution of impurities, while W was roughly estimated for recent
spectroscopic measurements. These data, together with the results of the model calculations for a Bethe
lattice, established the existence of the critical impurity concentration C for EET in the impurity band.
Off-diagonal disorder results in the lowering of C relative to the OAM; however, the effect of diagonal
disorder is dominant in determining the termination of EET in the impurity band.

I. INTRODUCTORY COMMENTS

Recent experimental studies of electronic energy
transfer (EET) in low temperature, isotopically-mixed,
organic crystals of naphthalene, ! penzene, 2 and phena-
zine® point towards the existence of a critical concentra-
tion of the isotopic impurity below which EET in the
impurity band is switched off. Two distinct models have
been introduced to account for the nature of the electron-
ic states and of EET in isotopic impurity bands. Kopel-
man and colleagues! have introduced the notion of “exci-
ton percolation” (EP), which rests on the assumption
that the only source of disorder in a binary, isotopical-
ly-mixed crystal is due to substitutional disorder. In
the absence of a diagonal disorder the electronic states
in the center of the monomer impurity band are always
delocalized.* EET in the impurity band at low tempera-
tures proceeds via extended states, the spatial range
of EET being limited by the finite lifetime of the elec-
tronic excitation. Kopelman’s picture1 constitutes a
kinetic model which does not describe a critical behav-
ior. We have proposed® that a critical concentration,

C, for triplet EET is a manifestation of an Anderson
transition (AT)6 within the isotopic impurity band. In
our picture, % diagonal disorder of the site-excitation
energies in the impurity band results in an abrupt
change in the eigenstates in the impurity band from ex-
tended states at C>C to localized states at C<C. EET
is then essentially dominated by diagonal disorder,
which originates from inhomogeneous broadening of the
site-excitation energies.

The dichotomy between Kopelman’s EP model! and
the Klafter —Jortner AT model® involves the central is-
sue regarding the magnitude of inhomogeneous broaden-
ing and its effect on the dynamics of EET in an isotopic
impurity band. The dispute concerning the magnitude
of the spread of diagonal site-excitation energies has to
be settled experimentally. Strong experimental support
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to our original proposal® that diagonal disorder of site-
excitation energies in dilute isotopic impurity bands is
appreciable (i.e., ~0.1-5 ecm™!), ® stems from recent
spectroscopic studies. Smith ef al. % have reported in-
homogeneous broadening of ~4 cm™! for triplet isotopic
impurity states of phenazine in phenazine-d, at 1. 3 K,
while a study of the triplet excitation spectrum of 2%
naphthalene in naphthalene-dg at 2 K reveals an inhomo-

geneous broadening of ~0.1 cm™ for the monomer band.’

On the basis of extensive theoretical studies of the
Anderson localization problem®®?® and its application to
EET, 510 e can assert that provided the inhomogeneous
broadening in isotopic impurity bands in organic crystals
is sufficiently large (relative to the impurity band width)
an AT will be exhibited. In what follows we shall adopt
our original approach, which asserts that diagonal dis-
order prevails in isotopically -mixed crystals. However,
one should note that the AT model for EET is oversim-
plified as it considers only the effects of diagonal disor-
der in the impurity band. All previous studies af local-
ization of electronic excitations in impurity bands of
ionic!® and organic solids® rest on the original Anderson
model (OAM), where the site-excitation energies are
taken as random variables, while the transfer integrals
are assumed to be invariant to effects of disorder. In
an impurity band three types of disorder are encoun-
tered: (1) Binary disorder in the alloy, (2) off-diagonal
disorder due to the distribution of the transfer integrals,
and (3) diagonal disorder of the site-excitation energies.
Substitutional disorder must involve binary and off-
diagonal disorder, while the effects of diagonal disorder
depend on the magnitude of the inhomogeneous broaden-
ing. Thouless,* Abou—Chacra ef al. *® and Heinrichs, !
have demonstrated that in an impurity band characterized
only by the disorder effects (1) and (2) no AT is exhibited
and that the states in the monomer band will always be
extended. Herscovici, !? and Economou and Antoniou®
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have recently shown that when only off-diagonal disor -
der prevails no Anderson localization will occur, while
in a system characterized by both diagonal disorder and
off -diagonal disorder the latter may lead to delocaliza-
tion of states, which are localized within the framework
of the OAM. These results were recently confirmed by
numerical studies by Weaire et al. '* As off-diagonal
disorder always prevails in an impurity band, we are
now faced with the interesting question: How do the in-
herent static fluctuations of the transfer integrals affect
the electronic states and the features of EET in an
isotopic impurity band?

In this paper we address ourselves to the problem of
an electronic excitation in an impurity band in a molecu-
lar crystal, which is characterized by both inhomoge-
neous broadening, W, and by static fluctuations in the
transfer integrals. While W is estimated on the basis of
the sparse experimental data available for isotopic im-
purity bands, 37 the probability distribution of the trans-
fer integrals, as well as the mean value and the disper -
sion of these transfer integrals, are evaluated for a
random distribution of impurities. The problem of lo~
calization of an elementary excitation in a disordered
system characterized by both diagonal and off-diagonal
disorder was studied by utilization of the John-
Schreiber moadel, !* where both the site-excitation ener-
gies and the transfer integrals are characterized by
Lorentzian distribution functions. This model results
in exact expressions for the configurationally-averaged
Green’s function. Subsequently, the Economou-Antoniou
‘localization criterion, *® i.e., the L(E) method, was ap-
plied to determine the condition for localization in the
middle of the impurity band. Numerical calculations
were conducted for two model lattice Green’s functions,
the Bethe lattice (Cayley tree) model, and the Hubbard
model. ¥ We shall be concerned only with localization
in the middle of the impurity band as we assert that,
even in the low temperature regime we are concerned
with here, all the states in the narrow band have equal
thermal population probabilities, whereupon an AT in the
middle of the band is sufficient to insure EET via ex-
tended states at C=C. In order to utilize the theoreti-
cal predictions of the model, which rest on Lorentzian
distributions, to extract information concerning the
characteristics of real physical systems, we have
adopted a “scaling law” 6T, = W,, to compare the criti-
cal inhomogeneous width W, of the Anderson rectangu-
lar distribution calculated by the exact method sug-
gested by Abou-Chacra et al. %° for a Bethe lattice, with
the Anderson critical Lorentzian parameter I', calcu-
lated by the L(E) method. The results of the present
study will elucidate the effects of off-diagonal disorder
EET in mixed organic solids. This problem is of con-
siderable current interest, as organic solids provide
a class of attractively simple materials for the study
of the problem of localization of elementary excitations
in disordered systems.

