PHYSICAL REVIEW B

VOLUME 16,

NUMBER 6 15 SEPTEMBER 1977

Thermeelectric power in inhomogeneous materials*

Itzhak Webman and Joshua Jortner
Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

Morrel H. Cchen
The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
(Received 9 July 1976)

The thermal conductivity and thermoelectric power of an inhomogeneous material subjected simultaneously to
gradients of temperature and electric potential are accounted for in terms of an effective-medium theory as
well as by numerical simulations in cubic networks with correlated bonds.

I. INTRODUCTION

Transport properties of disordered materials
undergoing a metal-nonmetal transition have been
of considerable importance inthe identification of
some of these transitions as occurring via the inhomo-
geneous transport regime.'~ Within the semi-
classical approximation the transport problem be-
comes equivalent to the calculation of the response
functions in a microscopically inhomogeneous me-
dium. Effective-medium theories for the electrical
conductivity,®~'* the Hall effect,'* optical proper -
ties,'®*!¢ and sound velocity*® have been invoked for
the analysis of experimental data ina variety of mi-
croscopically inhomogeneous materials.!”7+15+16 [tig
now well established that the effective-medium theory
for the electrical conductivity, the Hall effect and the
optical data isadequate for metallic volume fraction
C well above the percolation threshold C* =0.145
+£0.005,*7* the effective-medium theory being un-
reliable in the transition region C<0.4 and be-
low.?*"® Numerical simulation methods for the
conductivity,’!” the magnetoconductivity tensor,®
and the complex dielectric constant!® were devel-
oped to account for the response functions over the
entire C range.

In this paper we continue our program of the
study of transport properties of inhomogeneous ma-
terials and advance an effective-medium theory to-
gether with a generalized numerical-simulation
scheme for thermal transport properties, i.e., the
thermal conductivity and the thermoelectric power
of such disordered materials. An effective-medium
theory for the thermal conductivity was provided by
Odehlevskii,'® while Airapetiants!® attempted an ef-
fective-medium theory for the thermoelectric pow-
er. The latter treatment does not involve a com-
pletely self-consistent configurational averaging.
Our effective-medium results, together with nu-
merical simulation data, elucidate the significant
features of thermal transport properties in inhomo-
geneous materials.

16

1. EFFECTIVE-MEDIUM THEORY FOR THERMAL
TRANSPORT

We now present a derivation of a generalized ef-
fective-medium theory for a system simultaneous-
ly subjected to gradients of temperature and elec-
tric potential. We start with the following micro-
scopic equations

Jo==k'VT'+P'T'V¢’, (2.1a)

Y ==0'Veo'+P'VT’, (2.1b)

which hold locally within the inhomogeneous mater-
ial. Primed quantities indicate local values. jg
and E’are the heat and electric currents, respect-
ively, and «’ and ¢’ are the thermal and electrical
conductivity. P’ is the Peltier coefficient, while
@’ and T’ are the electrical potential and temper-
ature. The corresponding macroscopic equations
are analogous to Eqgs. (2.1a) and (2.1b) but with
macroscopic, unprimed quantities:
0=—KVT +PT V¢, (2.2a)
(2.2b)

The relation between the macroscopic and micro-
scopic fluxes and forces is

i
3=—0§¢+P6T.

-ia = ('j/°>’ eT = <€T1>y
i=3G9, Ve=(Ve"),
where the average can be taken equivalently over
all space or over all local configurations at a given
point.
From Eqgs. (2.2) and (2.3) we get the following

equations relating the macroscopic transport co-
efficients to the microscopic quantities:

(2.3)

—k(VT"Y+P(T'Vp")= = (k' VT")+(P'T'Vp"), (2.4a)
-0(V"y+ P(VT")= = (0'Vp") + (PVT"). (2.4b)

To carry out an effective-medium theory of the re-
lation between «, o, and P and the corresponding
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microscopic quantities, we treat the system as
though it consisted of a sphere of radius b embed-
ded within a uniform effective-medium character-
ized by the coefficients k, 0, and P. The local
temperature and potential fields ¢’ and T’ obey the
equations

VT'=0, v’ =0, 2.5)

both inside the sphere (region I) and in the effec-
tive-medium (region II).

