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In this paper we advance a quantum mechanical colinear model for vibrational predissociation on a single
electronic potential surface of a linear triatomic van der Waals molecule X---BC, where BC is a
conventional diatomic, while X represents a rare-gas atom. The zero-order states of the system are
represented as products of an eigenfunction of the vibrating BC bond and a function describing the (bound
or unbound) motion of X relative to the center of mass of BC bond which is frozen at its equilibrium
configuration. The residual interaction representing the deviation between the interaction potential of X
with the vibrating BC molecule, and the interaction of X with the frozen diatomic, induces
discrete—continuum and continuum—continuum -coupling. On the basis of the analysis of these coupling
terms we assert that the zero-order basis provides a reasonable description of the initial and final states.
We have also demonstrated that the zero-order resonance widths are small relative to their spacings and,
furthermore, we have shown that continuum—continuum couplings prevail essentially only between
adjacent continua. The dynamics of vibrational predissociation were reduced to the problem of the decay
of a single resonance into a manifold of adjacently coupled continua. Closed analytical expressions for the
rate of vibrational predissociation and for the vibrational distribution of the products were derived
incorporating the effects of discrete—continuum and continuum—continuum coupling. We have explored
the dependence of the rate of vibrational predissociation on the frequency of the BC molecule establishing
a new energy gap law for this process. We have also investigated the dependence of the rate on the
potential parameter of van der Waals bond and on the mass of the rare-gas atom. Finally, a study of the

nature of the final vibrational distribution of the diatomic fragment resulting from the vibrational

predissociation process was provided.

. INTRODUCTION

Recently, supersonic free expansion has been utilized
to prepare a wide variety of weakly bound molecular
complexes which involve a rare-gas atom bound to a
diatomic or a polyatomic molecule, The recent experi-
mental studieg of Klemperer and his colleagues! have
probed the structural features and the dynamics of nu-
clear motion of a variety of such van der Waals mole-
cules, Of considerable interest is the nature of intra-
molecular dynamics of van der Waals molecules in vi-
brationally excited levels of the ground electronic state
and in the electronically excited configurations, An
interesting features of excited-state intramolecular re-
laxation processes in such systems will involve the
breaking of weak chemical bonds, which are charac-
terized by bond dissociation energies of the order of
10-200 cm™, This new class of photofragmentation via
vibrational or electronic-vibrational excitation of van
der Waals molecules is of considerable experimental
and theoretical interest as the (vibrational) excitation
energy is relatively low, and optical selection studies
of the decay of preselected, individual, vibrational-
rotational levels can be conducted. Furthermore, the
relevant part of the potential energy surface is relative-
ly simple so that such photofragmentation processes may
be amenable to theoretical studies. The photochemical
decomposition of vibrationally excited van der Waals
molecules on the ground electronic potential surface
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provides a unique example for vibrational predissocia-
tion (VP) of a polyatomic molecule and this nonradiative
decay mechanism can also prevail in an electronically
excited state of such weakly bound molecular complexes.>

Recently, Kim, Smalley, Wharton, and Levy* have
provided a pioneering study of the photodissociation dy-
namics of Hel,, Nel,, and Arl,, demonstrating the fol-
lowing:

(a) Photodissociation in the electronically excited
B state of Hel, occurs via vibrational predissocia-
tion, #®

(b) The VP rate of Hel, in the electronically excited
state B®Il is <5x10° sec™! for n="1T increasing to ~ 5
x10' sec™ for n=27, where # is the vibrational quan-
tum number for the I-I stretch, 4®

(c) The VP rate in the n=1 level of the ground X!z
electronic state of Hel, is >5x10 sec™!, 4@

(d) The propensity rule An=—1 for VP of Hel, in the
B*M state was established. 4®

(e) The occurrence of VP in Nel, (B°T) and in high
n>11 states of Arl,(B3M) has been demonstrated, 4

These results are of great importance as they provide
a unique example for VP which is of considerable in-
terest in the elucidation of intramolecular dynamics
and unimolecular kinetic processes. In general, the
distinction between vibrational predissociation result-
ing from nuclear motion on a single multidimensional
potential surface and electronic predissociation involv-
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ing two electronic configurations is not well defined,

and experimental evidence for the former process is
sparse. It is therefore not surprising that the interest-
ing area of VP processes was not explored theoretically
from the microscopic point of view, The remarkable
1933 paper of Rosen® on the mechanism of decomposition
of metastable molecules produced by collisions provides
a pioneering contribution to this field.

In this paper we present a theoretical study of VP
processes in a simple model which involves a linear
triatomic van der Waals molecule (VDWM) X - - - BC,
where BC is a normal molecule and X represents a
rare-gas atom. Although this model is not directly
applicable to the Hel, complex, which is characterized
by a nonlinear, T-shaped configuration, our theoretical
results will be useful in the elucidation of the gross
features of the VP processes in some linear van der
Waals molecules, such as ArHCl, ArFCl, and also
possibly Arl,, where charge-transfer interaction pro-
vides a dominant contribution to the weak bonding. A
preliminary report of this work was recently presented.6
In the present work we provide a detailed account of our
model calculations of VP rates for linear triatomic van
der Waals molecules. We have explored the dependence
of the VP rate on the (high) molecular frequency of B-~-C,
on the binding energy and the mass of the rare-gas atom,
and on the (low) B-X vibrational frequency, as well as
the nature of the final vibrational distribution of the
product BC resulting from the VP process.

Il. POTENTIAL SURFACES AND ZERO-ORDER
STATES

We consider a triatomic VDWM X - . - BC restricted
to one-dimensional motion on a simple adiabatic poten-
tial energy surface which is approximated by the super-
position of the B-C intermolecular potential and the
X ...B van der Waals interaction

V(RXBs RBC) = VXB(RXB) + VBC(RBC) . (1)

The two terms in Eq. (1) depend on the interatomic
distances between adjacent atoms Ry, and Ry, re-
spectively., The intramolecular potential for the normal
BC bond will be characterized either in terms of a har-
monic potential

Vac(Rpc)=(1/2)kg o(Rgc = Ryc)’ (22)
or by a Morse potential
Vac(Rpc) = Dyc{exp| - 205c(Rgc - Ry ol
-2exp[- apc(Ryc ~ Ry}, (2b)

where Ry is the bond equilibrium distance, Dy is the
bond dissociation energy, k;. is the force constant for
the harmonic oscillator, while ag. is the characteristic
inverse length for the Morse oscillator. The latter two
quantities are related to the frequency wgc= [(s? Vao/
8R%L.)/ uﬂc]}{; , where pge=mgme/(mg+me) is the re-
duced mass, Via kpc= Lpcwic for the harmonic case
and age=wyoliipe/2Dg0)!/? for the Morse potential. The
theory of VP will be applied for both forms of the B-C
potential to assess the effects of intramolecular an-
harmonicity on this process. The van der Waals inter-

J. A, Beswick and J. Jortner: Vibrational predissociation of triatomic molecules

action Vg, was specified in terms of a Morse potential

VXB(RXB) = st{eXP [" zaXB(RxB - RXB)
—ZGXp[—aXB(RXB_RXB)]} , (3)

where Dyp and Ryp are the minimum energy and the
equilibrium distance, respectively. We can define an ef -
fective frequency wyy for the van der Waals bond wyp
=[(8*Vyg/8R%p)/ Ux,ac]}gga: where uy pc=mylmg +me)/
(my +my +m¢) is the reduced mass for the X - -.BC mo-
tion. The characteristic inverse length for the van der
Waals bond can be expressed as ayg = wyg Ly, 5o/
2Dy5)!/%. The currently available data concerning the
potential parameters characterizing the van der Waals
bond are sparse. The following information was
utilized:

(1) Secrestand Eastes”have compiled some semi-~
empirical Lennard-Jones (LJ) potential parameters for
the interaction of rare-gas atoms with a variety of di-
atomics, their potential being represented in the famil-
ar form

VXB(RXB) =dyp [(’Vo/Rxg)lz - Z(VO/RXB)G] . (4)

To extract the Morse potential parameters [Eq. (3)]
from the LJ potential parameters [Eq. (4)] we use the
following relations: Dyg=dyp, Ryp=17;, and ayp=6/7,.
The last relation originates from taking the values of

(82 Vyn/ 8R}p)%,, obtained for both potentials (3) and (4)
to be equal. The resulting Morse potential parameters
thus obtained from the data presented by Secrest and
Eastes’ are summarized in Table I,

(2) Novick et al. '*® have derived a nonharmonic trial
potential for linear ArHCI and ArDCl. The angularly
averaged potential for these systems is characterized
by Ryxp ~3.9 A and Dy ~160 cm™, in reasonable agree-
ment with the semiempirical Morse potential parame-
ters derived from the data of Secrest and Eastes. "’

(3) Smalley and colleagues*® have observed a vibra-
tional structure in the electronic absorption spectrum
transitions to the =0 and /=1 vibrational states of the
He---I, mode. The Hel, molecule is not linear but
rather T-shaped with a distance of ~4 A from the He to
the center of the I, bond. *® Levy et al.%® have con-
ducted a rough estimate of the He - - . I, binding energy,
Assuming a perpendicular motion of the rare-gas atom
with respect to the I-I bond the energy separation AE,,
between the /=1 and /=0 vibrational states can be ex-
pressed as AE = FHwyy(l — Ky}), where Kyp=2Dyg/
Hwyp determines the number of bound levels [actually
the number of bound levels supported by a Morse po-
tential is given by N=integer (sz +§)]. Kim, Smalley,
Wharton, and Levy have reported the value of AE,,
=6 cm™ for the B configuration of Hel,. Taking the
parameter Ky, to be Kyz =1.5 corresponding to two
bound vibrational states of the VDWM the relations
above yields wyy =18 cm™, Dy, =13.5 cm™, which re-
sults in the reasonable value @y, =1.18 A1,

We now proceed to describe the nuclear dynamics on
a single potential surface. One possible set of co-
ordinates (see however Ref. 5 and Appendix B) ap-
propriate for this linear VP problem of a triatomic
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TABLE I, Compilation of Morse potential parameters for some van der Waals bonds between

rare-gas atoms and diatomic molecules.