ti. THE IMPURITY BAND

The electronic states in the impurity band of an iso-
topically -mixed crystal will be characterized by the
impurity -impurity superexchange interaction!®
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J=BB/A), (I 1)

where B is the nearest-neighbor exchange integral, A
represents the energy separation of the impurity state
from the lowest exciton band center, while n corresponds
to the number of host molecules separating the two im -
purities. Equation (II. 1) is valid in the limit (8/4) <1,
which is of interest to us. This form of superexchange
integral concurs with the results of the recent analysis
of Thouless, * of Abou-Chacra ef al., ®® and of Hein-
richs, ! that (in the absence of diagonal disorder) the
binary disorder, together with off-diagonal disorder,

do not result in Anderson localization within the impu-
rity band. In a dilute mixed crystal there will always
exist a narrow but finite “strip” of extended states which
correspond to the monomer excitations. Furthermore,
the effective impurity -impurity couplings derived by
Thouless* is identical with the superexchange interac-
tion, Eq. (IL 1).

The electronic excitations in the impurity band will be
characterized by the tight binding Hamiltonian

H:Z e,,a:',a,,+ J Z a;am ’
n

n<m

{I1. 2)

where a,(a;) represent the excitation annihilation crea-
tion operator on the impurity site ». ¢, are the site-
excitation energies, while J represents the nearest-
neighbor excitation transfer integrals. As we are con-
cerned with a system characterized by short range im-
purity —-impurity coupling, Eq. (II. 1), it is sufficient

to consider only the nearest-neighbor transfer integrals.
Both the site-excitation energies and the transfer inte-
grals are characterized by a statistical distribution as
appropriate for a substitutionally and structurally dis-
ordered material. The site-excitation energies exhibit
an energetic spread due to the inhomogeneous broaden-
ing, while the transfer integrals are specified in terms
of a distribution which originates from the random sub-
stitution of the impurities on the lattice sites.

We shall consider the impurity band in a mixed organ-
ic solid where the band structure is two dimensional
(2-D). This physical situation prevails for the lowest
triplet excitation in naphthalene! and in phenazine, §
where the triplet band structure is dominated by 2-D
interactions. The probability distribution function P(g,)
for €, will firstly be taken as a rectangular distribution

1 w w
P(Gn):w K —?SEHS?
=0; otherwise (11. 3)

as originally suggested by Anderson.' The energy
spread W will be takeun from experimental estimates of
the inhomogeneous broadening®'’ and will be chosen in
the range W=0.1-4 cm™. It is important to note that
at low impurity concentrations (C <0. 1) we shall as-
sume that W is concentration independent. The proba-
bility distribution function P(J) for J is evaluated in
Appendix A for a random distribution of impurities.
This calculation was performed within the framework
of the quasicontinuum approximation, where the inter-
action (I 1) is replaced by an exponential interaction.
We have shown (see Appendix A) that for a 2-D system
at low (C <« 1) impurity concentrations
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P(J)=(27C/J)[In(a/J)/In*(a/B)]
xexpl-7C In¥(a/J)/In¥(a/B)] . (I1. 4)
It can easily be demonstrated that P(J)—-0 when J — 0.

We can now characterize the impurity band by the
first and second moments. As we show in Appendix A,
for low impurity concentrations

@ = dJJP(J):l—nzg(l% exp(-7C) (IL 5a)
2
(Jz)zfdJJZP(J):ElLfQ—(%B—) exp(~7C) ; (1. 5b)

The average impurity —impurity coupling which is
determined by superexchange interactions is given by
(J), Eq. (II. 5a). The dispersion, o, of these interac-
tion terms is

0:[(J2> _<J>2]1/2
=(J){[In*(a/B)/8xC]exp(xC) - 1}1/2 .

The energetics of the impurity band is characterized
by the inhomogeneous broadening W, Eq. (IL 3), by
{J), Eq. (1L 5a), and by 0, Eq. (Il.8). Figures 1 and
2 portray the concentration dependence of W/(J) and of
o/{J) for the typical energy parameters S8=1 cm", w
=1cm™, and for several values of A/B. "It is evident
from Fig. 1 that for W=1 cm™, we get W/(J) » o/{J).
Bearing in mind that the inhomogeneous broadening
serves as a linear scaling parameter in Fig. 1, we can
assert that for W>0.1 cm™! or so, W/{(J)>a/{J).
Without alluding to any quantitative calculations, we can
argue at this stage that for W=0. 1 cm™!, which con-
stitutes a reasonable experimentala'7 lower limit for W,
the effects of diagonal disorder will dominate the effects
of the off-diagonal disorder.
we expect only minor modifications of the AT, which
will be determined essentially by the effects of diagonal
disorder.

(I. 6)
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FIG. 1. The concentration dependence of W, the inhomogeneous

broadening, normalized by (J), for various values of A/8.
W=1cm™t and =1 em™.
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FIG. 2. The concentration dependence of ¢/(J), the standard
deviation normalized by (J), for various values of A/S.

