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I. Prologue

The level structure of electronically excited states of a polyatomic
molecule i1s generally very complex and may include discrete molecular
states, intramolecular dissipative quasicontinua (Bixon and Jortner. 1968,
Robinson, 1967), and dissociative continua (Herzberg, 1966). The complete
understanding of intramolecular excited state dynamics in large molecules
requires the elucidation of the time dependence of the molecular system
interacting with the electromagnetic field. Early treatments of time-resolved
experiments studied the nature of an “initially prepared”™ state in large
molecules, considerning only the role of the intramolecular, nonradiative
decay channel (Bixon and Jortner, 1968; Jortner and Berry, 1968; Rhodes,
1969; Chock et al., 1969), while subsequent studies have considered the time
evolution of the molecular system after the termination of the exciting pulse
(Freed, 1970; Rhodes, 1971, 1974). On the other hand, energy-resolved ex-
perimental observables such as optical lineshapes and cross sections for
photon scattering and for intramolecular decay were treated by studying
photon scattering by a molecule within the framework of the Lippman-
Schwinger formalism (Goldberger and Watson, 1964; Shore, 1967, Nitzan
and Jortner, 1972). One can handle both *time-resolved ™ and “energy-
resolved " experiments by considering the time evolution of a molecular
system interacting with a photon wave packet (Kroll, 1964; Cohen
Tannoudji, 1968; Jortner and Mukamel, 1974). The fundamental problems
encountered in the field of intramolecular dynamics in electronically excited
states of large molecules, commonly referred to as intramolecular radia-
tionless processes (Henry and Kasha, 1968; Jortner et al., 1969 Schlag et al.,
1971; Freed, 1972; Robinson, 1973; Jortner and Mukamel, 1974), are inti-
mately related to the general areas of resonance Raman spectroscopy
(Huber, 1969; Omont et al, 1972; Shen, 1974) and to the nature of the
*transition " from resonance fluorescence to near-resonance Raman scatter-
ing from molecules (Friedman and Hochstrasser, 1974; Williams et al., 1974,
Mukamel and Jortner, 1975; Mukamel er al., 1975; Berg et al., 1974; Metiu
et al.,, 1975; Hilborn, 1975).

The general theoretical techniques for handling time-resolved and
energy-resolved experimental observables in all those areas are identical,
and only the specific questions sometimes differ. In the field of resonance
Raman spectroscopy and light scattering from molecules one is interested
intrinsically in the time and energy-resolved profiles of the scattered radia-
tion. In the study of radiationless transitions one would like to entangle the
time- and energy-resolved photon scattering data to obtain pertinent infor-
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mation regarding the various intramolecular decay channels in a large
molecule. A complete theoretical treatment of these interesting problems is
desirable. We have considered the problem of time- and energy-resolved
photon scattering from large molecules (Jortner and Mukamel, 1974). Fried-
man and Hochstrasser (1974) have utilized scattering theory to derive an
expression for time-dependent scattering of a Lorentzian photon wave
packet from a molecular level, which is in agreement with one of our special
results (Mukamel and Jortner, 1975). Berg et al. (1974), Metiu et al. (1975),
and the present authors (Mukamel et al, 1975) have advanced a general
treatment of time-resolved photon scattering from a single molecular reson-
ance. In the present review we advance a theoretical framework for the
treatment of the optical excitation of a general molecular system, which is
characterized by an arbitrarily complex molecular level structure. A uniform
formalism bridging time-resolved and energy-resolved experimental observ-
ables will be advanced by considering the time evolution of a molecular
system interacting with a photon wave packet. General excitation conditions
by weak optical sources are amenable to a detailed study by this formalism.
Application of the theory will be presented subsequently to handle photon
scattering from several physical models for molecular level structure in
excited electronic states of polyatomic molecules.

IL Quantum Mechanical Treatment of a Light Pulse

A classical description of the electromagnetic field and of light pulses has
often been adopted in connection with laser theory (Haken, 1970) and linear
response phenomena (Ben-Reuven, 1975). We shall utilize a quantum
mechanical approach (Kroll, 1964; Cohen Tannoudji, 1968) in which spon-
taneous emission is inherently incorporated without any semiempirical
assumptions.

Consider a large optical cavity with the field modes k; k denotes the
photon wave vector, while for the sake of brevity we shall suppress the
photon polarization vector e. We have a complete set of field states {|n, )} =
I1; | n;>, which are characterized by n, photons in the ith mode. A general state
of the electromagnetic field may be represented as a linear superposition of
these {|n,)} states. Weak fields are characterized by a small number of
photons in each mode and can be represented as a wave packet of one-
photon states (Kroll, 1964; Cohen Tannoudji, 1968)

¥ = [ kA, |k) (1)
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where (k  denotes a state of the field having one photon k and zero
photons i all other modes. 4, are the wave-packet umplitudes and k = k|
The wave packet (1) satisfies the normabzaton condition

| k| A2 =1 (1a)

(throughout this paper we shall use the units b = ¢ = 1). It should be em-
phasized that although Eq. (1)1s directly applicable for weak fields it may be
used for an adequate description of any linear response phenomena even for
strong ficlds

Let us now digress on the properties of the photon wave packet (1). The
‘one-photon states ;k  are normalized as

klk >=4dk - k) (2)
We define the vectors @ and K as follows.

t k
x k
- K = s 3
Q-3 k’ ©)
z k

Q represents a general space-time point. whereas K consists of the photon
energy k and momentum k = (k,, k,. k.). The scalar product K - Q is

K- Q=kt+k-gq 4)

where q = (x, y, z) 15 the position vector. The photon density [ per unit
volume at the space point q and at r = 0 is given by

I@)=<wIN@I¥> (5)
where N(q) is the photon density operator (Schweber, 1961; Glauber, 1969)
Na) = 6" (@)(a) (6)

and
$(a) = (2n) > T | dk exp(~ ik - qa, )

corresponds to the Fourier transform of the photon annihilation operator
a,. For the free electromagnetic field we have

W)=Y _| d*k exp( - ikt)4, k> (8)
and the photon density at a general space-tume point Q s given by

1(Q) = <y(t)| N(a)|w(t)) 9)
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Provided that the energy spread Ak of the photon wave packet is much
smaller than its mean energy k. the energy density W(Q) of the field is
proportional to I(Q), and is given by

W(Q) = kI(Q) (10)

Thus, apart from a normalization constant, the field energy density is given
by Eq. (9) Substitution of Eq. (8) in (9) results in

Q=20 LY || @k,
x exp[—i(k — k') - q)Ay AL expli(k — k)] (11)
Defining the Fourier transform of the photon wave-packet amplitudes
?(Q) = [ &k exp(~iK - QA (12)
and

Y. A= (27)"* [ d°q0(0, q) exp(ik - q) (13)

we finally oblz'tin a transparent result for the energy density
1Q) = (27)7°|¢(Q)[* (14)
The normalization of I(Q) follows from Eq. (1a),

[#a1@ = @n)* [ dgl0(Q)P

=Y [k|A =1 (15)

which implies a straightforward conservation law for the number of photons
in the free field.