The solutions of Eq. (2.5) for T'(r) and ¢'(») are
T,+Alrcosé (region I),

T'(®) = {T0+(Blr+c;b3/rz)cos€ (region II),

(2.6a)

@+ Abrcosé (region I),

¢'(®)= {(po +(B,r+ C5b6%/7?) cosé (region II).
(2.6b)

The parameters A/, B;, and C; can be determined
by the following boundary conditions: (a) the con-
tinuity of the potential and temperature at the
sphere boundary ¢

Ti{=Ty, ¢1=¢y, r=5; (2.7a)
(b) the continuity of the normal components of the

electrical and thermal currents at the sphere
boundary ¢

Gor®)r=G4F)y, G B=G"Dye (2.7b)
From Eq. (2.7a) we get
A]=B,+C], Al=B,+C]. 2.8)

According to the effective-medium assumption,
in region II «’=k, P'=P, and ¢’=0. We can there-
fore recast conditions (2.7b), using Eqgs. (2.1) and
(2.6) into the following equations:

—~K'Al+P'T A} == k(B, = 2C}) + PT (B, - 2C}),
(2.9a)
P'A]-0'A,=P(B, -2C| -0(B, - 2C}). (2.9b)
Equations (2.8) and (2.9) can be solved for A}:

A]=(1+M{,)B,+M,B,,
A =M; B+ (1+M,)B,.

(2.10a)
(2.10Db)

We now adopt the approximation that « and ¢ are

zero-order quantities whereas P is a first-order

quantity, and obtain
M, = (k- ')/ (k' +2k),
M}, = ~0")/(0’+20),

(2.10¢)
(2.104d)

Y P-pP' (0-0')(P'+2P)
277\ w42k T (k' +2x) (0" +20)

)To, (2.10e)

My, = <P_P' ("'K’)(P'+2P)>. (2.10f)

“\o"+20 " (k" +2k)(0’ +20)

We now introduce these results into Eq. (2.4b),
the consistency conditions for the average electric-
al current:

(—o(M} )+ P +MID)B, + (=a{(1 +M},) + P{M |,)) B,
= [(“01M2'1>+ (P'(1 +M{1)>]Bl
+[= "1+ ML)+ (P'M!)]B,. (2.11)

The parameters B, and B, [Eq. (2.6)], are the con-
stant temperature gradient and the constant elec-
tric field far away from the sphere. Since the val-
ue of P, k, and ¢ are independent of the magnitudes
of the electric and thermal fields imposed on the
sample in any specific experiment, Eq. (2.11) can
be split into two separate equations:

—0(Mzp) + P+ M{,)= = (0'M},) +(P'(1+M})),
(2.12a)
=01+ M,) + P(M{,)= = (0’ (1+M},)) + ( P'M,).

(2.12b)
Equation (2.12a) can be solved for P in terms of the
effective-medium response function o, «, and the
local quantities «’, P’,0’. The final result is

_ P’
p= 30K<(K' +2k)(0’ + 20)>

o'k+ak +20k-0'k'\\ !
X<< (k" +2k)(0’ +20) >> ' (2.13)

The same procedure can be applied to Eq. (2.4a),
the consistency condition for the thermal current.
An expression for P identical to Eq. (2.13) is ob-
tained. This result is an expression of the Onsager
relations between the macroscopic transport coef-
ficients.?® The values of « and o in Eq. (2.13) are
simply the solutions of the effective-medium-theory
(EMT) equations for the thermal conductivity and
the electrical conductivity

K'=k\ _ Jo'=g\ _
<——K,+2K> -0; <o,+20> -0. (2.14)
Equations (2.14) result from Eq. (2.12b) within the

approximation adopted for the derivation of Eq.
(2.10).

The thermoelectric power is derived from P
through the relation

S=P/o. (2.15)

An EMT formula for S in terms of S, k’,0' can be
recast as follows:
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S=6k(S'D")/(1 -3(x'D")), (2.16)
where
"=g'/(k"+2k)(0" +20) (2.17)
and
S'=P'/o’. (2.18)

Our effective-medium result, Egs. (2.16)-(2.18),
for the thermoelectric power differs from that pre-
viously derived by Airapetiants,'® as the latter
treatment did not involve a completely self-consis-
tent averaging procedure.

III. NUMERICAL SIMULATIONS

In the present case we have two local transport
equations given by Eqgs. (2.1a) and (2.1b). The two
relevant continuity equations are

34 =0, (3.1)

v.§(F)=0. 3.2)

For the numerical simulation of the thermoelectric
properties of a binary inhomogeneous system we
assign randomly to the bonds of a cubic network

TE") = (1 - Q)TE" -1) _ Q < E [_K”T;m) +PU%(T(,~" -1)+T(,M))((p;’") _ (pSr' -1))])/2 Kigs
i

i
neighbors of i

¢$")=(1—Q)(P§" -1)_Q< E [—0,,(p5’")+Pij(T5’")—T§" -1)”)/2041.
i

)
neighbors of i

Here n is the order of iteration. The value of m is
either n if the site j precedes the site 7 in the iter-
ation procedure, or n -1 in the reverse case.  is
an overrelaxation parameter, 1.5<Q<1.9. During
the iterations all the sites on one electrode keep
the constant potential ¢ =0 and temperature T =T,
while on the other electrode T =T + AT, ¢ =Ag (see
Fig. 1). After convergence has been reached, the
heat current and electric current densities between
the land I+1 zy planes are given by