In order to provide a rough estimate of the critical
impurity concentration C at which the AT occurs, we
shall disregard entirely for the moment the effects of
off -diagonal disorder and consider a “superlattice” of
impurities where the distribution of the transfer inte-
grals is

Pl =8{d ~{J)), (1. 7)

while the site -excitation energies are characterized by
Eq. (IL. 3). Anderson’s localization theory for diagonal
disorder is now directly applicable and the AT will oc-
cur when* 1

(Iy=W/y,

where y=2az; 2z is an (average) coordination number
and « is a numerical constant which, according to dif-
ferent theoretical estimates, 16 i5 in the range a =1~
2.7. From Egs. (IL 5a) and (IL. 8), we assert that the
critical concentration for AT in an impurity “superlat-
tice, ” where only diagonal disorder prevails, is roughly
given by

C = (W/2n8y)In*(a/8) ,

where the exponent term exp{- #C} in Eq. (I 5a) has
been negleeted, as is appropriate for low concentrations.
Equation (IL 9) provides a reasonable first-order ap-
proximation for C. This result differs from our previ-
ous expression for C, ® where we have considered essen-
tially an impurity “superlattice” characterized by the
average impurity~impurity separation. The result of the
present treatment should be preferred as the configura-
tional average has been performed in a self-consistent
manner. The following characteristics of the critical
concentration should be noted:

(11. 8)

(I1. 9)

(1) C is proportional to the inhomogeneous broaden -
ing W.

(2) C exhibits an inverse linear dependence of the
nearest-neighbor host—host interaction 8.
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(3) C reveals only a weak logarithmic dependence on
the energy mismatch A.

Finally, it is worthwhile to point out that the present
superlattice approximation for the impurity band, which
disregards off -diagonal disorder, is almost equivalent
to the upper limit approximation in the self-consistent
theory of Abou-Chacra ef al. »° This problem is dis-
cussed in Appendix B.

Up to this point, we have avoided the central issue
pertaining to the effects of off-diagonal disorder on lo-
calization in the impurity band. Although the preceding
qualitative analysis of the numerical results of Fig. 1
and 2 indicates that for “reasonable” values of W
(=0.1 cm™) the effects of off -diagonal disorder are of
minor importance, it is interesting to provide an analy-
sis of these effects and in what follows we shall address
ourselves to a soluble model system which incorporates
both the effects of diagonal and of off-diagonal disorder,

iill. AN EFFECTIVE HAMILTONIAN FOR
LORENTZIAN DISTRIBUTION FUNCTIONS

The solution of the localization problem for a disor-
dered system described by the Hamiltonian (IL. 2) with
the probability distribution functions given by Eqgs.

(I1. 3) and (II 4) is a formidable task. In what follows,
we shall utilize the solution for localization in a model
system where the distribution functions for the diagonal
and the off -diagonal terms are Lorentzians. This solu-
ble model, suggested by John and Schreiber, % incor-
porates all the essential physical ingredients of the
localization of an electronic excitation in an impurity
band.

The distribution function for the transfer integrals is
taken in the Lorentzian form

V/w
PO=G=rve

(111. 1)
where V represents the width of this probability distri-
bution. The site-excitation energies are taken to be
related to the transfer integrals via

e=a P Wp=(I); a=1, (I1L. 2)

where the scaling factor a is positive and exceeds unity,
and the sum is taken over all nearest neighbors. Rela-
tion (III. 2) makes it possible to derive an exact solution
for the averaged Green’s function. '* 1t follows from Eq.
(II. 2) and from some general probability laws for a
function of a random variable, 17 that the probability dis-
tribution function for the variables ¢,, Eq. (IIL 2), is
given by a Lorentzian

I'/n

P(e,,) :gm‘g ’ (III. 3)
which is characterized by the width
T'=azv,; a=z=1, (I11. 4)

where z is the coordination number. The parameter az
represents the ratio between the spread of the diagonal
and of the off-diagonal terms.

The correlation (III. 2), with a=1, between the width
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of the distribution of the diagonal site-excitation ener-
gies and the spread of the transfer integrals implies that
I'>V, i.e., the spread of the ¢, terms due to diagonal
disorder exceeds the spread of the J terms originating
from off-diagonal disorder. In view of the available
experimental results and the analysis of Sec. II, we as-
sert that this is a reasonable starting point for the theo-
retical study of impurity bands in isotopically-mixed,
organic solids.

Following the analysis of John and Schreiber, '* one
can now define an effective Hamiltonian for the system
characterized by the distribution functions (III. 2)—
(I11. 4).

Heff:EoZ a,a,+ ((J}+2‘,,)Z a,a, , (I11. 5)
n n<m
where the (exact) self-energy is given by
Zy=~iazV (II1. 6a)
Zy= =iV (I11. 6b)

being expressed in terms of the diagonal component J,
and the off-diagonai component ;. It is important to
emphasize that the form of ),y and 3, is independent of the
lattice Green’s function, and in Sec. IV we shall utilize
several lattice Green’s functions with the effective
Hamiltonian (III. 5).

One should note that the exact result (III. 6) for the
self-energy in the model system characterized by the
Lorentzian distribution functions (IIT. 2)-(I11. 4) differs
from the self-energy derived by Antoniou and Economou,
which rests on the coherent potential approximation
(CPA). " The CPA self-energy contains only a contribu-
tion to the diagonal energy term

Z =—-i(T'+V)

0

5 .

We have shown elsewhere!'® that the “exact” self-en-
ergy (IIL. 6) and the CPA self-energy (IIL 7) result in
different features of the exciton density of states func-
tion in a structurally -disordered crystal. In what fol-
lows we shall utilize these self-energies to explore the
problem of localization in a model system subjected to
both diagonal and off-diagonal disorder.