Consider now a special case of a light pulse traveling along the x axis.
Equations (1), (12), and (13) are reduced to

v = | dka,|i> (16)
o(t) = [ dk4, exp(—ik) (17)

A, = (2m)"! ‘|' dto(t) exp(ike) (18)
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In this case g 1s actually a scalar ¢ = x + t. The photon density at g is given
by

I+ 1) = ) o(x + 0 (19)

Thus || provides us with the spatial and time profile of the pulse.

We have thus presented an adequate way to describe a minimal wave
packet satisfying the uncertainty relation AEAf ~ 1. A more general treat-
ment of weak ficlds can be carried out by treating the light pulse in terms of a
density matrix of one-photon states

p(0) = J'J' |kdpuk’| dk dk’ (20)

and the pulse intensity is now

1(Q) = Trp(t) - N(q)] (1)

Our minimal wave packet (16) is characterized by the off-diagonal elements
P = A AL, however, in real life the light pulse is not necessarily minimal
and p,,. may be represented in terms of any function. Since for a given light
source we usually do not know the exact state or density matrix of the field
we shall proceed using Egs. (16) and (19), and bearing in mind that whenever
we have a product of the form ¢(r)*p(r’) it should be replaced by the
appropriate correlation function (Glauber, 1969; Loudon, 1973)

{p*(tho(t')).

IIl. General Theory of Photon Counting

The total Hamiltonian for a molecule interacting with the radiation field
is given by

H=H,+V (22)
where :
Ho=Ho+H, +H, (22a)
and
V=H,, (22b)

Here H® is some zeroth-order molecular Hamiltonian and H, is an intra-
molecular coupling term. The exact molecular Hamiltoman 1s
H. = HY + H,. H, is the Hamiltonian for the free radiation field and H,,, is
the radiation-matter interaction term. The eigenstates of H, were introduced



EXCITED MOLECULAR STATES 63

in Section 11, and we shall consider throughout this review only the one-
photon |k) and the vacuum |vac) states. The molecular level scheme (i.e.,
the spectrum of H3) is taken to consist of several electronic states: |g) (the
ground state) and |s), |r) (excited electronic states), etc. Each of these states
contains a manifold of vibrational-rotational states. Denoting the collection
of nuclear quantum numbers by v. we have for the spectrum of Hy:
|gv. vac), |guv, k). [se, vac), [st, k). ete. Since usually the energy gap be-
tween |g) and |s) is sufficiently large so that off-resonant interactions do
not contribute appreciably to the time evolution, we shall consider only
one-photon states of the |gv, k) type and vacuum excited electronic states
|sv, vac), |rv, vac), etc., and neglect the contribution of states such as
|gv, vac) or |sv, k). This approach is equivalent to the rotating wave
approximation (Louisell, 1964). The basic level schemes of Fig. 1 can be now
utilized to provide a complete description of both the decay of metastable
molecular states and of photon scattering by an “isolated,” collision-free
molecule. The nature of the specific experiment depends on the character-
istics of the light pulse.

We can now proceed to treat the photon counting problem. Consider a
small target of isolated molecules in the gas phase at low pressure located at
the origin of a Cartesian coordinate system. A photon wave packet
[Eq. (16)] traveling along the x axis is being scattered from the target, and
we are monitoring the photon scattering rate using a point photodetector
which is located at a spatial point A, characterized by the polar coordinates
(R, ©, ®). The photodetector measures all photons having the propagation
direction (©, P). Choosing as our detector an ideal photomultiplier tube
characterized by an infinite time resolution (and no energy resolution), the
photoelectric current (i.e., the photon counting rate) is generally given by
(Louisell, 1964)

1(Q) = x<y(0) | N(@. R)[¥(e)> (23)
where a is determined by the efficiency of the detector and by the geometry

of our system, and N(Q, R) is the photon density operator at point A.
Utilizing Egs. (6) and (7) we have for the photon density operator

N(@, R) = (27)"* ¥ [[ dk dk'k?k?
& )
x exp[—i(k — k')R]a; a, (24)
We now proceed to derive a general expression for the wave function of

the system ¢(t), at time ¢, using the Green's function method (Goldberger
and Watson, 1964). For the sake of simplicity we consider first a system
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Fig 1. Basic level schemes for radiauve and interstate coupling in polyatomic molecules

(a) A statistical large molecule. (b) a small molecule. and (c) intermediate level structure in a
large molecule.
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characterized by a single ground state |g). Let
Vo(0) = | dkA,|g. k> (25)

be the wave function of a hypothetical system at ¢ = 0 in the absence of H;,,.
In the Appendix it is shown that

W(e) = Yo(t) + (2ni) ™! | dE exp(—iEr)

X G(E)H;a(Go(E) — Gg (E)W0(0) (26)
where G(E) is the Green's operator
G(E)=(E-H +in)™"; n—0* (26a)
and
Go(E)=(E— Hy +in)™%; n—0" (26b)

Using Eqgs. (25) and (26) we get

V() = ¥olt) — | dE exp(— iE)G(E)H o, A(E)| g, E (27)

where A(E) = A,, |g. E) = |g, k) and k is a photon belonging to the excit-
ing pulse, which is characterized by the energy E. The experimentalist
engaged in photon counting experiments takes great pains to eliminate the
“stray light " which involves the photons corresponding to the exciting light
pulse. The experimentally relevant photon counting rate, excluding those
photons, |k) = |E), of the original exciting pulse may be obtained from
Egs. (23) and (27) excluding the contribution of ¥, to Eq. (27). This is
apparent since ¥, pertains only to those photons which have the same
propagation (and polarization) directions of the original exciting pulse, and
which are not monitored in the actual photon counting experiment. Equa-
tions (23) and (27) result in

I(R,©,®,1)= # 3 g _|'_|' dE dE’ _|'_|' dk di’
% k*k'? exp[—i(E — E')t] exp[i(k — k')R]
x A(E)A*(E'Kg, E'| Hia G (E)| g, k'
x<{g. k|G(E)H;. g, E> (28)
which can be rearranged to yield

IR, ©,®,1)= % z P (29)
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where
¢ = || dE dkk*A(EXg. K| G(E)H .| 9. E>
x exp(—iEt) exp(iER) (30)

It should be borne in mind that the | E) photons are all traveling along the x
axis, whereas the k" photons are traveling in the direction Q = (O, ®).

