QUADRATIC EFFECTS IN MULTIPHONON TRANSITION RATES IN SOLIDS
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In this paper we explore the contribution of quadratic impurity - phonon coupling terms on nonradiative multiphonon
transition rates in solids. It is demonstrated that the quadratic terms may increase substantially the transition rate and may
modify quantitatively the energy gap law. Such effects will be exhibited even when the quadratic coupling is too weak to

be observable in the optical spectra.

1. Introduction

Multiphonon relaxation processes occurring during
the decay of excited states of impurity molecules em-
bedded in solid matrices have long been a subject of
active experimental and theoretical research [1--13].
So far, all theoretical studies have assumed some form
of a linear coupling between the impurity levels and
the lattice phonon, e.g., a shift in the phonon equilib-
rium positions induced by transitions between the
impurity levels or, alternatively, an interaction poten.
tial between the lattice and the impurity molecule
which is exponential in the phonon coordinates. Qua-
dratic contributions to the coupling, originating from
frequency changes and mode-mixing induced by im-
purity transitions, have been considered on several
occasions [14,15]. It is well established that such
terms bring about temperature dependent broadening
and the spectral shift of the zero phonon lines asso-
ciated with the impurity transitions [14--16]. In the
theory of radiationless electronic transitions in large
molecules frequency changes have been considered
and have been found to have a profound quantitative
effect on the transition rates [17,18].

In this paper we report the results of a study of

the effect of quadratic coupling terms on multiphonon

relaxation rates between impurity levels of molecules
embedded in solid matrices. The formalism developed
in the theory of thermal broadening and shift of zero
phonon lines [14] is utilized together with a formal
analogy which exists between the terms contributed
by the quadratic coupling and these arising in the lin-
ear case. It is found that in a zero-temperature calcu-
lation the quadratic contributions to the coupling
substantially modify the multiphonon transition rate
without necessarily having a visible effect on the zero-
temperature absorption or emission spectrum of the
same impurity molecule. In particular, the “energy
gap law”’ which predicts a rapid decrease of the tran-
sition rate as a function of the impurity electronic
energy gap is modified to yield a weaker dependence
of the nonradiative rate on the energy gap.

Recently, Bondebey [19] has measured several
multiphonon transition rates involving the vibronic
levels corresponding to the A 211 and X 2 X electronic
states of the CN radical. The energy gap dependence
deduced from his results is much weaker than what
the conventional rate expressions (based on linear
coupling terms) predict {20]. Inclusion of quadratic
coupling terms shifts the calculated rates substantial-
ly in the desired direction.
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2. Multiphonon transition rates

We consider a multiphonon transition between two
levels of an impurity interacting with phonon bath at
zero temperature. Denoting H (H,) the hamiltonian
of the phonon system when the upper (lower) level
of the impurity is occupied, we may write

Hy=H -hwgtV, (1)

where V denotes the difference between the phonon
potential surfaces associated with the two impurity
states and where 7wy is the energy difference between
the (zero phonon) impurity levels. In the harmonic
approximation ¥ can be described by second order
Taylor expansion in the normal coordinates

V= E[/s'qs+% SZS;V:ts‘qsqs'
s % 4

+1 fdw deo'p(w)p(w”) V(w,w')qw . (2)

= [awp(w)w)a,

In the second identity the w integrals are taken over
the phonon spectrum and p(w) is the phonon density
of states. The normalized line shape G{({2) at the fre-
quency £ can be systematically computed from the
Lax formula [21] with the Condon approximation

G =3in 1fexp( —i$2f)

X (exp (iH t/h)yexp (—iH,t/h)) dt

aa

=lq~] f exp[~i(ﬂ — wy)]

. 3

X (Texp] m—lf Vit de D, (3)

where T is the time ordering operator, { ) denotes
temperature average in f{ states and

W(t) = exp (it /h)V exp (—itH /h). (4)

The time ordered thermal average which appears in
eq. (3) can be calculated, in principle, to any order
in V. To second order in V at 7= 0K, G(§2) can be
represented (see appendix) as follows [14]