(I11. 7a)

(I11. 7b)

IV. THE LOCALIZATION FUNCTION

Economou and Antoniou'? have recently advanced a
criterion for the localization of an elementary excitation
in a disordered material where diagonal and off-diago-
nal disorder prevails. The Economou-Antoniou localiza-
tion criterion rests on the Liciardello and Economou
theory of localization' and is briefly reviewed in Ap-
pendix C. The localization function L(E) defined by the
relation!®

L(E)=KJ | Gyt (E = Zg; J + Z4) | . 1)
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states characterized by L(E)<1 are localized, while
states corresponding to L(E)>1 are extended. The AT
occurs at

L(E)=1. (Iv.2)

Here K is the connectivity of the lattice, while J
=exp({InlJi)), where { ) denotes the average over the
probability distribution function for J. G,!™ is the
logarithmic average of the n,th site Green’s function with
the n;.,th site excluded, which is given by’s

GryomesG
Gy =Gy - R, (IV. 3)
ng

where G,; and G, ,,(Gy,,n,.,) are the diagonal and the
off -diagonal matrix elements of the lattice Green’s func -
tion, respectively. The arguments of these Green’s
functions are the same as in Eq. (IV.1).

We shall now utilize the self-energy (IIl. 6) to study the
localization function in the middle of the impurity band,
i.e., at E=0, as the existence of extended states in the
center of the narrow impurity band is sufficient to in-
sure the propagation of the electronic excitation. 5 In
what follows we shall consider explicitly two model sys-
tems, the Bethe lattice and the Hubbard model. *

First, we consider Green’s functions for a Bethe
lattice. This is a useful model, as an approximate cor-
respondence between a Bethe lattice can be established
by identifying the connectivity K for the Bethe lattice
with {z ~1) in the real lattice. The logarithmic aver-
age of the Green’s function (IV. 3) for the Bethe lattice
with the self-energy (III. 6) takes the form?®

nia
th

ng =

{E -=¢) - [(E =30

—4K({(J) + 2 PT Y 2K () + 2P (IV. 4)

J is calculated for a Lorentzian distribution as being
J=(Vis(I)HV2, (1v. 5)
Utilizing Egs. (IV.1), (IV.4), and (IIL 6) the localization

function for the Bethe lattice is

2\ 1/2
L(E:O):%(l +%,)

_ 2 /2
P _K.ZD_) _4K(1+_21_> ] I
J@ N\ &)

( 2\ ’
1+ 7%
(J7

The CPA result for the self-energy derived by Antoniou
and Economou, * Eq. (II. 7), results in

(IV. 6)

2\ 1/2
L,g(E=0)= %(1 + (_J‘%’)

- %0 (Eo )2 ]“2
- ) 4K
() ()

The ordinary Anderson localization condition under the
influence of diagonal disorder is obtained by setting V

=0and 3;=0 in Eq. (IV.6), or by taking V=0 and Z,
= -4 in Eq. (IV.7). Egquation (IV.2), together with

X (Iv.7)
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either (IV. 6) or {IV.7), then yields fer the localization
condition

LT/ —il(T/(I)? + 4K =1,

which results in T/{J) =K -1. A cursory examination
of the localization functions (IV. 6) and (IV. 7), which in-
corporate the effects of off-diagonal disorder, reveals
the tendency of the off-diagonal static fluctuations in the
transfer integrals to delocalize the excitation. The AT
in a system subjected to both diagonal disorder (I") and
off -diagonal disorder (V) will be exhibited at a higher
value of I' than that corresponding to the limit of diago-
nal disorder {V=10). While in the Antoniou-Economou
localization condition, Eq. (IV.7), this effect of off-
diagonal disorder arises only from the contribution of
the J term, Eq. (IV.5), the exact result, Eq. (IV.6),

for L{E) implies that off-diagonal disorder affects both
J and G,!"!. The exact self-energy, Eq. (IIL 6), has now
two components, the diagonal term }, and the off-diago-
nal term },. 7 defines an effective transfer integral
({J) +3,) in the effective Hamiltonian, Eq. {IIL. 5), which
is larger than (J). This contribution of }; to the effec-
tive transfer integral results in an important modifica-
tion of the condition for the AT, resulting in an enhance-
ment of delocalization. Thus, when off-diagonal disor-
der coexists with diagonal disorder, the spread T of the
diagonal site-excitation energies exceeds the value im-
plied by the Antoniou-Economou CPA self-energy.

Model calculations were performed for the localiza-
tion functions at the center of the band for various val-
ues of I and V. In Figs. 3(a) and 3(b), we display
L(E=0) and L,z(E=0) vs V/{J) for several values of
a=T/zV. These calculations were performed for a
Bethe lattice with K =3, which provides an approxima-
tion for a 2-D system. In Figs. 4(a) and 4(b) the local-
ization functions are portrayed for a Bethe lattice with
K =5, which mimics three dimensional systems. These
numerical results clearly demonstrate the enhancement
of delocalization by off-diagonal disorder. The AT ob-
tained both from L{E=0) and for L ,z(E=0) for finite V
occurs at a higher value of T than for the OAM with V
=0. Furthermore, the localization condition for the
AT obtained from L(E=0) is exhibited (Fig. 5) at higher
values of T than, as expected, the result obtained from
the CPA type L,g(E=0). A rather drastic effect of V
on the off-diagonal self-energy, and consequently on
the localization conditions, is revealed in Fig. 4(a)
where no AT is obtained in the 3-D, K =5 case for 1
=g=1.4. To provide a quantitative measure of the
effects of off -diagonal disorder we portray in Fig. 5
the critical value (I'/(J}), of the spread of the diagonal
terms versus the parameter a =T'/zV, which repre-
sents the ratio of the diagonal fluctuations to the off-
diagonal fluctuations. For moderate values of a, 1. e.,
1=a=3 (I'/{J)), exceeds the value obtained from the
OAM which incorporates only diagonal disorder. For
large values of a, 2 =3, the effects of off-diagonal dis-
order become negligible.

Next, we turn to model calculations based on the Hub-
bard lattice Green’s functions'?
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FIG. 3. (a) The localization function L (E =0) in the center of the band E =0, calculated for various values of the parameters V
and a, utilizing the exact self-energy and the Bethe lattice Green’s function with K =3; (b) The localization function L zg(E =0) for
various values of V and a, calculated using the CPA self-energy for the Bethe lattice K =3.