We now introduce an additional assumption regarding molecular rota-
tion. Since we are not interested at present in the angular distribution of the
emitted photons, we shall treat the rotations semiclassically, assuming first
that the molecular direction is fixed in space so that its transition dipole is
oriented along the z axis. The final expression for the photon counting rate
will be obtained subsequently by properly averaging Eq. (29) over the excit-
ing photon propagation and polarization directions and integrating over all
the propagation directions of the photons. The final expression for the
photon counting rate is

1) =  [[ d0d cos OCI(R, ©, @, 1)) (31)

where the (---) stands for averaging over molecular orientations. Using
Egs. (29)-(31) we finally get for the spatially averaged photon counting rate

I(t) = (o/97%)| 9| (32)

Equation (32) together with Eq. (31) constitute a formal result for the
photon counting rate from a general level structure in the excited manifold,
while the molecular system is characterized by a simgle ground state |g).
The latter simplification may be easily relaxed by considering a ground state

vibronic manifold {|gv)}. In analogy with Eq. (30), the general expression
for the photon counting rate (at zero temperature) is now given by

IR.O,®,1)= — (2 @y 2 ZZ [¢. (33)
where
¢, = |[ dE dkk* A(E)gv, k| G(E)H | go. EY exp(—iEt)  (34)
and the spherical averaging finally results in the photon counting rate

10)=55 T | 6s)
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Equations (34) and (35) providé us with a formal result for a general
molecular Jevel structure, which is valid for weak fields within the frame-
work of the rotating-wave approximation. We now proceed to derive explicit
theoretical expressions for level structures of increasing complexity.

IV. The Two-Level System

We shall first consider the application of the general formalism to the
simple case of a two-level system, so that the molecular Hamiltonian H,, has
just two discrete eigenstates, the ground state |g) and an excited state |s).
Although these results are already known, we believe that a systematic
derivation is of some interest, particularly in relation to the general problem
of an arbitrarily complex level structure which will be considered in Section
V.

The photon counting rate can now be obtained from Egs. (30) and (32).
Making use of the Dyson equation we cast the matrix element appearing on
the integrand of Eq. (30) in the form

g, k|G(E)H |9, E> = |7|}(E — k + in)"'G(E) (36)
where
= (gr E' Him IS. vac} (3?)

In the derivation of Eq. (37) we made use of the weak k dependence of
the electromagnetic interaction in the relevant k domain. This is valid
provided Ak <k, where Ak is the energy range of the incident and of the
emitted photons, and k is the mean excitation energy. Substituting Eq. (36)
in Eq. (30) and performing the k integration we get

=2ni|y|E] [ dE exp[~iE( - RYGLEM(E)  (38)

The (t — R) factor in Eq. (38) originates from time delay due to the location
of our detector, and hereafter we can set R = 0. Equation (38) provides an
explicit result for the photon counting rate from a two-level system in terms
of an integral of the product of the diagonal matrix element G,(E) of the
Green's function [Eq. (26a)], and the photon wave-packet amplitude. Equa-
tion (38) can be alternatively written in the form of a convolution integral in
the time domain

b=2n|; IR [ deColt - Yol) (39)
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where the Founrer transform of the Green's function
Cult)= (27i)"' | dE exp(—iEt)G,(E) (40)

constitutes the molecular decay amplitude for this system.

Equations (38) or (39) together with Eq. (32) constitute our final result.
To gain further physical insight we shall now relate the photon counting rate
to the probability, P (t), for finding the system in the excited |s) state.
Utilizing Eq. (27) it can be immediately shown that

P(t) = | <sovac () | = Y| 7k% )72 | @ |? (41)

we have thus demonstrated the well-known proportionality between the
photon counting rate and P (r).
Qur final result for a two-level system can be recast in the form

I(t)=TP,r) (42)
where
I =4a/3|; | k[ (43)

is proportional to the (spherically averaged) width of the excited state and

L2 e R
PO=LE 1 ae [ avcu - acue - o)) (@4)
Here we have explicitly introduced the field correlation function following
the discussion of Section 11.

V. Doorway States and Photon Scattering from a
General Molecular Level Scheme

We now address ourselves to the derivation of explicit theoretical expres-
sions for time-resolved photon scattering from a molecule characterized by
an arbitrary (complex) level structure in the excited electronic states. The
general molecular level structure consists of a ground state |g) with the
various vibronic levels |gv) and, in addition, a variety of electronically
excited states including discrete states, intramolecular quasicontinua. and
true (dissociative) continua. A convenient way of handling the time evolu-
tion of a system characterized by such general level schemes rests on the use
of projection operators (Mower, 1966: Feschbach er al., 1967), which enable
us to concentrate on the time evolution of a small subpart of the Hilbert
space, spanned by those states which exhibit the most significant contribu-
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tion to the photon scattering process, and treat the rest of the levels in a less
rigorous way. The essential step in applying projection operators is to parti-
tion the Hilbert space into two or more subspaces. For the purpose of
treating photon scattering experiments we can define a Q subspace spanned
by the |gv, k) states (all ¢ and k) and a P subspace containing the rest of the
states. In addition, we shall make use of partitioning the P subspace into two
parts: P = P, + P’, where P, contains all the zero-order states directly
coupled by H,,, to the Q space. It should be emphasized that this segregation
is by no means unique, and other choices may be adopted when dealing with
specific molecular states. The Q space can contain, for example, some intra-
molecular decay channels not coupled directly with |g). For the sake of our
present general discussion, the dissection introduced above is found to be
most convenient. Dcrloting the projection operators for the P, P, and Q
spaces by P,, P, and Q, respectively, we have P + Q = 1, where P = P, + P,
and the coupling V [Eq. (22)], can be written as

V=PFH,Q+QH,.P, (45)

The photon counting rate from the molecule is now formally given in
terms of Eqs. (34) and (35). We proceed to consider the matrix element
appearing in the integrand of Eq. (34). Making use of Eq. (45) this matrix
element may be cast in the form:

{gv, k|G(E)H | go. E> = {gv, k| QG(E)PH o,| go. E> (46)
We now utilize the formal expression for the projection §GP (Mower, 1966)
OGP = Q(E - H, — QVQ)™'QH,, PGP 47)
where
PGP = (E— H, — PRP)'P (48)
and R is the level shift operator:
R=V + VQ(E - Hy,— QVQ)QV (49)

Using Eqs. (46) and (47) and bearing in mind that QVQ = 0, whereupon
(E — Hy — QVQ)~'Q is diagonal in our representation, we get

{gv, k| G(E)H ;| 0. ED
==(.E——k—E,,,+fq)"
x {gv, El HinlpdG(E)ﬁdHinll 90'E>(e'2) (50)

where E, is the energy of the |gv) state.
The matrix element (50) can be visualized as a matrix element of the
Green's function between generalized states of the form P, H,,, | g, k). At
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this stage we introduce the basic concept of molecular doorway states. This
notion has long been used in nuclear physics for the interpretation of scatter-
Ing cross sections (Feschbach, 1974: Mahaux, 1973) (i.e.. energy resolved
experiments) and was recently introduced (Jortner and Mukamel, 1974,
1975) for the study of intramolecular dynamics. A molecular doorway state
| N, isdefined as the superposition of all excited molecular states, | S ). each
weighted by its radiative coupling strength with the vibronic ground state
level |gr)

[N, vac) =y, 'Hi, | gu. kD
=771 Y | & vac)(Z, vac| Hin | gu. KD (51)

where

s =Y |{gv. k|Hp\| S, vac)|?