. 1

]Q,zN <E [—KI+1.I(T1+1_T1)
+Pl+1,l%(Tl+1+Tl)((pl+1-‘pl)]>’

(Z [-Utu.x((Ptu—‘Pz)

+Pl+1.l(Tl+1 "Tx)]> ’

zy

(3.5)

o1
]’ Nl!ﬂ
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the local values «,, 0,, and P, with probability C,
and the values «,, 0,, and P, with probability 1 - C.
A schematic description of the cubic network is
presented in Fig. 1. The sites {5} of the network
are assigned local temperature and potential val-
ues, {T,}and {p,}, respectively. The finite differ-
ence representation of Egs. (3.1) and (3.2) is given
by the following set of coupled equations for each
site r; of the network:

E [~k s (T, =T )+ Py 3(T, +T )@, - ¢,)]=0,

i
neighbors of i

(3.3a)

Z [—0.-1((?; -¢1)+P51(T; _Ti)]:or
neighbt;’rs of i

(3.3b)

where «;;, P;;, and 0, are the values of local prop-
erties assigned to the bond (r;,7,). The zy faces

of the cube represent the electrodes. Each elec-
trode is kept at a constant temperature and a con-
stant potential (see Fig. 1). The initial set of val-
ues {T{°'} are chosen to be linear in the x direc-
tion. Equations (3.3a) and (3.3b) are solved by a
relaxation procedure as follows:

(3.4a)

(3.4b)

® =9
T=T0

L

X

O=A0
T=To+AT

FIG. 1. Schematic description of the cubic network
employed for the numerical simulation of the thermo-
electric power of inhomogeneous materials. The zy
faces of the cube represent the electrodes, while at
the other faces cyclic boundary conditions are applied.
The average electric and thermal currents flow in the
x direction,
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where the summationis carried out over all the
sites in the /th plane and where N,, is the number
of sites in the plane. The convergence can be
checked by the continuity conditions

jo.=ia,="""=ja, _ =jo(AT, Ag),
0 1 N -1 (3.6)
Jo=i1="*=jx-1=J(AT,Ap).

The solution is carried out twice; first for AT =0
and second for a finite value of AT. The macro-
scopic value of P is then given by

P=[j(AT,n¢) -j(AT =0,A0)]/AT, (3.7
and the thermoelectric power S is

S=P/o, (3.8)
while the conductivity is given by

0= Li(AT =0, A¢)/A@ 3.9)

where L is the length of the cubic network. As in
the cases of electrical conductivity,” dielectric
constant,'® and Hall effect,'® the numerical simu-
lations were carried out on correlated networks
which simulate a continuous inhomogeneous medi-
um."” The numerical results for S of a two-com-
ponent inhomogeneous system with the local values
of k', P’, and o’ characteristic of Li-NH, are pre-
sented in Fig. 2, together with the results of the
EMT.

These numerical results for the thermoelectric
power in this binary system, where the local con-
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FIG. 2. Thermoelectric power of a binary inhomo-
geneous material. S;/Sg=20, 0,/0y=1.2%10"3, x/k,
=0.35.

ductivity is characterized by a large fluctuation,
exhibit several interesting features. First, for

C = 0.4 the numerical data for S are in good agree-
ment with the effective-medium theory, as is the
case for the electrical conductivity!” and for the
magnetoconductivity tensor.?® Second, for C =0.45,
i.e., well above the percolation threshold, S=S5,
independent of C. This behavior is characteristic
of the bimodal distribution and can be utilized as a
diagnostic feature for the identification of such a
distribution in microscopically inhomogeneous ma-
terials. Thirdly, just above the percolation thres-
hold C%,,; =3 for the effective-medium theory,
C*=0.25 for a noncorrelated network, and’ C*
=0.145 £ 0.005 for continuous percolation, S exhi-
bits a pronounced rise with decreasing C.