G(Q) =317} exp(=$; - S,)

X [ dtexp[~i(2-wyt20)r +8,(r) +£,(1)]. (5)

where

=ih f dwV(w, w)p(w)
0

72
p2 f do ' ,ff"’—) p(w), (6)
f]

a0 =n*f g D exp a0
l

V((..J1 w,)
g,(1) = 40" f dw; dwy ———= p(e; )p(e,)
)] (wl +(‘32
Xexp| w twy)t], (8)
5, =8,(0). S, =g,(0). 9)

The function g, (r) is familiar from the linear coupling
inultiphonon theory {3], while the effect of the qua-
dratic terms in the expression of V, eq. (2), manifests
itself mainlty through g,(r). Nevertheless, the present
zero-temperature case can be formally reduced to an
effective linear coupling case. We introduce 4,(w),
the Fourier transform of g,(¢),

g5(0) = [ Ay(w)exp(—icr)do, (10)
0
where

Ay(w) =3 i fexp(iwt)gz(r)dr
- (1)
= %h_zw' 2f dew, Vz(wl,w—wl)p(wl)p(w—wl).

We introduce similarly 4, (w), the Fourier transform
of g1(z),

g,(0= [ A;(w) exp(—iwr) dw. (12)
0

Inspection of egs. (5)- (9) reveals that our zero-tem-
perature system is equivalent (up to an energy shift)
to a linearly coupled system with coupling function
Ay + A,. We thus can apply to the present case all ap-
proximation methods (Perlin, ref. [1]) developed for
the line shape of the linearly coupled system.

In general, there are no universal relations between
Aj(w) and A,(w). However, taking into account that
p(w) has a cutoff at a certain frequency wpy, it is eV

dent that Al(w) extends up to wy,, while Az(w) ex- _.
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tends up to 2wpy. Therefore, it is expected that at suf-
ficiently high frequencies €2, eq. (5), the contribution
of A,(w) to the line shape function will dominate, no
matter how small the ratio §, /S is. This conclusion
is of considerable importance in the study of multi-
phonon transition rates in which relatively high ener-
gy gaps are involved.

In order to obtain semi-quantitative information
regarding the effect of 4,5(w) on the line shape, we
performed a numerical calculation on a model system.
For convenience we have chosen

Ay (@) =8,2m0}) V2 exp[-(w-wy)?20%].  (13)

In order to avoid significant non-physical contribu-
tions from the negative tail of the gaussian function
we have limited ourselves only to the cases in which

ol <1, (14)

We have further invoked the ansatz which has been
used successfully in the theory of zero phonon line-
width [14,15]

V(w13w2)=7y(w1)V(w2)' (15)

In view of eqs. (11), (14) and (15), we can approxi-
mate 4,(cw) by a gaussian

Ay(w) = S5(4n0%) ™12 expl—(w-20,)?/40], (16)
where
S, = 4(8, Aywy)®. (17)

From zero phonon linewidth data {14,15] it is pos-
sible to estimate $,/S; =~ O(10-1). The total relative
frequency change of the phonon modes is of the order
(S7)1/2/8 . In order to calculate G(§2) we expand the
integrand in eq. (5) in power series

exp(—S,—5,) <

il Wit L I
2m n,,ng=0_£(

[g, (D] [g5(D]™

()=

X exp[-1(Q—w, +Qo)t] . ST
1 2 (18)
The terms in the sum are convolutions of the func-
tions 4| (w) and A,(w). Since both functions are
gaussians these convolutions can be easily calculated,
provided that we extend 4 (w) and 4,(w) to nega-
tive values of w. This procedure, justified by inequali-
ty (14), has been adopted in the course of the calcu-

- lation. The final formula for the calculation of G(§2) is

oo

G(x) = exp(rSj -S,) E—l K(m)(2'frmy2)’”2

X expl—(x—m)*/2my®], (19)
where
[m/2] am—2n ¢n
S S
3 it S
Kl = ,,Z=%) (m-2n)! n!’ 120}
2 —w,t 82
=0 (21)
W
¥ =0fw,. (22)