= (gv. k|H}, | gu. k> (52)

is an appropriate normalization constant that corresponds to the radiative
width of the doorway state. As the (discrete and/or continuum) states { | $ )}
span the P, subspace. we note that

P,|N..vac) = |N,, vac) =y, 'P,H,.|gt. k> (53)

We would like to emphasize that Eq. (51) provides a definition of a set of
doorway states || N, ;. each corresponding to a certain vibronic level of the
ground electronic state. The definition of doorway states presented herein is
more general than that previously used (Jortner and Mukamel, 1974, 1975)
where only a single doorway state was considered. The present general
formalism involving a (discrete) set of |N,) stgtes is necessary for the
description of several cases of physical interest, e.g., inelastic photon scatier-
ing from a dissociative continuum (Section XI) and for time-resolved photon
scattering from a discrete complex molecular level structure where the ori-
gins of two electronic configurations are nearly degenerate and both are
radiatively coupled to the ground state. In many cases of physical interest,
when a single excited state carries all oscillator strength from the ground
state (Bixon and Jortner, 1968) the concept of a single doorway state is
sufficient. We have assumed that all the states in the P, subspace have the
same direction of the transition moment to the ground state. This assump-
tion implies that the definition (51) is independent on the direction of k. The
extension of the present formalism to the case of a more general P, subspace,
allowing for variations in the direction of the transition moment, may be
carried out. The photon averaging will then be more elaborate and will
include interference terms. It should be noted, however, that this assumption
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is strictly valid within the framework of the Condon approximation when all
excited states belong to the same electronic configuration (Mukamel and
Jortner, 1974a, b).

Utilizing the definition (51) and (52) of the doorway state and ignoring
the weak k dependence of the electromagnetic coupling matrix elements we
can recast Eq. (50) in the transparent form:

RIGEI s [ GBS e 220 s = 4

<gvv ; ( ) mllgo > E—k—Ew+iq(e ) (S )

This result is analogous to Eq. (36) previously obtained for a two-level

system. Using Eq. (54) together with Egs. (34) and (35) we can now proceed

along the same lines as in Section [V and get the total photon counting rate.
The calculation is straightforward leading to the result

.o
¢, =2ni;2|k|* | dE exp(—iEt)Gy, v ,(E)A(E)

-
L}

=22k | diCy it - T)ol) (55)

where
Caunolt) = —(2ri)"* | dE exp(~iEt)Gy, o(E) (56)

is the (generalized) molecular decay amplitude.

We can now relate the photon counting rate, Egs. (35) and (32) to the
probabilities. Py (1), for finding the system in each of the | N,, vac) doorway
states at time 1,

Py (t) = |{N,. vac|y () ]?

N 2 | N
- -;l || drdeCule = OCk(t = 1)
x (p(t)p*(t')> (57)
The photon counting rate is recast in the final form
1) =3 1() (58)
where
I(t) = Ty, Py (1) (59)
and

Cx, = (4a/3):5 k[* (60)
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The formal results [Egs. (57)-(60)] derived in this section enable us to
provide a transparent description of the features of any time-resolved
photon scattering experiment from molecules characterized by an arbitrarily
complex level structure. To do so, we conceptually divide the molecular
Hilbert space into two parts, Q and P. The Q subspace contains the initial
and final radiative channels |gv) which usually constitute isolated discrete
states. Our photon detection is performed within the Q subspace, as the
population of the |gr, k) states is monitored, as is evident from Eq. (35).
The complementary P subspace contains all the electronically excited states
and in general has a complex level structure. [n the case of an isolated
resonance (Section 1V) the photon counting rate [(t) is proportional to the
population of the resonance state P(r) [Eq. (42)]. In the general case of a
multichannel photon scattering from a complex P space of excited levels we
can attribute to each |gv) ground vibronic state, a corresponding doorway
state |N,) which is entirely contained within the P space, and the rate of
emission into the vth channel is proportional to the population of this
particular doorway state. The photon emission rate into the vth channel
I(t)xPy (1) = |{N,|¥(t))|? is proportional to the occupation probability of
the doorway state |N,) for this channel. The following dynamical picture
of the photon scattering experiment now emerges. We assume that the
molecule is initially in the |g, ) state. Due to the interaction with the photan
field it enters the “ black box ™ of P states through the doorway state | Ny).
Since |Ny) is not an eigenstate of the total Hamiltonian, it undergoes a
(nontrivial) time evolution. We can specify what is happening within the P
subspace only by monitoring the population of the |N,, vac) states,
through which the system escapes into the various v final channels where it is
amenable to optical detection. The {|N,>} (v # 0) states thus serve as exit
(or “escape ) doorway states.

From the point of view of general methodologf it is important to point
out that the total photon counting rate [Eq. (58)], is expressed in terms of
additive contributions from the final [gr) decay channels. Provided that
the energy spread of the exciting pulse is lower than the energy diflerence
between adjacent vibronic levels in the |gv) ground state manifold, the
partial photon counting rates /,(r) to different final states are amenable to
experimental observation.