Number of
Dyy Ryy « wxp bound AEy Molecular
Molecule (cm™) (A) (1{‘3) {cm™) states (cm™) Reference configuration
52 4.24 1,42 42.4 2 25,1 7
. . . h
Hel, 13.5 ~4. 1,18 18. 2 6.  3(b) T shaped
Nel, 97.4 4,36 1,38 26, 7 22,5 7
Arl, 181.5 4.71 1,27 24, 15 22,4 7
ArHC1 130. 4.4 1.36 30. 9 26.5 7
160, 3.9 1.54 36.7 9 32.5 1(a) Linear
Useful formulas for Morse potentials:
V(R) =D{expl-2¢:(R —-R)] — 2 expl-a (R -R)]}, H=- (©/2d’/8R*+V(R),
w= @V /dRYz=a(2D /W2,
Number of bound states = integer (k+%) with x=2D /hw
Energy of bound states:
Wy=—(Fw/2k)k -1 -4?,1=0,1,..., integer (x—3),
=-D+iw(+3) —xU+3)%; x=1/2«,
Am =.E1 —Eo=ﬁw(1 - l/K).
VDWM involves the center of mass coordinate of the lnl)—_: X Rnc)¢z(Rx.sc) , (8)

entire system, the interatomic distance Ry, of the con-
ventional molecule BC, and the distance Ry, 5. between
the atom X and the center of mass of the molecular frag-
ment BC:

Ry,sc=Ryp +¥Rgc, y=mc/(mg+mg) . (5)

The Hamiltonian for the internal motion, obtained after
the separation of the center of mass motion of the whole
system, assumes the form

H=-~ (ﬁz/zﬂx,nc)az/aRg(,BC
- (B%/2upc)8%/8R%c + Vi c(Ryc) + Vi (Ry, pc — YRyc) .
(6)

The Hamiltonian (6) will now be segregated in the fol-
lowing manner:

H=H,+v , (M
the zero-order Hamiltonian H, being
Hy=Hpc +Hx,pc , (7a)
Hyo=—(7?/21pc)8% /8RS + Vi c(Ryc)
Hy po=- (ﬁZ/ZMX'Bc)BZ/BRf{,BC + VXB(RX.BC - ‘)’Rac) ’
while the residual perturbation term is
(Tb)

The zero-order Hamiltonian (7a) corresponds to sep-
arable contributions from a vibrating BC bond and from
the motion of X relative to the center of mass of the BC
bond which is now frozen at its equilibrium distance
Ry,

U= VXB(RX.BC - YRyc) - VXB(RX.BC ~¥Rgc) .

We shall now construct the zero-order “nuclear dia-
batic” solutions for the zero-order Hamiltonian (7a).
These consist of (a) discrete, bound, vibrational states
of the VDWM

where 7 denotes the discrete vibrational number of the
BC molecular bond, while ! corresponds to the discrete
vibrational quantum number of the van der Waals bond;
these bound states are characterized by the energies
E,=W,+ W,, where W, and W, correspond to the en-
ergies of the discrete levels x, and ¢;, respectively;
(b) continuum states of the fragments X + BC

lns} = Xn(Rpc)9e(Ry,5c) , (9)

where »n denotes again the vibrational quantum number
for the BC molecular bond and € designates the relative
kinetic energy between X and BC. The continuum states
are energy normalized, being characterized by the en-
ergies E,,=W, + €,

The zero-order nuclear diabatic states are coupled by
v [Eq. (7b)]; the relevant discrete—discrete (d-d), dis-
crete—continuum (d—¢), and continuum-—continuum (c-c¢)
coupling terms are, respectively,

Ve pup, vi=e=pud, vee=0vd, (10a)

13:2 Zl: |"l><"l‘ ) @=Z jde!ne)(ne{. (10b)

n

These coupling matrix elements V337, ,=(na | V*=?|#'8)
(where a, b=d, c; a, =1, €) were evaluated in an ana-
lytic form for the potentials (1), (2a), and (3) and for the
potentials (1), (2b), and (3). Details of the calculation
are presented in Appendix A, The discrete-discrete
coupling terms will turn out to be of minor interest.

The discrete—continuum coupling terms (10a) take the

form
Vittee= (4B -2400 BiD) | (11)

where
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= J‘:e Xn(Rsc){eXp[jQXBY(RBc - ﬁn c)] - 1}

Xxne(Rgc)dRpc (=1, 2), (12)
—o_ 1/2
(1) =(1/2) [(DXB/Z) sinh(270,) (Ii§(2K2l _ ;))]
X8
IT(1/2 + Kyp — £6,)! (13a)

[cos’(1Kyp) + sinh’(ng,))T 7% °
B{Y = (B{/2Kyp)[(Kygp =1 —1/2)% + 02+ 2Kys] , (13b)

with the definitions
1

Uy _ (') 2Ky =20 = 1)(2Kpo —2n~1)
A-nn'—- 5rm +[ - I"(ZKBC_n)

><(2KBC)U°‘XB”/°‘BC> E (=1)m

T(n—jogpy/apc —m)T(-n—jayxpy/agc —m+2Kpc = 1)

J. A. Beswick and J. Jortner: Vibrational predissociation of triatomic molecules

Kyp= O""—“xa)-l(2 ,“LX,BCDXB)l 2= 2Dxa/ﬁwxa ’ (13¢)
0= ays) (2 hiy, 5c€) 2= 2(Dyp )V Vi, ,  (13d)

and where I'(Z) stands for the gamma function of a com-
plex argument. The integrals A%} and 4!} for the har-
monic bond [Eq. (2a)] were given by Rapp and Sharp® as

AP =l /n 1) g1 mexp(B/2)LE (- BY) (j=1, 2),

(14a)
where f;=jliagy/(21gchiwpc)!/? and LE'™ is the gen-
eralized Laguerre polynomial, while for the Morse po-
tential |[Eq. (2b)] these are given by®

172
T(2Kp —n’)J

m=0

for j=1, 2 and n > n’, with the definition K¢ =Tapc) (2pscDso)!/.

(10a)] take the final form

V:—g' e = (A,(,Z),,B(Z) A(I) B(l))
with
B = (Byp/2) | T(1/2 = Kyp ~$6,)T(1/2 ~ Kyg — i6) ]

[sinh(276,) sinh(276,,)]!/?
cosh(276,) — cosh(276,,

BR=(1/4)|T(1/2 ~ Ky —i6.)T(1/2 = Kyp —i6,) |

ml( =m)IP2Kge —n' ~m)T{(~jagpy/dge ~m)

5 [1T(/2 - Ky — 6|2 = | T(1/2 = Kyp ~i6)|7Y]

(14b)

The continuum —~continuum couplings [Eq.

 [sinh@76,) sinh(276,,)]!/? 62 — 6% + 2Ky p
cosh(276,) — cosh(276,,) | IT(1/2 —Kyp —i6,)1°

where Kyp and 6, are defined in terms of Egs. (13c¢)
and (13d), respectively. Equation (15) is closely re-
lated to Devonshire’s results, '

In Fig. 1 we portray the spectrum of the zero-order
Hamiltonian [Eq. (7a)] together with the relevant cou-

%
o

c
(n-3)e"

1
3—

/ AT

_.___,_%"é_cu_a/_ )

d_
% Vol jn-z)e'

+

(n-3)

— (i+1)

(15)
(16a)

62— 6% ~2K;p ]
IT(1/2 = Kyp —i6)1%] ° (16b)

i)ling terms. Extensive numerical studies of the d~d
coupling [Eqs. (A8a) and (A8b)], of the d—c coupling
[Egs. (11)~(14)], and of the c—c coupling [Egs. (14)-
(16)] were conducted by us. From these numerical
calculations some general characteristics emerge which
will considerably simplify the treatment of the VP prob-

FIG. 1. Spectrum of the zero-
order Hamiltonian and rele-
vant coupling terms appropriate
for the description of vibra-
tional predissociation of a

van der Waals molecule

= Xe+++*BC, where X is a rare-
gas atom and BC a conventional
diatomic molecule, The sys-
tem is initially in the discrete
level |n,l) with zero-order
energy W+ W,;, where n is the
quantum number associated
with the vibration of the BC
molecule and ! is the quantum
number associated with the
bound motion of X with respect
to BC.

