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Recent time-resolved photon-scattering experiments [1,2] have monitoted
the continuous “transition” from resonance fluorescence to near-resonarce
Raman scattering. A tunable laser pulse was scattered from a single rotational-
vibrational level of the B3 II state of I, around 5145 A. The time-profile of
the scattered light was monitored at various values of the meah energy of the
light pulse, using several gas pressures (0.03 torr anfl 0:23 torr). The pulse ex-
tinction time (~3 nsec) was considerably shorter thar the level lifetime (!
~ 1 psec). The following experimental features were observed [1,2]:

. (i) The time-resolved decay pattern is charactérized by two types of
modes: a long-lived mode with lifetime I'~1, and a mode characterized by
the shorter lifetime of the pulse. At resonance (A = 0), where A is the energy
difference between the mean etiérgy of the pulse and the molecular transitién,
only the “molecular” long-lived term [~exp(—T'f)] is observed.

(ii) The relative contribution, {R}, of the molecular long-lived compénent
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to the total intensity of the scattered light decreases on tuning A away from
resonance, and becomes approximately constant at large A values.

(iii) Increasing the I, pressure results in an enhancement of the ratio {R}.

-A basic result of the theory of resonance scattering [3] is that the time-
delay, (A9, of a wavepacket due to its interaction with a target is (A =
2I'/(A2 + I'2). On resonance we have (Af) = 2/T", a result compatible with ob-
servation (i) above. However, as A - oo, {At) = 0, i.e., far off-resonance only
a direct scattering process prevails. This general conclusion is incompatible
with observation (ii) as {R} should vanish when A - o, We are thus led to
the conclusion that even at pressures as low as 0.03 torr, collisional effects
play an important role in photon scattering in this system.

We shall present here the results of a quantum-mechanical treatment [4—6]
of photon scattering by collisionally perturbed molecules. The various decay
matrices (including spontaneous emission) appear naturally in our formalism,
avoiding the phenomenological treatment of the relevant decay processes
made in previous works. We shall subsequently specialize to a simple mole-
cular model, which yields qualitative agreement with the recent experimen-
tal results for the pressure dependence of time-resolved photon scattering
from I, [1,2].

The total Hamiltonian for our system is [5,6]

H=H0 +HV'
Hy=H, +H, +H,,
H,=H, +H_, . M

The various terms in eq. (1), as well as the relevant eigenstates of Hy, are de-
fined in table 1.

- We consider a molecule characterized by a single ground level |g) which is
radiatively coupled (near resonance) to another single electronically excited
rotational level |/ = Isj, vac). |7) is a part of a rotational manifold {|i)}. We
further assume that inelastic molecular collisions can induce transitions with-
in the manifold, as well as predissociation. Vibrational relaxation is neglected,
as vibrational energy differences are considerably larger than rotational
spacings. Also, we neglect electronic relaxation (other than predissociation).
In a simple model calculation, all the {|i)} levels ate assumed to have the
same radiative lifetime I'y 1 whereupon the rate of spontaneous emission is

F(A ) =TPy(A 1), (2

where P (4, t) is the total population of the excited band {}i)} obtained by
taking the trace of the density matrix, p 4 (¢), for the entire system, over
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Table 1
Definition of the system’s Hamiltonian and the zero-order eigenstates

Term Definition Eigenstates
Hy, Molecular Hamiltonian |g) ground state
ls; a set of closely
's_ lying excited
states
|sn)
H, Free radiation field fvac) vacuum state
Hamiltonian ik) one-photon state
(k being the photon wave
vector)
Hy Bath Hamiltonian 1) bath states
H +H Combined radiation + g k=1k)
molecular Hamiltonian Isi, vac) = 1D
(in the rotating wave
approximation)
Ho =Hpy + Hy + Hy Zero-order Hamiltonian
Hmy Molecule-radiation interaction
Hmp Molecule-bath interaction
the bath and over the {|i)} states,
P& 1= 20 21 G BlomO B 3)
i

Eqs. (2) and (3) describe molecules corresponding to a single velocity-group.
The experimental photon counting rate {F(A, ¢)} from a gas at thermal equi-
librium is obtained by convoluting eq. (2) with the Doppler profile f(A)

{F, D} = f dA'F(A', ) f(A—A)SFxf, @)

where
£(A)= (mp2)~1/2 exp(—A2/p2) %)

and B is the Doppler width.
Using the equation of motion of the density matrix in Liouville space [7,8]
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we obtain, to second order in the applied field, and within the framework of
the rotating-wave approximation [5]

— i 2 - !
P(A, )=—2Ke A? lgl® [ [ drdr' 6@ -1

X 0(t — 1) o) o(r") illG1 (t — DN KTKIG (2 — TR . (6)

Here 0 is the Heavyside step function, u;, is the transition dipole matrix ele-
ment and ¢(7) is the envelope of the light pulse,

E(7) = ¢(1) exp[—ik (cT - 2)] , @)
G and G, are tetradic retarded propagators related to the relaxation matrices

for populations (T;) and for optical coherence (T';), respectively. We are using
here the double bracket notation [7,8], where |af) is the Liouville-space vec-
tor corresponding to the transition operator [a}{gl.