We now consider some special situation where the physical system is
characterized by a single doorway state. The general expression (57)}-(59) for
the photon counting rate reduces to a simple form in three cases:

1. The two level-scheme, discussed in Section IV, is of considerable
interest for the understanding of photon scattering from a single
vibrational-rotational level of a small (e.g.. diatomic) molecule (Williams et
al., 1974; Rousseau et al., 1975).
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2. Asingle state |s) in the excited (complex) manifold carries oscillator
strength from the ground state. This is a common situation in excited elec-
tronic states of large molecules (Bixon and Jortner, 1968). The subspace P,
contains a single state |s), whercupon the manifold of doorway states
[Eq. (51)], is given in the form |N,, vac) = |s, vac) for all ¢, being indepen-
dent of v. The system is, in fact, characterized by a single doorway state |s),
which is active in absorption and in emission. The partial photon counting
rates [Eq. (59)], are

1,(e) = (@a/3)| K|*|<gv., k| H o] 5. vac) |*P.(t) ' (61)

Thus, the time evolution is identical in all the exit channels |gv). Making
use of the Condon approximation we immediately obtain I(t)/1,.(t) =
M(gv; s)M(gv': s), where M(gu:; s) is the square of the vibrational overlap
integral between |gu) and |s). Making use of the sum rule §, M(ge, s) = 1,
Eq. (58) results in

I(¢) = (4a/3) | K [* | pga*P(2) (62)

Mg being the electronic transition dipole between |g) and |s).

The total and the partial photon counting rates are determined by the
occupation probability of the single doorway state |s).

3. The molecular spectrum is characterized by a single state |g, > in the
electronic ground state manifold. This hypothetical case is of some interest
for the elucidation of the relation between the photon counting rate and the
absorption line shape, which will be discussed in Section VII. There is a
single doorway state

[No, vac) = 75" ¥ |, vac)<S, vac| Hin go. k> (S1a)
z

where the states |, vac) span the P, subspace. The photon counting rate is
I(e) = Io(t) = Ty, Puo(t) (59a)

and only elastic photon scattering prevails. These results are valid for any
complex level structure in the excited electronic state.

We conclude this discussion of the general theory of photon counting
and the following comments are in order:

i. The doorway states are superpositions of the excited molecular states
{|£>} each weighed by its radiative coupling strength with |gr, k). Invoking
the Condon approximation for the radiative matrix elements, each [3) in
the expansion of |N,) is weighed by the Franck-Condon vibrational over-
lap factor M(gv; ) between |Z) and |gu).

ii. The various {|N,)} states are not necessarily orthogonal.

iii. The doorway states {| N, )} are discrete as long as the corresponding
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{1gr>} states are discrete. even if the subspace P, contains intramolecular
continua.

iv. The picture of photon scattering presented herein rests on the separ-
ability of the electromagnetic interaction (i.c., the matrix elements of H,,, are
separable in the molecular variables and in the field variables). Actually, the
separability is not complete since the interaction matrix element contains
also a nonseparable angular part: but this is easily handled here using a
semiclassical picture for molecular rotations.

v. Oursemiclassical treatment of rotations 1s not essential and we could
use a purely quantum mechanical formulation (Mukamel and Jortner,
1974a,b). In such a case each |guJM ) state would have its own doorway
state H,, |geJM, k) (here JM are the rotational quantum numbers) and
Eq. (58) should be written in the form

1= ¥ L@ (63)

where {{:--)) denotes summation over M and averaging over the thermal J
distribution in the ground state. Since we usually do not expect the cou-
plings (and the photon counting rate) to vary crucially with changing J. itis
natural to invoke the semiclassical approach, thus reducing appreciably the
number of doorway states without essentially affecting the physical results.

vi. Note that the expression for the photon counting rate [Egs.
(57)-(59)] includes a convolution of a field and molecular correlation func-
tions. In an idealized photon counting experiment we take

{p(t)o*(')> = &(r — T)(x) (64)

resulting in
LOBICusOF (©5)

The excitation mode specified in terms of Eq. (64) is often referred to as a
“ coherent short excitation.” In this case we can assert that at time ¢ = 0 we
have “initially™ prepared the | N ) state, and the interpretation of the experi-
mental decay pattern is considerably simplified. The meaning of condition
(64) is that the pulse duration and the pulse correlation time are much
shorter than all the intrinsic molecular decay times. An exact definition of
the molecular decay times will be presented in Sections X and XI for specific
molecular level schemes.

vii. Explicit calculation of /,(t), Eq. (58) requires the evaluation of the
molecular correlation matrix Gy, v, (E). Since this matrix 1s entirely confined
within the P, subspace we can use the formal indentities [in analogy with
Eqgs. (48) and (49)] (Mower, 1966)

P‘dGP‘=(E“'HQ—p‘1Rﬁ‘)-1P“ (66)
where
R=V + VQUE ~ Ho — QsVQ4) 'QsV (67)
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and
O,=1 P,e(+ P (68)

This matrix has the dimensionality ot the P, space and determings the time
evolution of the system within the P, subspace. P, GP, may be recast in the
form (E — H.q) ‘P, where H, = Hy + P,RP,is the effective Hamiltonian
for the time evolution within P,. Effective Hamiltonians will be further dis-
cussed in Sections IX-XI. The matrix clements of P,GP, may be now
evaluated by a perturbative expansion in @, 'Q, or, alternatively, by a con-
tinued fraction expansion. Defining a P{*' subspace as a subspace of Q,
containing the states directly coupled to the P, subspace we have

F‘Rp‘nﬁdvp“"pdyﬁ(‘z’
X (E— Ho — 0,VQ,) 'PPVP, (69)

Utilizing the same derivations which lead to (48) and (49) we can write
(Cohen Tannoudji, 1968; Mower, 1966)

p{‘Z)(E —Hy - Q‘VQ‘)_ 1p52| = (E -~ Hy — p(‘letzlp(‘n)- 113(‘2; (70)

Here R® is analogous to R [Eq. (49)], where @ is replaced by
0 = @, — P,. We can continue the process of reducing our Q space in the
same way, thus obtaining a continued fraction expansion of P,GF,.

viii. Equations (57)-(59) may be also derived by defining the photon
counting rate in terms of the time derivative of the probability for finding the
molecular system in any one photon state, see, i.c., Jortner and Mukamel
(1974, 1975).

d
1)) =« 3 T [ dk'|<go kW) | (1)
where the integration over k’ excludes photons having the same propaga-
tion and polarization directions as the original light pulse. «’ is a proportion-
ality constant. Equation (71) together with (27) and (54) results in

a’ d . e ;
)= 5 g_l dk .| dE exp(—iEt)

2
x {gv, k'| 0GPH,.| go. E>A(E)l

L2 3 ]
ayave d « ([ ,
o g“ dE dE'A(E)A*(E)
X G.N.Nn(‘E)G-:’.No(E')
y ' 2K exp[—i(E - E')]

E—E,-K+m)E ~Ep—K—im)
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We can now perform the k' integration | d°k" = 2n [ k2 dk'd(cos ©’) which
results in
d, | k2 dk’ exp[—i(E — E')]
dt ' E-E,-k +in)(E - E, -k —in)
= 8n*(E - E,,) exp[—i(E ~ E')]  (73)

Substitution of (73) in (72) and neglecting the slow variation of E? in the
energy range of interest, we finally get Egs. (57)-(59).