W(n-2)
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TABLE II. Discrete—discrete coupling terms between neigh-
boring levels calculated for model linear VDWM. The molecu-
lar bond BC is characterized by the following parameter:
Dpc=4911 em™, wpo=128 em™ for L(B*m),

Molecular Epp—En Vi
Molecule parameters ,)—~@'1") (cm™) (cm™)
Due = 14 ot (0,0)—~(0,1) 6.4 0.53x 107
xB 5,0~ (5,1) 6.4 0.66x107!
v =18 omet (10,0) —~(10,1) 6.4 0.14
XB (20,0)—~(20,1) 6.4 0.37
Hely ,
_ 4 (0,00 —~(0,1) 24.4 0.98x 10"
Dxp=50 cm (5,0)~(5,1)  24.4 1.21
o (10,0) —(10,1)  24.4 2,63
wxp =42 cm (20,0)—~(20,1)  24.4 6.88
(0,0)-+(0,1) 22.6 0.21
Dyp=100 cm™ (0,2) —=(0,3) 15.9 0.20
Nel (0,4) —(0,5) 9.1 0.1
2 0,6) —~(0,7) 2.3 0.11x 10!
wxp =26 cm™ (10,0)—~(10,1) 22,62 5,58
(10,2)—(10,3) 15.9 5,42
(10,4)— (10, 5) 9.1 2,85
(10,6) —(10,7) 2.34 0.33
(20,0) —~(20,1) 22,6 14,16
Nel, (20,2)—(20,3)  15.9 14,
(20, 4) (20, 5) 9.1 7.6
(20, 6) —~(20,7) 2.3 0.96
(0,0)—~(0,1) 22.4 0.28
(0,4)—~(0,5) 16. 0.36
Dxp =180 cm™ (0.8)~=(0,9) 9.6 0.21
(0,12) —~(0.13) 3.2 0,42x 10"
Arl, (10,0) =~ (10,1) 22,4 7.38
Py— (10,4)—~(10,5) 16, 9,54
*B (10,8) —~ (10, 9) 9.6 5.6
(10,12) —(10,13) 3,2 1,23
(20,0) = (20,1)  22.4 18.4
(20,4) —(20,5) 16, 24,2
(20.8) ~(20,9) 9.6 14.6
(20,12) —(20,13) 3.2 3.5

%Obtained from the values of w, and w;X,; given in Ref, 17, by
using the formulas of Table I,

lem. The main features of the coupling terms are the
following:

{a) The discrete—discrete coupling terms [Eqs. (A8a)
and (A8b)] are usually small relative to the energy spac-
ing between the discrete levels. In Table II we present
some numerical results which demonstrate this point,
From these numerical data it is apparent that

lEnl = Lt I > IV:T,dn'l' , (17)

for most of the cases. This result clearly demonstrates
that at least for low n the shifts of .the discrete levels
due to the d-d coupling are small.

(b) The dominant contributions to the continuum~con-
tinuum coupling originate from those terms where An
=#1, For the harmonic potential description of the BC
bond [Eq. (2a)] the V55, .. terms identically vanish for
An#*+1 if the exponential in Eq. (12) is expanded in
axp and only the linear term is retained. For the case
of a Morse type BC potential we have conducted nu-
merical studies of the c~c coupling, a sample of our re-
sults is portrayed in Fig. 2 for on-the-energy-shell
c-c coupling terms, at the energy of a discrete level

(n, I). We denote by V.°,., the matrix element
V7%, nee e with the condition that W,. + ¢ = W,.. + ¢’
=W,+ W;. From this figure it is apparent that V7¢,.,
decreases very fast with decreasing »'’ and that V¢7¢

ntynt-1
is the dominating ¢—c coupling term. We shall accord-
ingly set

V:Tf"n = VﬁT,cn'-l 5',:’"”,.1 s n >7l” s (18)
disregarding c-c coupling for an# 1,

(c) The discrete—continuum coupling terms V375,
X (n' <n) evaluated on the energy shell (i.e., W,+ W,
=W,. + €) are dominated by the term »—n’'=1. Again,
as for the case of c—c coupling, Fig. 2 shows that the
d~-c coupling Vﬁ,'.";,.e decreases very fast with decreasing
.

(d) In many cases of interest for physically acceptable
energetic parameters of the VDWM we found that the
square of the modulus of the discrete—continuum cou-
pling terms | V%75, .1? (which are given in units of ener-
gy are appreciably smaller than the energy spacing be-

.tween the discrete levels, i.e.,

(19)

’V:I—.cn’6|2<< IEﬂ"l" —Eqiqe
for all 1#'l'y and |#''I'"),

(e) To assess the effects of the anharmonicity of the
BC bond on the various coupling terms several observa-
tions are in order. First, concerning the d-c cou-
pling terms V3;%,-1) we note (see Fig. 3) that for mod-
erately low values of n(<5) the effect of the anhar-
monicity of the BC bond is small. However, at higher
values of » the anharmonicity of the molecular bond
considerably enhances the d—c coupling relative to the
harmonic case. Thus, as we shall see in Sec. IV, the
anharmonicity of the BC molecule results in a quanti-
tative modification of the dynamics of VP, Second, the
c-c coupling V{3¢,.,.; terms are also modified by an-
harmonicity effects, in particular for large values of n
[see Figs. 4(a) and 4(b)]. It is instructive to note that
the harmonic potential overestimates in many cases the
c¢—c coupling between adjacent continua and the effects
of anharmonicity of the molecular bond tend to reduce
the relevant intercontinuum coupling terms,

I1l. MODEL FOR VIBRATIONAL PREDISSOCIATION
On the basis of the foregoing discussion of the gen-
eral characteristics of the coupling terms we shall now
invoke the following simplifying assumptions which will

underline our treatment of the VP problem:

(1) Discrete—discrete interactions will be neglected
according to Eq. (17).

(2) Continuum —continuum coupling interactions for An
#zx1 will be neglected according/to Eq. (18).

(3) The zero-order widths of the resonances
7 V%, 1% originating from discrete—continuum cou-
pling, are assumed to be small relative to the energy
spacing between the discrete levels, as asserted by Eq.
(18). Thus, in the treatment of the decay problem in-
terference effects between resonances can be disre-
garded.
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VC-C VC-C
l L A . ) - (4 A .
4 5 6 7 B n=9 4
e & o [ ] . .

77777\ 1)) /
/S0 Sk // /

/ ® /
¢ 4 /—z.vd-c 0/
/ / -vd ¢ . !
/ / / J hd ® Il Zvd'c
[ ]
-10 S * / .
10 / - / / — /
] [ ] ° /
/ . / /
/
[ ) ‘/ / ,.
Hel, (B) / Nel, (B} o / Arl,(B)
- -1 / - - / - -
Dyp =l4cm d Dyg =100cm™! /O Dyp ='80cm™
10715 wxg=18em™ B wyg =25cm™ | ‘/ Wyg =23cm™
| L I ] ] | | ] i 1 | ]
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FIG. 2. On-the-energy-shell continuum-continuum V¢~ and discrete—continuum V4 couplings involved in the predissociation of

some model XI;(B), X=He, Ne, Ar, from level n=10 [z being the quantum number of the L,(B) molecule].
by solid lines correspond to the continuum—continuum couplings Vi e where n'
on the abscissa. The points connected by dashed lines correspond to the discrete—continuum coupling | V‘fo 00 |/ (h’w; )2,
The I-I bond in the B °II state was specified in terms of an anhar-
The parameters for the van der Waals interaction between X and the L,(B)

that with these definitions all the couplings are adimensional.
monic potential with paramteres taken from Ref, 17,
molecule are marked on the figure (see also Table I).

These points pertain to the description of the energy
levels. An additional assumption has to be invoked to
specify the “preparation” of the vibrationally excited
state or the electronically~-vibrationally excited state
of the VDWM which undergoes VP,

(4) Only the discrete zero-order excited states carry
oscillator strength from the ground state!! lg; n=0,
1=0), where g refers here to the ground state electronic
wavefunction. The optical excitation of the VDWM can
be adequately described in terms of the radiative cou-
pling |g; n=0, I=0)— 1g; n'l') (v’ #n) between zero-
order discrete levels for infrared excitation or by
lg; n=0, I=0)~1|s; n'l') for electronic-vibrational
excitation, where |s) represents a higher electronic
configuration, The transition moments to the contin-
uum states which correspond to the radiative couplings
lg; n=0, I=0)=~g; n'e) or Ig; n=0, I=0)—|s; n'€
are assumed to be negligibly small. For example, in
the case of electronic—vibrational excitation we expect
that the transition moment in the Condon approximation
| s 21n =012 121{I=011)1?, where ={s|klg) cor-
responds to the electrogic matrix element of the di-
pole moment operator, will be largest for I’ =1 and that
the nuclear vibrational overlap |{I=01¢}|? will be very
small, This expectation is borne out by the spectro-
scopic data of Smalley et al. **» 4 on Hel, which indi-
cate that the electronic-vibrational transition moment
from | X' Z; n=0, [=0) to the | B%; #'I=0) state is by
1-2 orders of magnitude larger than the transition mo-
ment to the |B3H; n'l=1) state and no evidence for Fano

The points connected
is specified on top of each line and #»’’ is marked
Note

type resonances, '2 which will indicate that the (zero-
order) continuum states carry appreciable oscillator
strength, is exhibited.