Fig. I displays the results of a numerical calcula-
tion of log, G as a function of x, [eq. (19)] fory =
0.1,8; =1,and §, =0.5,0.05 and 0. As expected,
the presence of the nonlinear interaction affects dra-
matically the line shape function for jarge values of x.
For relatively small values of x, where G(£2) is large,
the effect of the quadratic interaction is small. This
range of small values of x is monitored by measure-
ments of the optical line shapes. We conclude that for
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Fig. 1. The overall behavior of the transitionrateat T=0K
as calculated from eq. (19) for three values of the quadratic
coupling §7. The different peaks correspond to transitions in-
volving different numbers of phonons.
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Fig. 2. An attempt to fit the gaussian model [eq. (19)] (con-
tinuous line) to Bondebey's experimental results [7]. The
S, = 0 case corresponds to the linear coupling model which
was utilized previously {20].

S5/81 <0.5 the effects of quadratic coupling terms
on the optical spectra is small and the major contribu-
tion to the phonon structure will be due to linear
coupling terms. In fig. 2 we show a comparison of the
calculated results [using eq. (19)] with and without
quadratic effects and the experimental results obtain-
ed by Bondebey on the CN systems. Clearly the qua-
dratic terms have an important effect in shifting the
calculated results towards the experimental ones. It
should be kept in mind that in making these calcula-
tions we assumed that the molecule—lattice coupling
[V of eq. (1)] is the same for all the transitions in-
volved. This assumption is not quite correct; it might
be the source of the remaining discrepancy. Other im-
portant factors, which were not included in our treat-
ment, are corrections higher than quadratic and higher
order terms in ¥ which are discussed below.

3. Discussion
We have demonstrated that quadratic terms in the

impurity—lattice coupling, which represent mode-
mixing and frequency changes are important in both

Appendix

the qualitative and the quantitative behavior of the
multiphonon relaxation rate between the impurity
levels. It should be pointed out that the effect obsery.
ed here is of a different nature than the effect of fre.
quency changes on intramolecular radiationless tran-
sition rates. In the latter case, taking frequency
changes into account has mainly the effect of adding
active accepting modes which are not characterized
by a shift of their equilibrium position between differ-
ent electronic levels. Such molecular modes are usual-
ly of low frequency and when they become important
in determining the nonradiative rate the energy gap
dependence may become steeper [17}]. In the lattice
case the main effect of incorporating the quadratic
terms is to increase the effective cutoff frequency
from wpy to 2wp. This moderates the energy gap de-
pendence of the transition rate. This conclusion does
not depend on the particular nature of the model used
here {as represented by eqs. (13), (14)] and is expect-
ed to hold generally.

The observation that the quadratic terms have such
a profound effect on the nonradiative rates for large
energy gaps suggests that other higher order terms,
both in V, eq. (1), {resulting from anharmonicities)
and in the cumulant expansion, which was truncated
beyond second-order contributions to eq. {5), may be
important. Such terms will give rise to higher cutoff
frequencies in the effective phonon spectrum. We
have made this point before with respect to the effect
of frequency changes on intramolecular radiationless
transitions [18]. With this in mind we conclude that
the results obtained in the present paper should not
be considered as exact model results but rather to be
viewed as a demonstration of the importance of non-
linear coupling terms on nonradiative decay rates in
solids.
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In this appendix we present an outline of the derivation of eqs. {5)--(9). The normal mode coordinate operator -

A,(#) in the Heisenberg picture is given by
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AJ(0) = b exp(~iw 1) + b] exp (iw 1), (A1)

where b;f and b, are the boson creation and annihilation operators of the mode s, respectively. The time depen-
: dent potential ¥(r) is given by

V)= 2 VA)+ 25V, LA A). (A2)

- We introduce g(¢):

i t

explg(t)] =<Texp(_m“‘fV(:l)d:I)>. (A.3)
0

The function g(¢) can be evaluated to any order in ¥(z) by utilizing cumulant expansion of the right-hand-side of
eq. (A3)