VL. General Expressions for Emission Quantum Yields

In time-resolved experiments, when we distinguish (by proper energy
resolution) between the various final channels for photon scattering, one can
define the partial quantum yield Y, for the channel v, as the number of
photons scattered to the state |gv), divided by the total number of absorbed
photons. If no intramolecular decay channels are considered, then the
number of absorbed photons is equal to the total number of scattered pho-
tons, and Y, Y, = 1. In general, the photon emission rate into the vth chan-
nel is given by /,(r). and we expect the following relation to hold:

§= . del () )z, di ()
Yo 2adid (t) (=, di(r)

Equation (74) constitutes a definition of Y. in terms of integrals over time-
resolved observables. An alternative approach to this problem is to express
these yields in terms of integrals over energy-resolved observables. Using the
definition of the scattering (S) and the transition (T) matrices (Goldberger
and Watson, 1964), it was shown that for the scattering photon wave packet
characterized by the amplitudes A(E), the partial quantum yields are (Jort-
ner and Mukamel, 1975)

_ENAEIdE o (E)| AE)] dE sk

* " ) oE)|A(E)|* dE Y. | o E)|A(E)|? dE

where 6,(E) is the photon scattering cross-section into the channel v, while
a,(E) denotes the photon absorption cross-section. We shall now demon-
strate the equivalence of Egs. (74) and (75). Equation (75) can be alterna-
tively written in the form (Jortner and Mukamel, 1975)

_ _JdE|A(E)*|<gv. k| T(E)lgo. EDJ?
" 2o JEJA(E)]*|<gv. k|T(E)lgo. EX|?

Y, =

(74)

(76)
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where T(E) is the transition matrix
T =V + VGEWV (17)

and the k photon satisfies energy conservation E,, — E + k = E, where
E,,. E, are the energies of the [gu) and |g,) states, respectively. Using the
relation

gv. K'| T(E)| go. k> = 7,70 G n, (E) (78)

we establish a basic identity between the time integral of the (time-resolved)
variable /,(t) and the energy integral of the (energy-resolved) cross section
a,(E).

[ 4E|A(E)*o,(E) = [ 4E|A(E)|<gv. k| T(E)lgo, E> [

=373 _‘.w di ll dEGy n,(E)A(E) exp(—iEt) ‘1

},2},3 N N 2
a1 j“m dt J_m dtCpy,n,(t — t)p(1)
<| i) (79)

Substituting Eq. (79) in (76) results in Eq. (74). The equivalence of Eqgs. (74)
and (75) establishes an important relation between the time-resolved observ-
ables I,(t) and I(r) and the energy-resolved cross-sections o,(E) and a,(E).

VIL. Comments on the Relation between Time-Resolved Observables
and the Optical Absorption Lineshape

We now pursue further relations between time-resolved and energy-
resolved experimental observables and consider the connection between the
photon counting rate and the optical absorption lineshape. It was often
stated in papers on the theory of molecular radiationless transitions that the
decay mode is expressed in terms of the Fourier transform of the lineshape
function (Bixon and Jortner. 1968; Chock et al., 1969: Robinson, 1973;
Robinson and Langhoff, 1974). It is well known from linear-response theory
(Kubo, 1959) that the optical lineshape is expressed in terms of a Fourier
transform of a (molecular) correlation function. However, this general result
does not establish the above-mentioned relation between I(t) and the line-
shape function. We shall now attempt to elucidate the general features of this
interesting problem.
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The photon counting rate [Eq. (58)] is determined in terms of squares of
convolution integrals which involve the molecular decay amplitudes
Cy,n(t) [Eq. (56)]. ic.. the molecular correlation matrix. For a general
molecular level structure we require both the diagonal term C 4, (r) as well
as all the off-diagonal terms connecting | N> with |N,) (v # 0) to specify
completely the time evolution. The diagonal decay amplitude Cy,(f)
appearing in [y(r), which determines the elastic photon scattering mode, may
be directly obtained from the (intrinsic) absorption cross-section a,(E). The
latter energy-resolved observable is given (apart from irrelevant proportion-
ality constants) at zero temperature by (Chock er al., 1969; Jortner er al.,
1969; Jortner and Mukamel, 1974; Robinson, 1973)

o (E)= |70 Iz Im Gy v, (E) (80)

Making use of the dispersion relation (Goldberger and Watson, 1964) for
the Green's operation

G(E) = :t [ aE S %LI?L (81)

=-mn

and applying it to G, (E) we get for Eq. (74),
Cunat) = 0(1) [ dE exp(~iEt)o,(E) (82)

where 0(r) is the Heaviside step function. From Eq. (82) it is apparent that
o,(E) is expressed in terms of a Fourier transform of a molecular correlation
function as implied by linear response theory.

From Egs. (57), (59). and (82) we obtain an explicit expression for the
partial photon counting rate [y(t)to ther = Ochannfl. which is valid for any
general level structure )

To(t) = f (r) (83)

where
] - - 2

SO = dwl) | dEG(E)exp[iE(t ~ )] (84)
From this result we conclude that, in principle, the measurement of the
energy-resolved variable ¢,(E) provides complete information concerning
time-resolved elastic photon scattering to the incident channel. One should
note, however, that for a general level structure the lineshape data do not
provide us with the partial photon counting rates I,(t) (v # 0) for inelastic
photon scattering, nor with the total photon counting rate. From the
(thermally averaged) absorption cross-section at finite temperatures

Tr{e ?"|;.|* Im Gy, » (E)}

Tr{e™?} (85)

(o (E)r =
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B=(kT)™ ', we can extract (by analyzing the optical spectrum at several
temperatures), the values of the absorption cross sections |7.[* Im Gy, 4,
from different initial |ge) levels. However. the values of Im Gy, together
with the dispersion relation (81) will result only in the diagonal decay ampli-
tudes Cy_y (t). while what is required to specify the time evolution are the
off-diagonal terms Cy (t). which cannot be extracted from the lineshape
data. Partial information concerning these ofl-diagonal terms may be ob-
tained from the measurements of the (cnergy-resolved) photon scattering
cross sections @ ,(E) into the vth channel. From previous résults [see
Eq. (76)] we have (Nitzan and Jortner, 1972; Mukamel and Jortner,
1974a, b) 6 (E)x| {gv. k| T(E)|go. E)|* and making use of Eq. (78) we then
get o (E)x|Gy, x,(E)[*. While the measurements of o.(E) results in
|Gx. . vo(E)|? this is insufficient to determine Cy_ y,(t) or |Cy ., (t)]*. Thus
the information extracted from photon scattering cross sections does not
incorporate all the phase information required for the determination of the
time evolution. On the other hand, this phase information is redundant for
the determination of quantum yields, discussed in Section VI. We thus con-
clude that for a general level structure, unique relations between time-
resolved and energy-resolved observables for inelastic photon scattering
exist only for the integrated quantities, i.e., the quantum yields, and not for
the local quantities in the energy or in the time domains.