On the basis of assumptions (1) and (3) we can assert
that the nuclear diabatic zero-order basis set provides
a reasonable description of the energy levels of the real
system as level shifts due to discrete—discrete and
discrete—continuum off-resonance interactions are ex~
pected to be small. On the basis of assumption (4) we
can subsequently consider the decay of “initially pre-
pared” discrete states for a proper description of the
VP dynamics, as is common in the treatment of elec-
tronic relaxation and predissociation processes.!® A
more elaborate formal treatment of the “preparation”
problem can be provided following the technique in-
troduced by Mukamel for the study of electronic pre-
dissociation.!® Focusing attention again on assumption
(3) we can limit ourselves to the treatment of the decay
of a single discrete zero-order state into a manifold of
dissociative zero-order continua which are coupled
among themselves. Finally, assumption (2) results in
a considerable technical simplification of the continuum -
continuum coupling problem as we can consider only the
coupling between adjacent continua.

The physical picture of VP rests on a definition of a
physically reasonable zero-order nuclear diabatic basis
and the residual interaction [Eq. (7b)] representing the
deviation between the interaction potential of the rare-
gas atom interacting with the vibrating diatomic, and the
interaction potential between X and BC, which is frozen
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1073 -
a. Hel,(B);Dyp=50cm™!, wyg=40cm-!
b. ArI,(B); Dxg=200cm ' w,g=20cm™!
c. Arl,{X),Dxg =200cm™ yyg=20cm™!

10-4 1 | L

% 5 10 15

n

FIG. 3. Effect of the anharmonicity on the discrete—continuum
couplings for the VP of some model linear van der Waals
molecules. The initial discrete state is specified by the
quantum numbers {n,l), where n is marked on the abscissa,
while I =0 for curve (a), I =9 for curve (b}, and I=13 for curve
(c). The figure portrays on-the-energy-shell discrete—con-
tinuum coupling !V',f",f_i | for an I-I bond represented by a har-
monic potential (dashed curve), or an anharmonic potential
(solid curve) with parameters taken from Ref, 17, The param-
eters for the van der Waals interaction between X and I, mole-
cule are marked on the figure (see also Table I).

at its equilibrium nuclear separation, induces discrete—-
continuum and continuum-continuum resonance cou-
plings, These coupling terms will determine the dy-
namics of the (physically acceptable) initially prepared
discrete state |#nl) which undergoes VP. We note in
passing that the representation of the zero-order states
and the residual coupling in terms of a picture, which
bears a close analogy to the distorted wave description
in molecular scattering, ' is not unique. An alternative
description can be obtained for the linear VDWM in
terms of Rosen’s relative coordinate treatment® where a
kinetic energy term provides the residual coupling (see
Appendix B).

Figure 5 presents the simplified level scheme ap-
propriate for the treatment of VP of a VDWM. The VP
problem now reduces to the decay of a single discrete
zero-order state |nl) into a manifold of adjacently cou-
pled continua.!® Invoking the initial condition ¥(¢=0)
= |nl) the probability P,.(t) to be in the #’ continuum is
given by

P,.(0)= jd<|<n'<lr}(t, 0) | n2) |2 (20)

where U(t)= exp(- iHt/%) is the time evolution operator.

2283

The final probability distribution of the fragments among
the various vibrational channels is

P,,= P, (), (21)
while the decay probability of the initial state is
PO = [(nl | U2, 0)|nl)]? . (22)

Utilization of resolvent operator methods, together with
the first-order K matrix approximation which neglects
level shift contributions to the transition operator on the
dissociative potential surface, results in explicit ex-
pressions for the decay and population probabilities. 15
This approach amounts essentially to neglecting the
weak energy dependence of the d—c and ¢—c coupling as
well as the effect of thresholds of the dissociative con-
tinua. Following our previous work!S (see Appendix C)
the probability for VP [Eq. (22)] assumes the exponen-
tial decay law

) =exp(-2T,, t/7), (23)

where the total decay rate w,, =(2T,,/7), the decay half-
width being

Tu=7Re [}: Z Ve, Fn', n'") ‘:75,,,,], (29)

nt n?
where Vﬁ?f,,,. denotes the coupling between |#nl) and the
continuum states |#n''¢’’) on the energy shell, i.e., w,
twy=wye+€'. F', n")={n'e | Fin''€'") are the
matrix elements of the wave operator

F=(1+inveo)t (25)

evaluated on the energy shell, i.e., w,+w;+w,, +€
=wp. + €. The time dependence of a population of a
given dissociative channel [Eq. (20)] is

2
[1 - exp(_ zrnl t/ﬁ)] ’

(26)
while the final branching ratio among vibrational channels
is

P,, : (t) = (77/ rnl)

S R "WV
"ll

2
> F', n")\VEE L, @7
n"

Pn’ = (”/rnl)

Thus, the dynamics of VP is now determined by the d—c
coupling terms and the wave operator, which is deter-
mined by the c¢—c coupling, In the case of couplings
only between adjacent continua the F matrix can be
expressed in the form'

Q.9 T
Fl', n) = 2228 T (~invesy (28)
n j=a

where, as before, V5, denotes the coupling between
two adjacent continua on the energy shell of the initial
discrete state |7l), a=min(#’, #'*), 8=max(n’, n'’) and
Q. and @, are polynomials determined by the recur-
rence relations

QO = Ql =1 s
Q= @;+ | Vit | 2Qj-1 (29a)
and

Qn-l = @n-Z =1 )
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FIG. 4. (a) Effect on the anharmonicity on the continuum-continuum couplings for the VP of HeL(B). Solid lines represents on-
the-energy-shell continuum—continuum couplings between adjacent continua | VarGe-1| for an I-I bond represented by an anhar-
monic potential, while dashed lines correspond to the harmonic approximation. The energy shell is specified by a discrete level
{n,2) with n given on the figure and I=0. The parameters for the van der Waals interaction are marked on the figure, while the
I-T bond parameters were taken from Ref. 17. (b) Same as Fig. 4(a) for VP of Arl lingar van der Waals molecule u; electronic

states B°I and X !z,

6;-1 = éj +7 Vj,jﬂzajﬂ s (29b)

where % is the vibrational quantum number of the BC
bond in the initial discrete state |nl). Equations (23)-
(29), together with the explicit expressions for the cou-
pling matrix elements presented in Sec. II, provide a
theory of VP on a single electronic potential surface.

It is gratifying that for a simple case of a linear VDWM
we were able to present the theory of VP in terms of
closed analytical expressions. Our treatment incor-
porates both the effects of discrete—continuum coupling
as well as the effects of continuum—continuum coupling.
The present description of the VP process involves
basically feeding of the continuum states, induced by
d-c coupling and a “half -collision” process within the
dissociative states on the single potential surface which
originates from c-c coupling. A simple-minded ap-
proach which disregards the effects of intercontinuum
coupling will result in a conventional description of a
metastable resonance |nl) decaying into a manifold of
uncoupled continua, Under these circumstances F(n',
n'') = 8y0,. and the resonance half-width [Eq. (24)] re-
duces to the familiar Golden rule result

=1y, |vie,|?, (30)
"l

while the vibrational distribution assumes the simple
form appropriate for the branching ratio for the decay
of a discrete state into a manifold of uncoupled con-
tinua!?

P, = |vg7g,|2/ 3 |vese .7 (31)
nl'
The approximate relations (30) and (31) provide a zero-

order description of the VP process and will be useful
to explore some of the gross features of this problem.

]
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FIG. 5. Simplified level scheme used for the description of
vibrational predissociation of a van der Waals molecule
X++*BC, where X is a rare-gas atom and BC a conventional
diatomic molecule. The initially prepared discrete level is
denoted by 1#,l), where » is the quantum number describing
the vibration of BC and [ is the quantum number associated
with the bound motion of X with respect to BC. This level de-
cays into continuum states |n’,€), where € ig the relative
kinetic energy for the unbound motion of X with respect to BC
andn’ <n.
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It should be mentioned that Rosen’s pioneering study®
of the VP problem just considered this zero-order de-
scription. In Sec. IV we shall refrain from numerical
calculations and utilize the simple zero-order descrip-
tion to derive some heuristic approximate relations
which will be useful for the elucidation of the nature of
such processes. As we shall demonstrate in Sec. V the
intercontinuum coupling effects will modify both the
magnitude of the resonances widths as well as the final
vibrational distribution. Thus, any quantitative treat-
ment of the VP problem has to incorporate these con-
tributions.