IV. LIMITING CASES

We now consider the solutions of the EMT and the
numerical results for two-component inhomogen-
eous materials. A particularly simple result can
be obtained from the EMT, Eq. (2.16), for the case
where

0,0y P,<KP,. (4.1)

For all values of C for which 0, «0(C), i.e.,
Cz0.5, we get directly from the EMT result, Eq.
(2.16),

S(C)=S,. 4.2)

A derivation of Eq. (4.2) from the local continuity
equations is given in Appendix A. The conditions
0,0y, P, < P, are obeyed by the values used for
calculations and numerical simulations presented
in Fig. 2. We note that the result, Eq. (4.2), is
reproduced by the numerical simulations over a
wider range of metallic volume fraction (C=0.3).
In the low metallic concentration range below C*,

a simple result for P(C) and S(C) can be derived
from Eq. (2.16) for the case in which

0,04, S;>8S;, K, ~ Ko (4.3)
We get

P(C)=P, (4.4)
or

S(C)=0,8,/0(C) =8,(1 -30). (4.5)
Equation (4.5) has the form

S(C)=(S,/Clyp)(CHyr = ©), (4.6)

where C%, . =3 is the percolation threshold ob-
tained in the EMT. The C dependence of Eq. (4.6)
arises entirely from that of the conductivity, which
we have shown, is accurately represented by re-
placing C¥,; by the true threshold, C*=0.145, for
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continuous percolation, so that
s(C)=(s,/C*)(C* - C). (4.7)

Condition (4.3) is only roughly obeyed by the values
used in Fig. 2. Qualitatively, however, both the
EMT and numerical results are characterized by a
weak C dependence of P below C*, while above

C*, P(C)~0o(C). Equivalently, S(C) is proportional
to 0 "(C) below C* and is constant above it. This
behavior provides a stringent test of the existence
of a binary distribution of values of the local trans-
port coefficients. As the distribution broadens
from the sum of two 6 functions, the region of cur-
vature in the S-vs-C plot can be expected to spread
out.

Cohen and Jortner® have proposed a model of bi-
modality of concentration fluctuations in metal-
ammonia solutions, particularly in Li-NH, solu-
tions and Na-NH, solutions, in accounting for the
continuous metal-nonmetal transition observed in
the range 1-10 mole % metal. In particular, Cohen
and Jortner have fitted the EMT for this thermo-
power described here to the data for Li and Na
ammonia solutions. Unfortunately, the experimen-
tal data are insufficient for firm conclusions, but
there is enough evidence of curvature of S vs C at
large C for the Na-NH, solutions to infer the ex-
istence of some deviation from a strict binary dis-
tribution of concentration fluctuations.

APPENDIX A: DERIVATION OF EQ. (4.2)

We shall now derive Eq. (4.2) directly from the
local continuity equations without invoking any ap-
proximations. The continuity equation for the local
electric current, Eq. (3.2), is

-V [0@)VeE) ]+ [PF)VT(F)]=0. (A1)

For a binary inhomogeneous medium o(¥) and P(#)
both exhibit spatial fluctuations and are character-
ized by the following bimodal distribution functions
for the local values of ¢ and of P:

g(P)=C8(P-Py)+(1-C)8(P-P)), (A2a)
g(0)=C8(0 —0,) +(1 - C)6(0 - a,). (A2b)

It is apparent that in the limiting case when P,/P,
=0,/0,

P(F) = (Py/0,)o(T). (A3)

The local potential field in a sample subjected to
both potential and temperature gradient can be con-
sidered as a sum of two terms

@ (F) = ¢°(F) +0¢ (F), (A4)

where ¢°(r) is a solution of the local continuity
equation in the case where the average tempera-
ture gradient vanishes

V[oF)Ve (F)]=0. (A5)
We now have from Egs. (A1), (A4), and (A5)

—6[0('1")56(;)(?)]+-V’[P-5T(f)]=0. (AB)

For values of C for which o(C) »0g,, o(C) does not
depend on the value of 0, as long as 0, <0,. Similar
behavior can be expected for P(C). Under the con-
ditions expressed by Eq. (2.1), the results in the
region CzC*+0.1 will therefore not be affected if
we assume that 0,/0,=P,/P,. Under this assump-
tion, Eq. (A4) holds and Eq. (A6) can be recast in
terms of a new potential field, &(»)

V[o@E)Ve()]=0, (ATa)
where

& (T) = =00 (T) + (Py/0,)T(T). (ATb)

Since Eq. (A7a) is analogous to Eq. (A5) we may
conclude that

®(T) x ¢°(F). (A8)

Now, utilizing the relation
a(Vg) = (o (F) Ve (F)), (A9)

where o is the macroscopic conductivity and (Vo)
the macroscopic potential gradient, together with
Eq. (2.4b) one gets the following relation for S(C):

_P(C) _(o(P)Va(F))

SO=30) ~ DT @) (A10)

From Eq. (A8) it is apparent that (7(»)V(»)) and
©(r)V@°(r)) exhibit the same C dependence, where-
upon S(C) is independent of C, i.e., S(C) =8, for
C>(C*+0.1, or so.
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