A uniqne relation between the absorption lineshape and all the partial
photon counting rates [as well as with I(t)] does hold for special physical
cases whenever the molecular system is characterized by a single doorway
state. Such situations were considered in Section V. The cases of a two-level
system (case 1) and of the hypothetical system characterized by a single
ground state (case 3) are trivial in this context since only elastic photon
scattering prevails and I(1) = I,(t) [Eq. (83)]. When a single state |s) in the
(complex) excited manifold carries oscillator strength from the ground elec-
tronic state (case 2) then the partial photon counting rates /() for all v as
well as I(r) are proportional to the population probability P,(t), which
(apart from irrelevant proportionality constants) is given by

P(t) x f () (86)

where f(¢) is presented by Eq. (84).

The following general conclusions now emerge:

1. For a general level structure, a,(E) determines just the elastic photon
counting rate but is insufficient to determine the inelastic contributions to
time-resolved photon counting.

2. For the special and physically relevant case of a system characterized
by asingle doorway state. Eq. (86), together with Egs. (61) and (62), provide
a general relation between all the partial (and the total) photon counting
rates and the Fourier transform of ¢,(E).
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3. For the special case of a broad-band excitation [see Eq. (64)] of a
system characterized by a single doorway state, the commonly quoted rela-
tion between I(t) and the Fourier transform of a,(E) does hold. The forma-
lism presented herein provides us with a general framework for handling
time-resolved photon scattering, The problem reduces to the evaluation of
the decay amplitudes (i.e.. the molecular correlation functions) C (1) be-
tween |N,)> and all other doorway states. These correlation functions
depend on the detailed molecular level structure and incorporate all the
relevant physical information concerning the molecular dynamics that we
can extract [rom experiment.

VIII. Photon Scattering from a Single Molecular Resonance and
Effects of Collisional Perturbations

To provide a transparent and relevant application of the formalism
outlined in the preceding section, we now consider the  transition ™ from
resonance fluorescence to near-resonance Raman scattering in a time-
resolved experiment involving photon scattering from a molecular reson-
ance. The energy levels scheme for a single resonance coupled to a radiative
continuum and a dissociative (i.e., predissociative) channel is displayed in
Fig. 2. The intrinsic optical molecular lineshape L(E), is a Lorentzian
peaked at the energy E, = E, + A,, where A, is a (small) level shift, and is
characterized by the width

L=0I+13
I =2nr|V, .. (87)
I =2n|V, o
consisting of the sum of a radiative I'; and a nonradiative I'{ contributions.
The decay amplitude of the doorway state |s) is
Cult) = exp(~ iE, 1) exp(~ [/2) (88)

While the photon counting rate is now

ot 2
OESR MIANL | @ (t) exp[—iE(t — )] exp[—T,(t — t)/2] dr| (89)
Williams et al. (1974) have studied scattering of a light pulse of a tunable
laser from a single rotovibrational level of the B*[T state of molecular iodine.
The basic idea of the experiment of Williams er al. is presented in Fig. 2b.
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[C.(t)] and pulse field amplitude [#(r)] in a time-resolved photon scattering experiment from an
isolated resonance. (- - -) C,,(1) [Eq. (88)]). (——) e(r) [Eq. {(91)].

The time-resolved photon scattering is determined as a function of the
energy increment

A= |E, — k| (90)
The exciting light pulse is characterized (Fig. 2c) by the amplitude
@(t) = exp(y,/2) exp(—ikt) 1<0
0O<r<T (91

o(t) = exp( - ikt)
@(t) = exp[—y3(t — T)2) exp(—ikt) ¢>T
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where ;7! with i = | and 2 correspond to the pulse rise and decay times,
respectively, while T denotes the pulse duration. The additional parameter
that enters into the game s the Doppler width. The following experimental
observations were reported.

L. For the case of resonance excitation, i.e.. when A < B, where 8 is the
Doppler width, only a long, molecular, decay component exp(—T,t) 1s ex-
hibited for ¢ > T.

2. When the off resonance energy increment is large, i.e., A > B>y>
I, ~ T™', two decay components, characterized by the lifetimes ;5 and
I;! are exhibited. The experimental photon counting rate [F(A, 1)] for
t> Tis,

F(A, t) = I,(t) + I(r) (92)

with
I,(e) = I3 exp[—7,(t — T)) (93a)
I(t)= I} exp[~T,(t — T)] (93b)

I,(r) and I,(r) denote the components corresponding to near-resonance
Raman scattering from the molecule and to molecular resonance fluore-
scence, respectively.

3. At moderately low pressures of /, (0.03 torr) the intensity ratio

R=12/I°+I°) = I° F(A. T) (94)

is a slowly decreasing function of A, becoming practically constant for large
values of A.

4. Increasing the pressure to 0.25 torr results in a dramatic enhance-
ment of the long-lived molecular component relative to ghe total intensity.
For A = 1.7 GHz, R increases from 0.14 at p = 0.03 to R = 0.44 at p = 0.25
torr (Rousseau et al., 1975).

Utilizing Eq. (89) for the photon counting rate from a single molecule,
which depends on A and will now be denoted by I(A, t), we subsequently
have to account for the Doppler broadening. The experimentally observable
decay pattern of a single molecule F(A, 1) is obtained by convoluting I(A, t)
with the Gaussian distribution

f(8) = (np*)"" * exp(—A%/8%) (95)

so that
FA.t)=| f(a-a)(@A,1)da (96)
In Fig. 3 we present numerical results for F(A, t) using the pulse shape

(78) and substituting typical parameters corresponding roughly to the exper-
imental situation; the dependence of R on A is presented in Fig 4. Our
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calculations reveal the following features:
i. For the resonance situations, i.e, A < 8, only the long molecular

decay component is exhibited.
il. Moving away from resonance, when A > 28, both short and long

decay components appear.
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iii. Increasing A results in a decrease of the total intensity. For the
extreme off-resonance situation

F(A, T)x A2 97)

iv. The intensity of the molecular decay component for the off-
resonance situation decreases as

IAT)cA ™ (98)

v. The only typical lifetimes (or decay modes) that determine the time-
resolved decay pattern for resonance fluorescence and for near-resonance
Raman scattering are those characterizing the pulse decay and those specify-
ing the molecular lifetimes. The off-resonance energy does not appear as an
additional lifetime; rather it just determines the total emission intensity via
Eq. (97). and the relauve intensity R of the long component (98) at
off-resonance.