1V. SOME APPROXIMATE RELATIONS AND
CORRELATIONS

In order to explore the gross features of the VP pro-
cess we shall handle first a grossly oversimplified mod-
el when the intermolecular BC bond potential was taken
to the harmonic and continuum—continuum coupling ef -
fects were neglected. We shall thus consider for the
moment the decay width T';, given by Eq. (30), which

(see Appendix A) can be recast in the form
T, = (n/8iwgon[(2Kyg - 21 = 1)/1! T(2Kyy - 1) m
x{sinh(2my)/[cos’TKyy

+sinh®(my) ]} (K +1/2 - iy) |2, (32)
where
_ mx Me
T mp(mg+me +mg) (33a)
y=[B-(Kygs -1-1/2)"]"/?, (33b)
B=4Dypwpc/Hwkp = 2“’Bc“x,ac/ﬁ°‘)2m . (33¢)

The total number of levels of the anharmonic oscillator
which corresponds to the van der Waals bond is (see
Table 1)

N~Kyp+1/2 . (34)

We shall be interested in the situation y> 1, and as for
VDWM we expect that 8>> 1 [as is evident from the con-
dition wyc/wxg > 1 in Eq. (33c)]; this state of affairs will
prevail for values of  such that 1> 81/2, Equation (32)
now simplifies to

o~ (n/20hwpen[(N-1-1)/U@QN=1-1)1]m|T(N-4y)|? .

(35)
Utilizing the expansion of the Gamma function'®

N=-q
Irw—iy)!?:{go (- ¢>2+y21}zny expl=13),  (36)

then for y > N, Eqs. (35) and (36) result in

Iy =1 Hwgcn[(N=1-1)/11 2N =1 = 1)1 ]my? ' exp(-my) ,
(37)
where y is defined in terms of Eqs. (33b) and (33c¢).
When y>> N and 8> N we can write
y =1 - (N-1-1)]. (38)

Equations (37), (38), and (33c) provide a useful semi-
quantitative description of the dependence of the VP
dynamics on the molecular parameters of the VDWM,
such as the molecular frequency wge, the dissociation
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energy of the VDWM Dy, and other parameters of this
bond, such as uy pe, ¥xs, OT Wgp, all of which are in-
corporated in the reduced energy parameter 8 [Eq.
(33¢)]. This result also accounts for the dependence of
the VP rate on the quantum number # of the molecular
bond as well as on the quantum number / of the van der
Waals bond, at least for high values of the latter. The
following comments are now in order.

A. Energy gap law

For a large value of [ in the range IS N -1 we can
take y ~8'/? on Eq. (37), which assumes the form

Iy <exp[- 72+ (N~-1/2)1nf] . (39)
Utilizing Eq. (33¢) the VP half-width is essentially
Iy exp[— 2”ﬁ-1/2(D;z/132/wxs)w}a/<:2] . (40)

For a VDWM we expect that wge> Dyp > wyg, €.8.,
B>1. Thus, the VP rate is expected to decrease fast
with increasing of the molecular frequency wgc, the
functional dependence being approximately I,

< exp(-awl’?). Equation (40) clearly demonstrates

that the VP rate will be enhanced by a close matching

of the (high) molecular frequency wgq, which breaks the
molecular complex, and the effective stretching fre-
quency wyp of the van der Waals bond. This central re-
sult establishes an energy gap law for VP,

B. Energetic parameters.of the VDWM

The VP rate is essentially determined by the reduced
energy parameter 27! 2(Diflwys)wi?. Thus, we ex-
pect that T?, < exp(- bDY4 wyy), where b is constant for
fixed energetic parameters of the molecular bond BC.

C. Mass effect

To explore the dependence of the VP rate on the mass
my of the rare-gas atom we consider again Eq. (40)
with the alternative definition B= 2" 2wy c iy, pc/ kn
[Eq. (33c)] so that

rgx‘xeXP[‘21/zh—-i”"(w}a/cz/axn)ﬂ;c{gc . (41)

Thus, for a fixed value of the molecular frequency wgc
and provided that the characteristic length ay, depends
weakly on the nature of the X atom (see Table I) we ex-
pect that (at least for high valuesof 7) I'}, < exp(~cui/% ),
the VP rate being enhanced by decreasing the mass of
the rare-gas atom. We note in passing that another
contribution to the mass effect originates of course from
the adimensional mass m in Eq. (37), so that we should
actually write '), o ux'acexp(— cu&ff;c . However, the
effect of the pre-exponential factor is smaller than that
of the exponential term.

D. Dependence on the guantum number n

It is evident from Eqs. (32) and (37) that I'J, < #, the
VP rate being enhanced with increasing of the vibration-
al quantum number of the BC bond, This linear depen-
dence of TY, on x obtained here is common to all prob-
lems where the harmonic approximation is invoked.
Anharmonicity effects (see Sec. V) will resultina super-
linear dependence of T, on n.
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FIG, 6. Dependence of the VP
rate on the intramolecular fre-
quency wgc. The calculations
were performed for an har-
monic BC potential, neglecting
continuum—continuum couplings.
The points correspond to the
VP from the level n=10, =1,
while the crosses correspond
torn=1, I=1, The parameters
for the van der Waals interac-
tion are marked on the figure,

|0-30 | 1 |
0 20 40 60

ch I/Z(cm-l/Z)

E. Dependence on the vibrational quantum number /

From Eqgs. (37) and (38) it is evident that for high
values of IS N -1 the VP rate increases with decreasing
I. When the ! dependence is explicitly incorporated in
Eq. (37) we observe that

Y «<exp[@n/p/)(N-1~-1)?] . (42)

The simple approximate relations obtained herein
are extremely useful for the elucidation of the gross fea-
tures of the VP problem. However, up to this point we
were concerned only with the implications of bound—con-
tinuum coupling effects. We shall now proceed to the
study of the results of the global theory developed in
Sec, III which will enable us to incorporate the effects
of continuum—continuum coupling.

V. MODEL CALCULATIONS OF VIBRATIONAL
PREDISSOCIATION

We have presented in Sec, IIT explicit, analytical re-
sults for the rate and for the vibrational distribution
of the products in VP of linear triatomics. In what fol-
lows we shall attempt to account for some features of
the VP of linear rare-gas—diatomic VDWM’s. The
basic input data involve the well -known!” spectroscopic
parameters for the molecular BC bond and the potential
parameters for the van der Waals bond. For the latter
we have utilized the currently available information
summarized in Table I. These potential parameters
wpc for the harmonic molecular bond (or wyc and Dy
for the anharmonic BC bond), and ayy and Dy, for the
van der Waals bond, together with the reduced masses
tpc and [y pc, determine both the d-c¢ and the c-c¢
coupling terms. In the absence of detailed experimen-
tal results for linear VDWM’s we shall utilize the com-
plete theory to derive a set of theoretical predictions.

A. Energy gap law for VP

To explore the gross features of the dependence of the
VP rate on the energetic parameters of the VDWM we

80

portray in Fig. 6 a sample of numerical results of model
calculations for a number of such molecules, The BC
bond was taken to be harmonic and for the sake of a
simplified representation of the VP rate over a wide
range (20 orders of magnitude) of T',, we have disre-
garded again the effects of c—c coupling. These data
for a series of linear VDWM’s, where the normal BC
bond frequency varies in the range 128-3000 cm™, ex-
hibit the energy gap law for VP, the rate decreasing
with increasing wg/g in accord with the prediction of

Eq. (40). We note in passing that in view of some
changes in the mass parameters appropriate for dif -
ferent molecules there are some changes in the ex-
ponential parameter a, in the relation I'; < exp(- awl/?);
however, these are overwhelmed by the changes in the
molecular frequency, which leads to a variation of T,
over 20 orders of magnitude for a series of related
linear VDWM'’s.

B. Anharmonicity effects

To provide a visual demonstration of the dependence
of the VP rate on the vibrational quantum number # of
the BC bond we present in Figs. 7(a)-"T(c) the results
of model calculations of T, for /=1, where the VP rate
reaches its maximum value for a given n. In these
calculations c¢-c coupling effects were again disre-
garded. For the harmonic BC potential [Eq. (2a)] T,
exhibits a linear dependence on n, T'Y;=A .n, where A
is a constant in accord with Eqs. (32) and (37). When
an anharmonic bond potential [Eq. (2b)] is utilized the
increase of the VP rate with » is superlinear and can be
fit by the relation I'); ~A.%n + B-#?, where A and B are
constants for a given VDWM. As is evident from Figs.
7(a)-"7(c) anharmonicity effects have a minor influence
on the VP rate for low values of »n, as expected; how-
ever, for high » values the anharmonicity of the BC
bond considerably enhances the VP rate. This result
can be easily rationalized by noting that anharmonicity
decreases the effective energy gap between the levels
nl and (n-1)!, resulting in a somewhat better matching
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FIG, 7. (a) Model calculations of the dependence of the VP
rate for a linear ArL(X) van der Waals molecule, neglecting
intercontinuum couplings, on the vibrational quantum number
n of the L,(X) bond. Dashed lines represent the values of I'';
calculated in the harmonic approximation for the I, molecule,
while solid lines correspond to an anharmonic I-I bond charac-
terized by a Morse potential. The parameters of the van der
Waals interaction are marked on the figure, while those of the
LX) bond were taken from Ref. 17. (b) Same as Fig. 7(a) for
linear NeL(B). (c) Same as Fig. 7(a) for linear Hel,(B).
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FIG. 8. {a) Model calculations of the dependence of the VP rate from an initial discrete level (,I) of a linear ArL(B) van der

Waals on the vibrationalquantumnumber z for different values of I.