POE E( in 1)"‘fﬂ de (T H Ve, (A4)
0'°

- where the subscript ¢ denotes cumulant average. The first two cumulant averages are related to ordinary averages

~ as follows [22]:

=), = xh - o2, (A.5)
where { ) denotes ordinary average. Using eqs. (A.4) and (A.5) we have to second-order in V(¢):
! H r
gy = —it™! [ Weypdey +5in D [de [ [TV V() — V(e V). (A.6)
| 0 0o D
- The calculation of the first term in this expression is straightforward:
VD= VA +5 SZSZ V,, s s (DA, ()=} ZS) v, (2n + 1), (A7)

- where n; is the average phonon occupation number of the s mode:
n, = {exp(hw /kT) 1] L. (A.8)

- We turn now to the second term in eq. (A.6). The first thermal average appearing in the integrand is given by:

TV V() = 20V, V, (TA (DA (0 vy 200 20V, W (TAL (6) A (1) A, (8) Ag (1),

S'1

! 51,852 S1.51 52,52 (A9)
The first term on the right-hand-side of eq. (A.9) 1s calculated as follows:
| A, (t )A, (tz))—(n t1)exp(- iw, 7)6” +n$l exp(iwslr)681s2, (A.10)
- where 7 = 1, Using eq. (A.10) we obtain:
> V, V, (TA (1) A (1,) = EV [(n+1) exp (e l7]) + n exp (iw,I7])] (A.11)

§1.852

- In order to calculate the second term on the right-hand-side of eq. (A.10) we need thermal averages of products
~ of four boson operators. These are given in the following equations [23]:

by b, bl bl Y= (ng +1)(ng, +1)(5

515'

) (A.12a)

+5 6. ),
5152 5152 5182 8515,

tp bly=
(b bl b bLY=(n, +1)(n, +1)6_ 8 . +(n +D)n 8 .8 (A.12b)

5185 78182’
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(A.12¢)

<bs,b1'lb:2bs5> = (nsl+1)ns,1<5slszé5s.ls,2 + (ns‘ +1)"s25325‘26s,s1 :

bl by by bly=n (n +1)E (o tn (o #DE 8o (A124)
bl by bl byy=nen 8 (B tn (ng N6 (B (A.12e)
blokb bor=n n (B 8. +8 8.0 ) (A.120)

With the help of eqs. (A.12) we can evaluate the thermal average ot products of four A operators:
<A51(t1)AS’I(II)ASQ((2)AS’2([2))
= {(rzsl+I)(nsz+l)exp[—i(wsl+wS2)'r] +(nsl+l)ns2 0xp[i(w52 --wsl)r] +nsl(nszﬂ)exp[i(wsl—wsz)-r]

+nslns2 exp[i(wsl+ws2)'r] } (5s.s25s;s5 + 551563”2)

y [(n5‘1+1)(n5'2+1) i (nS[+l)n.S'2 * n&'; (n82+1) * n5|n$2 ]6.\'13‘16523:}_’ (Al3)
where again 7 = ¢ -- 1. We can proceed now to the calculation of the second sum in eq. (A.9):
I TV, Ve T ) A (1) A, ()4 (1
- 2 : .
=2 Slz,s\l'; Vsl’sf1 {(nslﬂ)(ns,lﬂ) exp[—l(wsI g i) + (nsl +l)nS‘l exp[l(o:,us-l »-—wsl)lﬂ]
. . D 2
+nsl(ns,l+1)exp[1(wsl_ws.l)l‘rl] +nslf!s,! expll(ws'+ws,l)IT|] + : VS’S(QnSH) : (A.14)
where we took advantage of the fact that Vsl.h =V, 5,
In the course of the evaluation of the integrals occurring in eq. (A.6), the following formula is useful:
! t
[, [ ey exp ol ty 1)1y = 2072 [1 — exp(iwn)] + 2it/e. (A.15)
0 0

Substituting eqs. (A.7), (A.11) and (A.14) in eq. (A.6), and utilizing eq. (A.15), a general expression for g(t) is
obtained [14].
The T = 0 K version of g(¢) (obtained by taking n = 0) is presented in egs. (5)—(9).
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