G =2UE-Z, - [(E - Tp)

- 22((Jy + T R/ (D) + ) av.s)

and

G :[(E-ZO)G,,‘—1]/z((J>+E1)- (tv.9)

Nalgay
Utilizing Egs. (IV.1), (IV.3), and (IV.5), together with
Egs. (IV.8) and (IV. 9), we obtained the localization
function in the Hubbard model. In Fig. 6 we present this
localization function for z =86, taking K =4. 68 which cor-
responds to a simple cubic lattice. As is evident from
Fig. 5, the behavior of (I'/(J)) is very similar to that

L(E)

o 1 | 1 i i
%6 ] s 3 ) 5

found for a 3-D Bethe lattice. This result demonstrates
that the AT in a system characterized by both diagonal
and off-diagonal disorder depends on the dimensionality,
but is not sensitive to the details of the Green’s func-
tion. This conclusion is reassuring as it will enable us
to apply the results of our model calculations for a
semiquantitative discussion of the features of localiza-
tion in an impurity band for real material.

The model calculations presented herein are based
on Lorentzian distributions for the diagonal site-excita-
tion energies and for the transfer integrals. From the
technical point of view it was convenient to express our
results (see, for example, Fig. 5) in terms of the pa-
rameter a=T/zV, Eq. (IIL 4), which provides a mea-

1 1
_
K=5
N
w a=|
- a=42
a=14
a=1.5
Y3 -
a=3
a=5
1 1 | I 1
o5 ] 2 3 3 5 6

FIG. 4. Localization functions L(E =0). (a) For a Bethe lattice K =5, using the exact self-energy; (b) For a Bethe lattice K =5,

using the CPA self-energy.
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FIG. 5. The critical value
(T/{J)), as a function of the
parameter ¢ =I'/zV, which is a
measure of ratio between
diagonal and off-diagonal fluc-
tuations. {(a) Bethe lattice with
K =3; (b) Hubbard density of
states; (c) Bethe lattice with K
=5. In Figs. (5a) and (5b) for
large values of a > 3 the curve
coincides with the results of the

OAM where (T'/{J)), = 2.
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sure of the ratio of the diagonal and the off-diagonal
static fluctuations. In order to apply the results of the
model calculations to the problems of EET in an impu-
rity band of a mixed organic solid, we define a corre-
sponding parameter a; for the impurity band

a;=W/zo . {Iv. 10)

The inhomogeneous broadening, W, characterizes in
real life a Gaussian distribution, which will be replaced
by a rectangular distribution of the diagonal site-exci-
tation energies. The dispersion o of the transfer inte-
grals was obtained (see Fig. 2) in Sec. IL ‘We recall
that Figs. 1 and 2 revealed that both W/{J) and o/{J)
decrease with increasing of the impurity concentration
C. In view of the general conclusion regarding the en-
hancement of delocalization by off -diagonal disorder,
we can then assert that for a finite value of o/(J) the
AT in the impurity band will be exhibited at a lower
impurity concentration (i. e., at a higher value of
W/{J)) than expected in the OAM, when the effects of
off-diagonal disorder are disregarded. This central
conclusion does hold provided that the inhomogeneous
broadening is concentration independent.

In order to utilize the model calculation to provide a
semiquantitative estimate of the effects of off -diagonal
disorder on localization in an impurity band one has to
establish the relations between the parameters W and
T, which characterize diagonal disorder, and between
o and V which specify off-diagonal disorder. This was
accomplished by invoking the following assumptions:

(a) The same scaling factor, 6, applies for both the
diagonal spread and for the width of the off-diagonal dis-
tributions, i.e., we set W=6I" and 0=4V.

(b) The ratio of the diagonal to the off-diagonal static
fluctuations is invariant to the nature of the distribution,
namely, whether it is Lorentzian or short ranged, so
that we set a =a,, where a is given by Eq. (IIL 4), while
a, is defined by Eq. (IV.10). .

(¢) To determine the scaling factor & we utilize the
data for the critical values of (W/{J)), calculated by
Abou- Chacra et al. %? for a rectangular distribution of
diagonal site-excitation energies in the absence of off-
diagonal disorder, together with our data for a Lor-

entzian distribution in the limit ¢ >3, which corresponds’

to the OAM. For a Bethe lattice with K=3, Abou-
Chacra et al. ®? obtained (W/(J)),~ 36, while we have

obtained (see Fig. 5) for the same system (I'/(J)),=2.
Thus, the scaling factor is 6 =18. From now on we
shall focus attention on EET in a 2-D impurity band,
which is assumed to be faithfully represented by a K
=3 Bethe lattice.

To explore the features of the parameter @;, Eq.
(IV. 10), we display in Fig. 7 the concentration depen-
dence of a, for a fixed value of A/j and for several val-
ues of W, taking z=4 as an average coordination number
for a 2-D system. It is important to note that for the
low concentration range of impurities, i.e., C<0.1,
which is of interest to us, a,;>1, thus satisfying the ba-
sic validity condition 2 = 1 of the model.!® We are now
in a position to derive an estimate for the critical im-
purity concentration C at which the AT occurs in the
impurity band. From the data of Fig. 5 for a K=3
Bethe lattice, and from the results of Fig. 7 for a 2-D
impurity band, we have constructed the concentration
dependence of 8(I'/(J)),, where 5=18 is the scaling
factor. Thus 5(T'/{J)), corresponds to the “critical”
value of the spread of diagonal fluctuations required to
accomplish iocalization in the impurity band. In Fig.
8 we present the concentration dependence of 6(IT'/(J)),

20

15
]
=~ 1O}

05

1 L 1 i 1
005 i 2 3 ) 5 6
\%

FIG. 6. The localization function L (E) =0 in the center of the

band for various values of the parameter a. The calculation
was performed for a Hubbard lattice with z =6, assuming that
K =4.68 and using the exact self-energy.
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FIG. 7. The concentration dependence of the parameter a;
=W/zo for an impurity band for various values of W. A/p
=40 and =1 em™.

which is identified with (W/(J)),. It is evident that
(W/(J)), exhibits a linear concentration dependence,
while in the OAM with 0 =0 (for V=0) we have (W/{J)),
= 36 for all impurity concentrations. In Fig. 8 we have
also plotted the concentration dependence of W/(J).