The I-I bond is anharmonic and has been characterized by a

Morse potential with parameters taken from Ref, 17. The parameters of the van der Waals interaction are marked on the figure,
The rate T,; in em™ include continuum-continuum interaction, (b) Same as Fig. 8la) for linear Hely(B).

between the vibrational energy of the BC bond which is
transferred to the van der Waals bond and the dissocia-
tion energy of the latter, thus resulting in a consider-
able enhancement of the VP rate at high values of ».

C. Dependence of VP rate on /

To assess the dependence of the VP rate on the vibra-
tional quantum number 7 of the bound states of the van
der Waals bond we have conducted a series of cal-
culations of T,;, which incorporates both the effects of
d-c and of ¢—c coupling., These results are summarized
in Figs, 8~10. From Figs. 8(a) and 8(b) it is apparent
that for a VDWM where the weak bond supports a small
number of bound states the VP rate at constant value of
n increases with decreasing I [see also Fig. 9(a)], while
when the number of bound states is large I',; increases
with decreasing I for high values of /, reaching a maxi-
mum at some value /=7 and then subsequently de-
creases with further decrease of 7 [see Figs. 8(b) and
9(b)]. The increase of I',; with decreasing 7 at high
values of ! is in accord with the simple analysis of Sec.
IV.C. From Fig. 9(b) we can assert that for a given
VDWM the value of [ is practically invariant to changes
in the molecular bond quantum number x#, Finally,
from Fig. 10 we note that anharmonicity effects just
scale all the values of T',; for a given value of » and do
not modify the gross features of the dependence of the
VP rateon l,

D. Effects of continuum-continuum coupling

The incorporation of continuum —continuum coupling
effects in the general formalism of the VP problem ad-
vanced in Sec. III enabled us to go beyond the simple
Golden rule type calculation and to incorporate the fea-
tures of the half-collision problem on a single potential
surface in a self-consistent manner. We have conducted
a series of model calculations of the VP rate using the
general model which incorporates the effects of both
d-c and c-c coupling and compared the data with the re-
sults of calculations using the simple Golden rule ex-
pression (30). The data were calculated for the an-
harmonic BC bond for =1, As is evident from Figs,
11(a)-11(c) the effects of intercontinuum couplings are
rather small for low values of », However, at higher
values of n the VP rate is retarded by intercontinuum
coupling effects and T',;~ (0. 3-0. 5)1"2,. Such a retarda-
tion effect due to coupling between “smooth” continua,
where the c-c interaction is weakly varying with en-
ergy, is well known in the theory of relaxation phe-
nomena, %

E. Final vibrational distribution

Another interesting physical consequence of the con-
tinuum —continuum coupling involves the final vibra-
tional distribution of the diatomic product in the VP
process XBC(nl) - X + BC{n’). When intercontinuum
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FIG. 9. (a) Model calculations of the dependence of the VP rate from an initial discrete level (z,) of a linear Hel,(B) van der

Waals molecule on the quantum number [ for different values of x.

The I-I bond is anharmonic and has been characterized by a

Morse potential with parameters taken from Ref, 17, The parameters of the van der Waals bond are marked on the figure, The
rate T'p; in em™! include continuum—continuum interaction, (b) Same as Fig, 7(a) for linear ArL(B).

coupling effects are disregarded Eq. (31) clearly demon-
strates that the branching ratio for the population of
different vibrational states »n'(<n) of the diatomic frag-
ment is determined by the squares of the d-c coupling
terms. Following the technical discussion of Sec. II

we recall that the V%, (' <n) terms evaluated on the
energy shell are dominated by the term »' =» -1 and

are negligibly small for »' <(n -1) (see Fig. 2). With-
out alluding to any further numerical calculations we can
assert that provided c-c coupling effects are disre-
garded the dominating decay channel of the |»l) initial
state will involve the population of the (n ~ 1) state of

the fragment. Intercontinuum coupling effects may re-
sult in relaxation of the propensity rule Azn=1. As is
evident from Figs. 12(a)-12(c) we note that P,_, ~0.6-
0.7 and lower vibrational states may be populated for
ArIy(B), but P,_;~0.9-1 for Hel,(B).

F. Dependence of VP rate on parameters of the VDWM

The model calculations of the YP rate I, displayed
in Figs. 11(a)-11(c) exhibit all the general features
which emerge from the semiquantitative analysis of
Sec. IV. In particular, we note that for a given VDWM
(wgc fixed) In(T,,;) is essentially determined by Di[2wik,
so that T';; decreases with increasing Dy, at constant
wxp and I’y increases with increasing wyp at constant
Dyy, inaccord with Eq. (40), As the effective fre-
quency wyyg is not the experimental observable fre-
quency, it may be more useful perhaps to relate the VP
rate to the inverse length ay, of the Morse potential
where according to Eq. (41) for a given VDWM (wg ¢
and Uy, pc fixed)In(T,,) « o3, This expectation is
borne out by the numerical results of Fig. 11(a). Next,
it is of interest to consider the mass effect on VP and to

-1
10 T

o
13
A
° & 1072} —
[
/
f4 Arl,(X) \\
/ Dyg=200cm™ |
/, wyp =30¢cm™! \
® n=20 !
h \
d ]
/ 1
[ \
/ \
10-3 M | i i | 1
) 2 a 3 8 10 i2

FIG. 10, Model calculations for the VP rate of linear Arl(X)
neglecting continuum—continuum interaction in the function of
the quantum number ! of the initial discrete level {#,l), where
n=20. Dashed lines represent the results for an harmonic I—I
bond, while the solid line connects the points obtained for an
anharmonic I-I bond characterized by a Morse curve with
parameters taken from Ref. 17. The parameters of the van
der Waals interaction are marked on the figure,
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FIG, 11. (a) Model calculations for the VP rate of linear
HeL,(B) in function of the vibrational quantum number z of the
initial discrete level |#,ly. Dashed lines are the results ob-
tained by neglecting continuum—continuum interaction (I‘ﬁ’,,),
while solid 1ines correspond to the results for I';;. The I-I
bond is characterized by a Morse potential with parameters
taken from Ref. 17. The parameters of the van der Waals in-
teraction are marked on the figure. (b) Same as Fig. 11(a) for
NeL(B). (c) Same as Fig. 11(a) for ArL(B).
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FIG. 12, (a) Vibrational distribution of the I, molecule result-
ing from an initial state of Arl;(B) characterized by quantum
number # and I, The I, bond is described by a Morse poten-
tial with parameters taken from Ref. 17. The parameters of
the van der Waals interaction are marked on the figure, (b)
Same as Fig. 12 for Nel,(B). {c) Same as Fig. 12(a) for
Helz(B).
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FIG, 13. (a) Model calculations of the mass effect on the VP rate of linear X+°* L(B), (X=Ne, Ar) molecules. The I, molecule
is characterized by a Morse potential with parameters taken from Ref. 17. The potential parameters for the van der Waals

bond are fixed for the two molecules and are equal to Dxg =200 cm™, ayxp=1,245 A,

oyp=1.245 87,

investigate the dependence of I',; on the mass my of the
rare-gas atom. In Figs. 13(a) and (13b) we desplay
some results of model calculations of I';; for a series of
X-I,(B) (X =Ne, Ar) linear molecules. It is evident
that for a fixed value of the Morse potential parameter
ayxg, I';7 increases with decreasing of the mass of the
rare-gas atom. This result concurs with the predic-
tion of Eq. (41).

VI. CONCLUDING REMARKS

We were able to advance a physical model which in-
corporates all the physical features of VP of linear tri-
atomic VDWM’s. The results of the present study can be
confronted with experiment and will be hopefully of use
for establishing general relations and correlations of
experimental data, once these become available. At the
present stage several experimental implications of the
present study should be considered.

(1) The energy gap law for VP of VDWM’s has some
general implications, First, VDWM’s characterized by
a high molecular frequency wg. are expected to be stable
with respect to VP processes on the time scale of the
radiative decay of the vibrationally excited or electronic—
vibrational excited states. Typical rates for ir decay in
the ground electronic state are 5,,~107% cm™, while the
decay rate from electronic—vibrational excited states is

(b) Same as Fig., 13(a) with Dyp =100 cm™,

8,~1073-10"° cm™. When y,; < 5,, no VP in the ground
electronic surface will occur, and when y,; << §, the elec-
tronic excited states of the VDWM will be stable with
respect to VP. The stabilities of the vibrationally ex-
cited C1,-C1¥ VDWM with respect to VP!® on the ground
electronic potential surface reflects an interesting im-
plication of the energy gap law., This complex is charac-
terized by a high frequency of the intramolecular Cl1-
Cl bond (wyc =565 cm™), making the exchange of vibra-
tional energy between the molecular bond and the weak
van der Waals bond ineffective on the time scale of the
lifetime of the vibrationally excited state. Second, as
the intramolecular frequency wgc is in general lower

in the electronic excited configuration, we expect that
the VP process in an electronically excited state will be
faster than in the ground electronic state, provided the
energetic parameters of the van der Waals bond are not
substantially modified. We note in passing that the X~
I, (X=He, Ne, Ar) molecules studied by Kim, Smalley,
Wharton, and Levy® provide ideal candidates for prob-
ing the dynamics of VP processes in view of the low
frequency of I, bond in the ground (X !s) and in the elec-
tronically excited (B®1) configurations, The VP rates
of these XI, molecules are expected, of course, to be
higher in the electronically excited state as in the
ground state.