We have derived [5,6] explicit formal expressions for G, and G using the

Fano-Zwanzig projection-operators technique [9,10]. Ass’l;'ming short correla-
tion times for collisions with the bath, these reduce to the form

Gy())=0(1) exp(-5 Ty1) (82)

Gy(H)=0(r) exp[-(iQ + Ty) 1], (8b)
where g and I'; correspond to the line-frequency and the damping matrices
respectively. =~

For a two-level system (/g) and |7)) the matrices G, and G are scalars and
we get ~ ¥

t t
Py, 1)= P&, )= lggl® [ dr dr'o(r) o(r')

X exp[—LT (2t — 7 — )] exp[(ia — D) — 7)), ©)
where
f=ry— 4T =7 — 57 - ©a)
2 1
and

A=E; - E, - hkc , (9b)
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is the off-resonance parameter. Strictly speaking, the level energies £, E,
should be corrected by a frequency shift included in . However, since we
are interested in a simple model we shall hereafter neglect this shift. In a more
complicated situation the matrices Gl and 02 can be generally calculated

using the formalism described elsewhere [5 6]
We shall now confine the discussion to a simple model for the multilevel
system. We take I'; to be an n X n matrix

~

TN =T18; — (A =8,)T1 (=123, .s1), (10)

assuming that all the n excited levels are characterized by the same damping
rate I"l and cross relaxation I"'l', the tetradic vector Z; (il is then an eigenvec-
tor of I'y, with the eigenvalue

r=T;-(m-DT7. an

This property enables us to simplify eq. (6) considerably, making the re-
placement (|G (1) = Z(iilexp(—T'; 7). Next, we consider the T propa-
gator G,. In the case of a sharply-defined near resonance transition &)= »

we need only the single term [7]
P =@ & =3 +T)+ T, (12)

where 3(I; + [y ) is a T contribution to T, whereas T, represents true T
processes (i.e., the contribution of phase-changing colllslons) Neglecting the
relaxations in the ground state, we have 'y =0and I; = ). ThusT, =

AT, +Ty =5T] +T).

Usmg the relaxation matrices egs. (10) and (12), the photon counting rate
now assumes the same form as for the two-level system eqs. (2), and (9) where
I'; and T are defined by eqgs. (11) and (12). Egs. (9) may be rearranged and
the experimental photon counting rate at finite pressure, eq. (2), is finally
expressed in the form of the triple convolution

Fa, 0= [[da’ aa"FOa - &', 1)

XLA —A"FAY=FO L f. (13)

Here FO is the photon counting rate given by eq. (9) with " = 0. It depends
on I’y only, and since I'; includes pressure-independent contributions (where-
as I includes only collisional effects), we can regard it as an “isolated-mole-
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cule” photon counting rate. At finite pressures, however, I'; includes colli-
sional contributions (such as predissociation) as well. The function L in eq.
(13) is a Lorentzian

L(a) = ([/myi(a2 +12), (14)
whose width is given by
F=r,-ir,. (14a)

In order to provide a quantitative interpretation of the recent experimen-
tal data [1,2] we shall consider the following model for the light-pulse envelope

exp(3710) <0
o= {1 0<t<T
exp[—Ly,(t - D] t>T. (15)

For the “isolated-molecule” case we can then write

FO(A, 1) = 18(A, D12, (16)
where, for ¢ > I',; ®(r) is given by [4]

®(1) = A4, exp[—172(t - T)]

- — A exp[-(A+iD)(E - D], _ )]
with

4,= [A +2 (T, —72)]_1 , (17a)
Ag =[A +% T - 72)]_1 - (A * % Ty )—1

: ~1
+exp(—LT; T +iAT) { (A +i2 r )

_[A +% T, +-,1)]—1} . (17b)

The ratio {R} of the long-lived component (IM\) to the total scattered inten-
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sity (I) defined at ¢ = T is thus

lAslz*f*L
RY= Iy [l = e — .
Ry =l IB(T)2 «f+ L

Eqgs. (13) through (18) constitute our basic results. In figs. 1 and 2 we pre-
sent some numerical model calculations for {F(4, 1)} versus t at several values
of A and for {R} versus A for various values of I'/T"; . The results are in quali-
tative agreement with all the experimental features [1,2]. In particular, we

note that: .
(i) For ¢ > T, the decay pattern consists of a short-lived component (with

lifetime = y5!) and a long-lived molecular component (with lifetime l"i‘l).
The ratio {R} of eq. (18) is unity at exact resonance (A = 0) and decreases as
A increases.

(18)

o
3

c_)l
o

{F(A,f )}urbitrory units

Fig. 1. The time resolution of the photon counting rate {F (A, t)} (in arbitrary units)

in the absence of collisions for various values of the off-resonance energy 4, the Doppler
width (in units of the radiative damping) is 8/T'g = 500; the rise and fall times of the pulse
are 7 /T'g v2/T's = 100; the inverse duration of the pulse is T -1 T = 2. The dotted line

is proportional to the pulse time-resolved intensity.
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Fig. 2. The intensity ratio {R} between the slowly decaying component and the total
photon-counting rate, evaluated atf = 7T, as a function‘of the off-resonance parameter
A, at different values of the collision-rboadening rate I'. Other parameters same as in
fig. 1.