The intersection between the W/{J) (for a fixed W) and
the (W/(J)), curves in Fig. 8 results in the critical con-
centration C at a given value of W. It is apparent from
Fig. 8 that C for the impurity band, where both diagonal
and off-diagonal prevail, is lower than the critical con-
centration for the OAM with diagonal disorder only. In
Fig. 9 we exhibit the dependence of the critical concen-
tration C on W both for an impurity band model with

50

40
36|

30
A
[
Y
=

20

1o g=tem™! e

A/B =40
o 1 L1 1 ) 1 1
0.00! 002 004 006 008 010
C

FIG. 8. The shift of the critical concentration C to lower
values due to the effect of off-diagonal fluctuations. The con-
centration dependence of W{J) vs C for various values of
Wicm™) is represented by the solid curves., The dashed curves
represent the concentration dependence of (W/{J}), (see text)
for the following values of W: (a) 0.3 em™; (2) 0.4 cm™; (3)
0.5 cm™; (4) 0.6 cm™; (5) 0.7 cm™!; and (6) 0.8 cm™. The
intersection indicated by a black dot corresponds to the critical
concentration C for a given value of W.
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FIG. 9. The dependence of the critical concentration C on the
magnitude of the inhomogeneous broadening W for the OAM,
and when both diagonal and off-diagonal disorder prevail.

finite W/(J), as well as for the OAM with 0=0. These
results clearly demonstrate the reduction of € due to
off -diagonal disorder. The same qualitative feature
regarding the reduction of C relative to the OAM orig-
inates also from an analysis (see Appendix D) based on
the Antoniou-Economou CPA self-energy. 13

V. CONCLUDING REMARKS

From the foregoing results several conclusions
emerge:

(1) From the point of view of general methodology the
enhancement of delocalization due to off-diagonal disor -
der results in the lowering of the critical impurity con-
centration.

(2) From the practical point of view our model calcu-
lations indicate that the reduction of € due to the con-
tribution of 0/(J) is not drastic. For example, for
A/B=40 cm™! and for reasonable values of W=0. 2-1
em™, C is reduced by less than 50% due to the effects
of off-diagonal disorder (Fig. 8), while at higher values of
A/ B the:reduction of C is even smaller. We thus con-
clude that for sufficiently high values of the inhomoge -
neous broadening W2 0. 2 cm}, which seem to be sup¥
ported by the available recent experimental data for
isotopic impurities, 37 localization of electronic excita-
tions in mixed crystals originates essentially from the
effects of diagonal disorder. Under these circum-
stances, the OAM, Eqgs. (IL. 7) and (II. 8) provides a rea-
sonable approximation for localization and consequent
retardation of EET in impurity bands in mixed organic
solids.
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(3) 1t is unlikely that off-diagonal disorder completely
erodes the localization of an electronic excitation in an
impurity band. Our model calculations clearly demon-
strate that off-diagonal disorder can destroy the AT, as
is evident for the K =5 Bethe lattice [see Fig. 4(a)].
However, as long as W is finite @ - when C -0 and a
critical concentration for EET will always be exhibited.

Finally, it will be useful to spell out the basic as-
sumptions inherent in the present treatment of localiza-
tion in an impurity band. First, it is assumed that in-
homogeneous broadening in a dilute isotopic impurity
band can be well defined in terms of a random distribu-
tion of site-excitation energies. We have discussed the
available experimental evidence supporting this conjec -
ture. Second, it is assumed that W is concentration in-
dependent. No experimental evidence is yet available
regarding this point. For Ruby the experimental data
of Koo ef al. ¥ indicate that W increases monotonously
with increasing C (W=0.4 cm™ at C=9x10™, W=0.7
em™at C=1.4%10"% and W=1.3 cm™' at C=2.3 x107%).
When W(C) increases with increasing C the details of
the treatment should be modified but the general con-
clusions will be unmodified. As a matter of fact, under
these circumstances, one expects to encounter even
higher values of a than those obtained when W is inde-
pendent of C, whereupon the effects of off-diagonal dis-
order will be even of less importance. Third, we have
obtained an exact expression for the self-energy when
a=T/zV=1. This condition seems to describe well the
situation in an isotopic impurity band where W>o. Ob-
viously, when W becomes small <1, the exact self-
energy is unavailable, and one should utilize the CPA
result (Appendix D) which is applicable for all values
of a. Fourth, our treatment rests on localization theo-
ries for Lorentzian distributions. To make contact with
realistic distributions of the diagonal and of the off-di-
agonal terms we have introduced our rough scaling argu-
ments, which lack rigorous justification. Fifth, we have
applied the localization theory for a Bethe lattice rather
than for a real 2-D {and 3-D) system. This is not too
bad, in view of the results obtained for a Hubbard lat-
tice, which are similar to those for a K =5 Bethe lat-
tice. However, in view of assumptions four and five
our results are limited to a semiquantitative descrip-
tion of EET in an impurity band and we shall refrain,
at this stage, from detailed comparison between theory
and experiment. Sixth, the model calculations rest on
the John—Schreiber model, which involves essentially
an ordered superlattice, where both diagonal and off-
diagonal disorder prevails. This is the origin for the
appearance of the loosely defined coordination number z
in our theoretical localization conditions. This is a
somewhat oversimplified approach to handle localization
in an impurity band.

In spite of this self-criticism, which calls for further
work, we were able to elucidate the gross features of
structural diagonal disorder and of substitutional off -
diagonal disorder on EET in an impurity band in mixed
organic solids. Our main operational conclusion is that
the combination of the available spectroscopic data for
w, 3.8 together with the results of the present theoretical
analysis, strongly point towards the possibility that the

J. Klafter and J. Jortner: Electronic excitations in mixed molecular solids

enhancement of delocalization in the impurity band is
not severe and that diagonal disorder plays the crucial
role in localization of electronic excitations at termina-
tion of EET. In subsequent work, 2 we shall explore the
confrontation between theory and experiment in this in-
teresting field.