(2) The increase of the VP rate for Hel, in the Bl
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state of I, with » is found to be superlinear with increas-
ing of the vibrational quantum number # of the I-I

bond, #®»4® This experimental result concurs with our
conclusions (see Sec. V. B) concerning anharmonicity
effects on VP.

(3) Regarding theoretical predictions of the absolute
values of VP rates which emerge from the present mod-
el these should be viewed with considerable caution.
Obviously, the quantitative treatment is inapplicable for
the T-shaped Hel, molecule. For the linear ArI,(B)
complex we predict, using the potential parameters
Dyp =100-200 cm™, ayp=1.25 A"l that for n=1 the
total VP rate is ~3x10°-2x10% sec”!, and for n=10
it is ~1x10''-5x10° sec™!, while being for n=20
5x10''-4x10" sec™ [note that the total VP rate is equal
to 2T,,/%, Eq. (23)]. The spread of the rates for each
value of n reflects the result for the range of the poten-
tial parameters specified above. Experimental results
for the Arl, system are not yet available. We note in
passing that these rough estimates of the VP rates for
the linear Arl, are of the same order of magnitude as
experimentally observed*®*4® for the T-shaped Hel,(B)
complex,

(4) Concerning the final vibrational distribution of
the products Kim ef al. *™™ have recently reported that
the propensity rule An=1 holds extremely well for VP
of the T-shaped Hel,(B} and P,.;>0.98, if the initial
discrete state has vibrational quantum number # for the
BC bond. Our calculations (Sec. V. E) indicate that for
a linear VDWM, such as ArL(B), P,., provides the
dominant contribution to the vibrational distribution of
the fragments P, =0.6~0.7, but the lower vibrational
states #' <n—1 are also populated. On the other hand,
for a linear Hel,(B) molecule our results show, indeed,
a very good agreement with the propensity rule. It
will be quite superficial to confront this theoretical pre-
diction for the linear VDWM with the available results
for the T-shaped molecule, and further experimental
information is obviously required for the dynamics of a
linear complex.

We have repeatedly emphasized that the results of the
present theoretical treatment of VP are inapplicable for
the T-shaped Hel,(B) complex for which the most ex-
tensive experimental data are currently available, We
have performed a theoretical investigation of the VP
dynamics of a T-shaped VDWM, considering a perpen-
dicular VP process.?® This perpendicular problem does
not result in an analytical solution, in contrast to the
linear case, and numerical methods had to be applied.
A by-product of this analysis involved the application of
the same numerical brute force methods to the linear
VP problem. The results of that numerical experiment
for the linear case were found to reproduce the analyt-
ical results of the present work, which rest upon the
formalism of Sec. III, with good accuracy, thus provid-
ing a nice confirmation of the numerical data presented
herein. A report on that work will be presented else-
where, 2

After this paper was submitted for publication we have
become aware of several recent theoretical contribu-
tions to the interesting field of VP of VDWM’s. Ashton

2293

and Child? ®»® have utilized a semiclassical dumbbell
model to study the VP of ArHCl. They find that the VP
rate is surprisingly slow, which is in accord with our
general conclusions and which rest on the energy gap
law. Ewing®!'® has addressed himself to the role of

VP in vibrational relaxation and derived an approximate
expression for the VP rate.
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APPENDIX A. ANALYTIC EVALUATION OF THE
COUPLING MATRIX ELEMENTS

The matrix elements of the residual potential (7b)
can be written, in general, as

Vianre= (A5 B - 2430 BQ)) (A1)

where a, b=d or ¢ (discrete or continuum); a, 8=1 or ¢;
Bn(ij) = Dyp f dRX,BC ¢u(Rx,Bc)

><e'faxn(ﬂx.sc-ﬂx.ac)¢B(Rx,BC) , j=1,2;

(A2)

and 44, j=1, 2 are given in Eqs. (12), (14a), and
(14b). In order to perform the integration in Eq. (A2)
it is necessary to find the discrete and continuum eigen-
functions ¢4(Ry, pc) of the Hy, 5o Hamiltonian defined in
Eq. (7a). The discrete normalized eigenfunctions are
given by’

(2Kyp = 21 =) agp 12
¢.‘(RX'BC)=[ ZT%(ZKXB—Z)XB] Z.UZW’(XB.KXB'I-UZ(Z)y
(A3)
where
Z=2Kyp € “XBEx Bc-Rx, Bo) (A4)

with W, ,(Z) being the Whittaker’s function.!® The di-
mensionless parameter Ky, is defined in Eq. (13c).
The eigenvalues associated with the functions (A3) are

Wy =— (Krayp/2uy, po) Ky -1 -1/2)%,
1=0,1,..., integer (Kyz-1/2).  (A5)

The energy-normalized continuum eigenfunctions are
similarly given by®

¢5(Rx,Bc) = (7Tﬁ)-1 [(I«Lx’Bc/axg) Sinh(21r05)]”2

X |T(1/2 - Ky =8| 2712w,

10.(2), (A6)
with 9, defined in Eq. (13d).

Using the integrals’®
J; WK,K-l'-l/Z(Z)WK.K-X-1/2(Z)dZ

=Pl'+1)TRK-U) V(2K -1 -1) - 12K -1~-1) +2K]
(A7a)
and
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{ 0” W ket ot)2(2) W, go1o,22)(dZ/ 2)

=T +1)TEK-1),

valid for I’>1 -1, we obtain by replacing Eq. (A3) into
(A2) and making use of Eq. (A4)

(2Kyp — 21 —1)(2Kyp =20’ =1)71/2
NI T(2Kyg =T (2Kyp - 1)

(ATo)

BV, = (Dyy /ZKXB)[

XD +1)T(2Kyg =1'), U'>1-1, (A8a)
B2, = (B, /2K [ @Ky -1 - 1)
- U2Kyy =1 -1)+2Kyg], U'>1-1, (A8D)

Equations (A8a) and (A8b), together with Egs. (A1),
(12), (14a), and (14b), give the final analytical expres-
sion for the discrete—discrete coupling Vi7%4.,..

The continuum~continuum coupling V.5, given in
Eqs. (15), (16a), and (16b) are obtained by replacing
Eq. (A6) into (A2) and by making use of the integrals!®

J Wy, 16(Z) Wy, 1 (Z) dZ = 27*(cosh2m 6 — cosh2n 6’ )™
0

. g’ — g° 2K
IT(1/2 - K +id)1?

’2 v4
X[ o' - g2 +2K

/2 -K+io)l* ] (A9a)

and
f Wy, 10(Z) Wy, 16+(2) (dZ/Z) = 2n*(cosh2n 6 - cosh2m ¢’ )™
0

X[|T(/2 -K+i0)|"t - |T(1/2 -K+i8")|?].  (A9D)

Finally, the discrete—continuum coupling V',’,,'f,,.E are
obtained by placing Eqs. (A3) and (A8) into (A2) and by
making use of the integrals’®

Jm Wy, 16(Z2) Wy, g121/2(2) dZ
0
=|r(/2+K~i0) | [(K-1-1/2)%+6°+2K] (Al0a)

and

r Wy, 16(2) Wy, g1-1/202)0dZ2/ 2) = |T(1/2+ K= i9)|? .
! (A10p)

The final result is given in Eqs. (11), (13a), and (13b),
together with Eqs. (14a) and (14b). A simplified ex-
pression can be obtained for the harmonic case if the

presumably good approximation
expl jayp¥(Rpc - Bpc)] - 12 jaypy(Rgc =Rpe)  (A11)

is used in Eq. (12). Using the well-known result for
harmonic oscillators

J’ Xn(Bac NRgc — RBC)Xn' (Rgc) ARy

= (ﬁ/ZIJ'BCwBC)Uz[n“zén',n-i + (n + 1)1/25n',m1] (A12)

Vg;.cn = (ﬁwacaxakxa/zmn)(ﬁ“}a c/z""nc)1 It/

J. A. Beswick and J. Jortner: Vibrational predissociation of triatomic molecules

the approximate result given in Eq. (32) is obtained.

APPENDIX B: RELATIVE COORDINATES
TREATMENT OF VIBRATIONAL PREDISSOCIATION

An alternative description of vibrational predissocia-
tion for a linear VDWM can be obtained in terms of
Rosen’s relative coordinates treatment.® This amounts
to a choice of the two interatomic distances Ry, and
Ryy as independent coordinates. The nuclear Hamilto-
nian then becomes

ﬁ? aZ ﬁZ a?

H=-3 8RL. 2 2
Kpe BC Hxg 9Rxs
nl a?