(ii) In the “isolated-molecule” case (f‘ = 0) we have for A> B, vq, 72,

Iyxa4, (192)

IT x A-2 , (l9b)
and consequently

R}x A2, (19¢)

This result concurs with our general argument whieh rests on the lifetime
matrix formalism described earlier. However, at finllte pressures, Iy and I'
should be convoluted with the Lorentzian (14). A8 4 result they both behave
asymptotically as A=2, and {R} - const. (see fig. 2) in agreement with the
experimental results [1,2].

(iii) Since FO is a decreasing function of A, and therefore values of A’ satis-
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fying |A — A'| < A influence the convolution (13) more than A’ values satis-
fying [A — A'| > A, the convolution of F 0 with L results in a behavior more
closely resembling the resonance (A = 0) case. This observation explains why
{R} increases with increasing I" (which in turn is proportional to pressure),

in agreement with experiment.
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Fig. 3. Comparison of the expetimental results (dashed line) of the resolved photon
scattering in I with our model calculations (solid line) A = 1.7 GHz, g = 0.4.GHz,
I' = 14 MHz(P/torr), v1 =74 = 0.75 GHz, T = 0.1 usec. (a) P = 0.03 torr, I'; = 0.9 MHz.

(b) P = 0.25 torr, Ty = 4.5 MHz.
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We shall now turn to a detailed comparison of the conclusions of our
model with experiment. To do so, we first summarize the relevant available
experimental data on I, near 5145 A:

(i) From fluorescence quenching experiments [11] it was found that the
levels of I, around 5145 A are subjected to spontaneous and collisionally
induced predissociation. We have

Iy =T +a(P/torr) , (20)
where (at room temperature)

a=2.264(0/A2). (20a)
Here

0=170 A2 : (20b)

is the cross section for collisionally induced predissociation. I'¢= 4.2 X 103
sec—! is the inverse lifetime of the collision-free molecule (including spontane-
ous predissociation and radiative damping).

(ii) ' may be evaluated [6] from high-resolution spectral measurements
[2]. The ratio of the integrated intensities of the sharp Raman lines and of

T — —7

1 |
0o 05 1.0 15

r/n-

Fig. 4. The intensity ratio {R} between the slowly decaying component and the total
photon-counting rate, evaluated at t = T, as a function of the off-resonance parameter
A, at different values of the collision-broadening rate . Other parameters same as in
fig. 3. (a) P = 0.03 torr. (b) P= 0.25 torr.
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Table 2

Comparison of the calculated intensity ratio {R} (eq. (18)) with the experimental results
(The off-resonance energy A = 1.7 GHz, = 0.4 GHz,y; =2 =0.75GHzand T =

0.1 usec)

P=0 P=0.03torr P=0.25torr

Iy  from self quenching data (MHz)® 042 . 09 4.5

I MH)D) 0 0.43 3.6

{R} theory 0.10 0.17 0.42

{R} experiment unavail- 0.14 0.45
able

a) Ref. [11].

) Estimated from the value of I‘/I‘l obtained from the energy resolved spectral data of
ref. [2], and the value of I'; obtained from the self-quenching data of ref. [11].

the broadened “redistribution” term [2] (0.8 at 0.25 torr) is just I‘/I‘l We
can then estimate I = 14 MHz (P/torr).

(iii) The pulse parameters [1] (eq. (15)) were taken as 7= 0.1 usec and
Y1 = 72 = 0.75 GHz. The Doppler width is § = 0.4 GHz. The off-resonance
parameter in ref. [2] was A = 1.7 GHz.

Using all these data we have calculated the time profile of the scattered
light at the pressures studied experimentally [2] (0.03 torr and 0.25 torr),
as presented in fig. 3. To gain an insight in the sensitivity of our results to.the
variations of ' we plot {R} versus I in fig. 4. The qualitatively good agree-
ment of our calculations with experiment is evident from table 2.

We have thus advanced a simple solvable model for scattering of a weak
light pulse from a collisionally perturbed molecular resonance. The same so-
lution could be obtained from the Bloch equations to second order in the
applied field. Extension of the treatment to strong light pulses (i.e., satura-
tion effects) may be obtained by a numerical solution of the Bloch equations.
From the experimental point of view it will be interesting to (a) perform
further studies with foreign gas broadening, (b) investigate the dependence of
the time profile on the light intensity, and (c) try to study time-resolved
photon scattering resulting from excitation by two photons travelling in op-
posite directions [12]. Doppler-free scattering experiments of the latter type
will result in new information regarding some salient features of collisional
effects.

Note added in proof. The numerical results presented here are in qualitative agree-
ment with experiment. A more detailed and quantitative comparison with experiment
is presented in ref. [6].
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