APPENDIX A: THE PROBABILITY DISTRIBUTION
FUNCTION OF THE TRANSFER INTEGRALS

Consider a two-dimensional system with an impurity
molecule on a given site taken as the origin. The prob-
ability to have one nearest neighbor at a distance 7 is
given by

P(y) = 25N7 exp(- 7N#%) (A1)

for a 2-D system. N is the impurity number density
per unit area. To provide an explicit expression for

the probability distribution function of the superexchange
interaction and its concentration dependence, we start
from the interaction between a pair of impurity mole-
cules separated by n host molecules

J=p(p/a) . (A2)
In the quasicontinuum approximation

J/B=exp(-7}, (A3)
where

n=nln(a/p) ;

n=v/d -1 (a4)

and d is the lattice constant.

The probability distribution of the transfer integral J
is given by

ad
P(J):P(r)/ 7 (A5)
According to Egs. (A3) and (A4)
J=Aexp(-ar), (A6)
where
o - n&/B) (A7)
d
and
,_n(a/d) (A8)
o
From Eqs. (A5) and (A§) we obtain
27C In(A/J) ( 1n2(A/J)>
_&ai+ — 9
PO=T" tn¥asp) P\""C Wia/p) (A9)
where C is the impurity concentration
C=nNd?. (A10)
The jth moment of P(J) is
M,szfp(J)dJ. (A11)

We now calculate the first moment M;=(J) using the
transformation (A8)
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o r/d-1
<J>:2nN;3f (%) rexp(—nNrY) dr (A12)

=27NB fo (' +dyexpl-ar —aN(' +d)|dr' , (Al13)
"

where « is defined in terms of Eq. (A7). Then integral
(A13) can be shown to be

(Jy = 21rNBexp(—nC){§;lﬁ —Z% \/gexp(yz)(l - tb(y))} )
(A14)
where

_In(A/B)+21C
2VnC

and ¢(y) is the error function with argument (A15).
numerical calculations of {J) reported in this work
are based on Eq. (A14). To obtain an approximate re-
lation for (J) we note that for low values of C(<0. 1) and
for high values of A/3=40-100, we ignore 27C in com-
parison with In(A/8) in Eq. (A15).- Using the relation?

(A15)

The

Vi z exp(z®) erfcz~ 1+ Z (-1)" 1-3- (2,71 -1) (A18)
m=1 (22 )
we obtain the useful transparent approximation
(J) = rr(z/—ﬁ' exp(~ 7C). (A1T)
For the second moment M, = (J?) we find
B 20r /d-1)
(JZ):ZnNﬁzf (Z> rexp(- TNv%) dr (A18)
d

Utilizing the same procedure adopted to derive the aﬁ—
proximate relation (Al17), we find

(g2 = TE" ( (A19
T INE) exp(-7C) )
and
1/2
~<J>[n (a/p) exp(nC) - 1] / . (A20)

APPENDIX B: THE EQUIVALENCE BETWEEN THE
"SUPERLATTICE” APPROACH AND THE UPPER
LIMIT APPROXIMATION

While in the present work we handle the localization
of an exciton in an impurity band by the L(E) method!3 !
(see Appendix C), there is a different approach to the
problem suggested by Abou—Chacra et al. ¥® This al-
ternative approach is based on a self-consistent approx-
imation and is exact for an infinite Bethe lattice. It was
demonstrated by Abou—Chacra et al. %° that the results
of the self-consistent theory for diagonal disorder are
close to those of the original Anderson work.® The
method is based on the study of the self-energy equation

S, = Z_‘iu_.

TS (B1)

where only the nearest-neighbor interaction J,, is con-
sidered. J and ¢, are characterized by the distribution
functions Py,(J) and P,(e,), respectively. The self~con-
sistency is introduced by finding the probability distri-
bution of S; which satisfies Eq. (B1). Localization is de~

Electronic excitations in mixed molecular solids
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defined by the requirement that ImS, tends to zero as the
imaginary part of E tends to zero. Within the frame-
work of the framework of the self-consistent theory,
this results in a homogeneous integral equation.

The upper limit approximation was introduced by
Anderson® by ignoring the real part of S;. Antoniou and
Economou'® worked out the upper limit in the self-con-
sistent method obtaining

K f dx f dJPd(Ec—x)POd(J)‘% -1, (B2)
where K is the connectivity, E, is the mobility edge,
i.e., E,=0at the AT, and P,(E_ —x) is the diagonal
probability distribution with the argument E_ — x. Inte-
grating (B2) over J and assuming that the integration
over x depends only on {J), one obtains

K(J)fded(Ec ~x)|x|tdx=1. (B3)

This is the self-consistent condition for the occurrence
of the AT under diagonal disorder, but with the constant
exchange integral J being replaced by the average value
{J). We argue that in impurity bands of mixed organic
crystals diagonal fluctuations overwhelm the fluctuations
of the exchange integral, thus Eq. (B2) provides a good
approximation for the localization condition. One should
notice that K in Eq. (B2) replaces z in a positionally-
ordered system. However, K itself represents some
effective connectivity of the impurity band.-

APPENDIX C

In this Appendix we review the localization theory
based on the L(E) method, *''* which considerably dif-
fers from the self-consistent method of Abou—~Charca
et al.®® and which was discussed in Appendix B. Lo-
calization of an excitation is defined, according to An-
derson, in the following way. Consider an excitation on
site 0 at time £=0; Py is the time averaged probability
of finding the excitation on the same site 0 at £ =, then
Py #0 implies the existence of a localized state. Econ-
omou and Cohen'® showed that Py, can be expressed as

Poo_hm( )j AEGy(E + in)Gy(E - in) (1)