— + Vyg(R B1
where pgo=mgme/(my +mc) and pyg =mymy/ (my +mpy)
are the reduced masses for diatomics BC and XB, re-
spectively. The Hamiltonian (B1) is segregated in the
following manner:

H=H,+V, (B2a)
with
K 92 I 92
Hy=-— - + Vao(Rpo) + Vin(Rys)
0 2upc 8Rhe  2iixp 3Ry BeiRC XBxB
(B2b)
and
2 32
L (B2c)

= my 8RgcdRyp

The zero-order Hamiltonian (B2b) is now separable in
the two coordinates and its spectrum consists of dis-
crete and continuum wavefunctions of the form

(Rgc, Rx5|"l>=Xn(RBc)¢’x(Rxe) ’
(Rge, Rxs|"€>=xn(RBc)¢e(Rxa) ,

where n denotes the discrete vibrational quantum num-
ber of the BC bond, ! is the discrete vibrational quan-
tum number of the BX bond, and € designates the rela-
tive kinetic energy between X and B. The coupling be-
tween discrete and continuum ‘“zero-order” states is
now

(B3a)
(B3b)

ViR 2 al(0/oRa o) | 0/3Rg O . (B
Using the relationships
(n](8/8Rgc) | ) = (n| (8Vyo/BR5c) |0 )/(E, ~ E,.) , (B5a)
(t](3/8Ryp)|© =(1|(8Vyn/0Rgp) | ©/(E; - €)

and the integrals (A10a), (A10b), and (A12) we obtain
for the potentials given in Egs. (2a) and (8) (i.e., an
harmonic oscillator potential for the BC bond and a
Morse potential for the XB bond) the result (on the en-
ergy shell)

(B5b)

IT(1/2 + Eyp ~i6,)!

(2Ryp — 21 —1)1/2 ]1/2

x[(l/ZDXB) sinh(276,) R =)
‘ B

74 8, . -
[cos™(mKyy) + sinh®(mg,)]* /¢ "' t»

(B6)
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with the definitions
Eyp=(Haxp) " (21xs Dxa)'’?

B, = (o) 2 1ugp 2

2295

(B7)

The quantities Kyz and 9, differ from the corresponding ones Ky and 6, defined in Eq. (11c¢) by the appearance of

the reduced mass pyg = mymy/{my +my) instead of g, gc=myx(my +mc)/(my +my +m¢).

The decay width T'%, with-

out taking into account continuum-continuum interactions is given by

0 _ Z d=c |2
rnl—” - |Vnt,n'e
n

x{sinh(27y)/[cos?(1Ryp) + sinh®(13)]} | T(Rys + 1/2 - 53) |2,

where
y=[B-(Rys -1-1/2)"'?, (B92)
B= zwacﬂxs/axa , (B9b)
~ Hpck _ memy
m= ngn T (mp + me)my + mp) (B9c)

This result can be compared with Eq. (1) obtained in the
coupling scheme of Sec. II. The two formulas look very
much similar. We note that they become identical if we
replace (my +mg) by m, everywhere, The validity of
the relative coordinates treatment has already been dis-
cussed in the literature.?*® In particular, it was shown
that the asymptotic behavior of the continuum wavefunc-
tion in this representation is not correct and a re-
normalization procedure should be applied.?**® From
the analysis of this section we conclude that the relative
coordinates result (B8) and the nuclear diabatic dis-
torted wave result (1) will give similar results only in
the limit myg> m,.

APPENDIX C: THEORY OF VIBRATIONAL
PREDISSOCIATION

In what follows we shall utilize the theoretical scheme
previously developed by Mukamel, Atabek, and Lefebvre
and the present authors!® %22 which was already applied
to atom—diatom scattering?? as well as to photodissocia-
tion and electronic predissociation of linear triatom-
ics. %15 The present derivation adopted for the VP
problem is somewhat more transparent and clearly
established the relationbetween, “half-collision” process
occurring in molecular photofragmentation and the “full
collision” process encounterd in conventional scattering
theory. The initially prepared state of the system is
Inl) at t=0 and the probability for VP into the continuum
states {|n’€')} at time ¢ is

P, (#) = (47?1 JderU” dE G . u(E) exp(~iEt/h) "

1)
where Gj... ,; is the matrix element of the resolvent
operator

G*(E)=

where E* stands for E +in, n-0".
tion operators

= |nl)(nl’ )

é=zn: Jde’ne)(nel =1-p

(E* -H), (c2)

Defining the projec-

(Cc3)

71 (2K — 21 =1)/1 T(2Kyg ~ )]

(B8)

r
the evaluation of G+ ,m requires the calculation of the
operator QG P which can be shown® to be of the form

§G*P=(E* - QH,Q)\GRP(E* - H, (c4)

where R is the so-called level-shift operator, defined
by )

- PRP)!

R=V+V(E*-QHY 'V, (C5)
where we have denoted by V the difference
V=H-H,. (ce)

The discrete -~continuum and the continuum -continuum
coupling operators are defined by

~t_QuP=vic  yee_§vg . (o)

Using Eq. (C4) we obtain for the relevant matrix ele-
ments of G*

(n' 'lQRP!nl)
T (EY 2 Epe o E* —Epy -

Ghier (c8)

a1 +Hi0)
where A,; and (- T,,) are, respectively, the real and
imaginary parts of the matrix element (nl| PRPI I ).
We may now perform the integration in Eq. (C1) by in-
voking the usual assumptions regarding the weak depen-
dence of R and the negligible effects of the thresholds.
The probability distribution is then given by

P () =(n/T,,) (W € | QRP|nl)|2[1 — exp (- 2T, t/7)]
(C9)
and for { -
P, =(m/T,) |’ |QRP|nl)|? . (c10)

We can now separate formally the contribution of the
continuum-continuum interaction by defining a transi-
tion 7¢7° operator which acts only in the @ subspace

TV + VUE* - QHQ) ' V™= QRE . (C11)
The operator QRP in Egs. (C9) and (C10) takes the form

QRP=Vo + voo(E* — QHQ) 1V (C12)
and using the relation?
(E* - QHQ)" = (E* - {H,Q)"!

+(E* - QHQ)I Ve (E* - §H,H)'  (C13)

we obtain

QRP=[1+T(E* - QH, Q)| v . (C14)
The operator (E* - QH,Q)"! is formally written as
(E* - QH,Q)" = PP [(E - OH,Q)!] - ind(E - §H,Q) o9

J. Chem. Phys., Vol. 68, No. 5, 1 March 1978

Downloaded 17 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



2296

whose PP stands for the principle part distribution. In-
voking the first-order K matrix approximation we ne-
glect the principal part on the right-hand side of Eq.
(C15), which amounts to the assumption that the coupling
varies slowly with energy. Setting (E* - QH,Q)™
=—in6(E - QH,Q) in Eq. (C14) results in the following
final expression for the probability distribution:

P, =(a/T,,) Z (Bpoger = nT S280)VETE )
This result can be recast in the form

Poo =1/ Tu)| 2 Syener Vit g

S=1-irT™e C1n)

where S is the scattering matrix for a half-collision.
In view of the K matrix approximation invoked here all
the matrix elements are evaluated on the energy shell
(consequently, the index € has been omitted in these

expressions). In a similar way we have
BRP=V*(E* - QHQ) Vet (C18)

To calculate T,; = — Im(nl| PRPI1) we utilize the rela-
tion®?

(E~QHQ) ' = (E - H, )

+(E - QH Q"' T (E - QH\ Q)" , (C19)
which results in
PRP=Ve(E* = QH,Q)'[1+ T°™(E* - §H,Q) ']V .
(C20)
Thus, T, is given by [using again (E” - QH,Q)™!
= —75(E — QH\Q)]
T,=T R.e[ Z Ve (Byoger — inTﬁT:..)V,ﬁ',f".,] )
n 'ﬂ >
(c21)
Defining
Fe=e=1—igT™° (c22)

we note from the definition of 7°7° that (neglecting again
the principal part integrals)

T =V F¢ (C23)
and so
Fe™¢=1—inVeeF°° (C24)
The sum of the final probabilities is then
c=cyrc=d)+ e=cyre=d
S p, = EZVOAETY ) (C25)
"l

Re(vd-cFC-cvc—d)
Multiplying now Eq. (C24) by Fo=<" from the left we have

FemeTpe—c _ pe=ct _ipo=ctyomcpo=c (C26)

and using the complex conjugate of Eq. (C24) on the

right-hand side of Eq. (C26) we obtain
F'Foc _ReF°™°, (c2m)

and therefore replacing Eq. (C27) into (C25) we obtain

E P"I:-l .
nt

(C28)
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We now consider briefly the relation of these results
with those of conventional scattering. Along the same
lines we can calculate the transition probabilities in a
collision between X and the molecule BC. Assuming
the system to be at t= -« in the state I#n, ¢ the prob-
ability for the system to be in the state 1%, €’) with
the same total energy at time =+« is given by

Prne(E) =8, (E)]?, (c29)
where S is the scattering matrix defined by

S=1-2inT (c30)
with

T=V+VG'V, (c31)

Two differences between the VP process and the full-
collision process should be noted. First, the S matrix
for half-collision [Eq. (C17)] evaluated on the energy
shell differs from the S matrix for the full collision

{Eq. (C30)], the former involving —inT "¢, while the
latter contains —2irT. Second, we note that T for the
scattering problem now operates in the whole space,
while 7°7° for the VP half -collision process is a similar
operator in the @ subspace only,
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