7~ 0*
where G(E) is the diagonal Green’s function in config-
uration space. Localization is then directly related to
Gy(E). Introducing the self-energy S,(E) for site 0, one
obtains

Go(E) =

€, being the excitation energy on site 0. P, can now be
rewritten as ’

. AY N
Pyy=1lim (—)J-
00 n-0* \T /o

xdETImMGo(E + in)/{2in - (So(E+in) - So(E —im)|} .
(C3)
Equation (C3) demonstrates that the existence of local-
ized states depends on Sy(E) or, more precisely, on the
existence of the probability distribution for the self-en-
ergy. In order to study Sy(E), Anderson® and others!® 1
used the renormalized perturbation series

(E - €y =Sy (C2)
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So(E) = Z:JO"(E -6, =S\,
n#)

+ D JplE - € = SUM
n#(
n*#n,0

Jn'n(E - €, _Sg)-iJnO e, (C4)

where S! is the self-energy of site #» when site 0 has
been removed (¢, ~«=). Equation (C4) is now rewritten
as a continued fraction using (C4) to get 5%, s%" etc.,
and reinserting them in (C4).

SO(E): ZOJOVI (E - €, "VZ: Jnl

-1
X(E_el_"')-jJtn+"'> JnO' (CS)

Equation (B1) is the first step in this continued fraction
expansion. We now define

M
S§"(E) = Z g (‘J“;‘:“L) Jou

where e;=E ~ €, - S""""""-1 and the sum extends over
all possible terms of order M. Each term may be repre-
sented in a diagrammatic way by a self-energy polygon.
The contribution of term j to S{*’(E) is

M

(C6)

T4 — II (izu) (1)
=0\ &y
Defining x{*’ as
0 =1n| T | (c8)
one obtains
M
#§ =3 (ndp| - 1n]e,]) (c9)
i=
and taking the configurational average, we obtain
) J
{x} ):Mlnz , (C10)
where ( ) denotes configurational averaging
N
Nind= Z; (In]dpq ) (Clla)
i=
N
Ninz=2_ (Ine,|) . (Cl1b)
i=1

Economou and Cohen'® showed that a localization func-
tion L(E) can be defined, such that |S{*’(E)| is sharply
distributed around L¥(E)

- U 1/M4
L(E):flli_r:qo (J”"Z G, Gt~ -+ G?,;’,‘"'"”*) . (C12)
¥ indicates summation over all indices n;, n,,...,ny

with the restrictions corresponding to all self-avoiding
paths of order M starting from and ending at site 0.
Gyret'm2™m ig defined from the relation

E-¢

S |)

n _gg"'l"'"i-i N
where S?,’,‘"""‘-i is again the self-energy at site n, with
the sites Onys - - - n,_; excluded. Thus if L(E)<1 the re-

normalized perturbation series converges and the cor-
responding states are localized. The condition L(E)=1

(C13)

1n(';3';1"'"f~1=<1n
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defines the mobility edges, while the AT occurs when
L(E=0)=1. However, L(E) in Eq. (C12) is too compli-
cated for real calculations. Liciardello and Economou®
introduced an additional approximation

Onqoeen ] o~ ng.
Gante it = G- (C14)
and the expression for L(E) is
L(E):Kj|é:;-1| . (C15)

Equation (IV. 3) of the present paper, derived by Econo-
mou and Cohen'® was utilized for the calculations of
L(E).

APPENDIX D

In the present paper we adopted the approach of Lici-
ardello and Economou, % as modified by Antoniou and
Economou, ®® to the problem of exciton localization,
utilizing the exact self-energy of John and Schrieber. !°
In what follows we show that the same general qualita-
tive behavior, due to off-diagonal disorder, is obtained
utilizing CPA self-energy of Antoniou and Economou.
The Antoniou-Economou scheme is applicable both for
a neat disordered system and for an impurity band.

Within the framework of the theory of Antoniou and
Economou®® the system is characterized by the uncor -
related parameters I and V. In order to compare the
results of this Appendix with the model proposed in
Secs. III and IV, we define I in the same manner T
=azV. However, a is now not restricted by the condi-
tion a=1. Figure D1 exhibits the localization function
L ,gz(E=0) obtained from Eqs. (III. 7) and (IV.7), vs
V/{J) for several values of a in the range a<1. These
results demonstrate that for a certain range of values of
a andof V, Lag(E=0)=1, whereupon no localization oc-
curs. This complete delocalization is approached at low
values of a, i.e., a=0.5. In the case of an impurity
band the inhomogeneous width W is taken to be indepen-
dent of C, and V is identified with ¢(C). L,z(E=0) is

L{E)

i 1 1 1l !
050 | 2 3 4 5 6

FIG. D1, The localization function L 4 n(E =0) calculated for
a =1 within the framework of the CPA self-energy for a Bethe
lattice with K =3.
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FIG. D2. (a) The localization function L 4g(E =0) for W/(J) and ¢/(J), calculated using the CPA self-energy; (b) L ,g(E) =0 with
only diagonal disorder W/(J). Calculations were performed using the Liciardello—Economou localization criterion. A/B =40,

then a function of the impurity concentration, the criti-
cal concentration C being defined by the equation

L,g(E=0, C)=1. (D1)

Figure D2 shows L,z{(E=0) as a function of concentra-
tion for various values of W, both for OAM with ¢=0
and for the simultaneous effect of W on o(C). Here
again, C is reduced under the effect of the off-diagonal
disorder. C is found to be in the range C$0. 1 for val-
ues of W which are smaller than in the model discussed
in Sec. IV as no scaling procedure was adopted herein.
It should be noted that even when a<1 an AT will always
occur in the impurity band, although it may be exhibited
at very low concentrations. This central feature orig-
inates from the fact that @ —~ as C approaches zero.

Finally, we would like to point out that unlike our
model, which essentially considers the impurity band in
terms of a superlattice with an effective concentration
independent coordination number, the Antoniou-Econo-
mou model®® is independent of z.
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