vi. The intensity ratio R for the off-resonance situation in the isolated
molecule assumes the limiting form (Fig. 4)

RxA"? (99)

The general features i-v are compatible with the experimental results of
Williams et al. It is apparent, however, from our calculations (Figs. 3 and 4)
that the theoretical prediction vi for the isolated molecule. i.e., R = A~ 2 for
the extreme off-resonance situation is in variance with the “low ™ pressure
data of Williams et al. (1974). Mukamel et al. (1975, 1976) have concluded
that under 0.03 torr pressure of 1,, collisional effects are of considerable
importance, and they have advanced a theory of time-resolved photon scat-
tering by collisionally perturbed molecules. It was noted that pressure-
broadening effects cannot be elucidated by a naive®extension of the results
for the isolated molecule by simply modifying the molecular decay width T,
by an addition of a pressure-dependent term. The photon counting rate
under collisional perturbations involves both T, (level relaxation) and T,
(line broadening) contnbutions. In the present context the following colli-
sional effects have to be considered:

(a) Collisionally induced predissociation characterized by a width 'Y
(T, process);

(b) Vibrational-rotational cross-relaxation specified by widths I'j (T,
process); :

(c) Interference effects between the lower and the upper electronic
states due to phase shifts (T, process), contributing a width I'$*.

The level scheme for simultancous collisional and radiative coupling is
portrayed in Fig. 5. The photon counting rate (F(t)) is expressed in terms of
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Fig. 5. Encrgy level scheme for spontancous and collisionally induced damping processes
in 1.

a triple convolution

L)

<F(:)>=-.|'°° da’ j' dATI(A, 1) f (A" — A)C(A — 8)  (100)

where [ is given by Eq. (76) with T, replaced by the total decay width
I, + I'?, aud f corresponds to the Gauss1an -Doppler function (95), while
the collisional-Lorentzian term is

(f/2n)

C(A) = X (101)
[=T¢+ §n- 1) (102)

The latter incorporates only intrastate cross-relaxation and phase shifts. Re-
garding the general features of the time-resolved photon scattering, we note
that the short decay component [,(t) originates from a direct quantum
mechanical scattering, while the molecular * component ™ I, (r) arises from
the decay of a collisionally perturbed molecular state, where excitation and
subsequent decay can be separated. Collisional effects are twofold. First,
they provide a contribution I'* to I'; modifying the decay time of I(f).
Second, the width T" of the Lorentzian function (102) spans a large fraction
of the Fourier components of the pulse near resonance, resulting in a drama-
tic pressure-induced enhancement of the intensity ratio |R}, as evident from
Fig. 6. We also note from Fig. 6 that for ofl-resonance {R} is practically
independent of A, in accord with experiment. Finally, we note (Fig. 7 and
Table 1) that the present theory provides a quantitative account of the recent
experimental data of Rousseau er al. (1975).
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p=003torr. T, = 9 x 10%sec” ' other parameters, same as i Fig 4
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Fig. 7. Simulation of the experimental results of Rousscau er al. (1975) for time-resolved
light scattering from I ;. Curve a p = 0.25torr, T, = 4.5 x 10%sec™'. [ = 4 x 10®sec™*;curve b
p=003torr, I, =9 x10% sec™ ', ' = 4.8 x 10% sec™ .

TABLE 1

Decay RATEs T, AnD [" AND THE FRACTIONAL INTENSITY {R} oF THE LOoNG DECaY
COMPONENT AT = T FOR TiME-RESOLVED PHOTON SCATTERING FROM I, AT 5145 A®

p=0 p = 0.03 rorr p = 0.25 torr
I, from self-
quenching data® 4.2 x10%sec™' 9.0 % 10° sec™! 4.5 % 10® sec™?
T, direct
measurement* - >5 % 10° sec™! 3.3 x10° sec™!
r 0 4.8 x10° sec™! 40 x 10° sec™!
spectroscopic
data“
{R} (experiment) - 0.14 0.45
{R} (theory)' 5x10°* 0.08 0.38

*The off-resonance energy s A =17 GHz and the Doppler width s
f =17 x10® sec™ ', while the pulse parameters are , = ,, = 3.3 x 10* sec ' and
T = 100 nsec.

* Chutijian et al. (1967).

‘ Rousseau et al. (1975)

¢ Mukamel et al. (1975)
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IX. The Effective Hamiltonian and Independently Decaying Levels

We now proceed to provide explicit formal expressions for the photon
counting from the quite general level scheme of densely spaced molecular
states presented in Fig. 8. This level scheme consists of some bound states

19.%>
Im vocy

IC,voe> (E()

I

D
Fig B. A general molecular level scheme consisting of a group of closely spaced discrete
levels radiatively coupler to the ground state which may be coupled also to intramolecular
channels.

which are radiatively coupled to the ground state and which also may be
coupled to intramolecular continua or to other decay channels that do not
carry oscillator strength from the ground state. We recall that the photon
counting rate is determined by the projection of |N,> on ‘¥(r) [Egs.
(58)-(60)). Thus even if we had a complete information on ¥(r), a large part
of it is redundant, since we only require the subpart of ¥(t) given by the
projection
Y. |N, vac){N, vac| (103)
v
In other words, we can limit ourselves to handle the time evolution of a
(small) subpart of the Hilbert space spanned by the discrete states |m, vac).
This leads us to a formulation of an effective Hamiltonian that specifies the
time evolution of the relevant subsystem in the presence of the radiation field
and other intramolecular decay channels.
Being guided by Eq. (103), we partition the total Hilbert space by the use
of the following projection operators

P= Y |m, vac){m, vac|

0= lgv.kXgv.k| + ¥ |e)<c|
P+Q=1 (104)
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Following this formal approach, Eqs. (58)-(60) take the form
1,(¢) = T, | N, vac| P¥(1) (105)
and :
Gu.n(E) = (N, vac| PG(E)P|N, vac) (106)

Thus the relevant physical information is embedded in the projection PGP.
Alternatively, working in the time rather than in the energy domain we may
state that we require the projection P exp(—iHt)P of the time evolution
operator to specify the time evolution in the relevant subpart of the Hilbert
space. It has been shown in Section V that the Green's function and the
evolution operator within the P subspace can be expressed in terms of the
effective Hamiltonian

H. = P(H, + R)P (107)
ie, :
PG(E)P = P(E — H.,) 'P (108)
or
P exp(—iHt)P = P exp(—iH )P (109)
where H, is the zero-order Hamiltonian and R is the level-shift operator
(Eq. (49)]
The effective Hamiltonian can be recast in a matrix form
Hye=H, + A— (i/2)r (110)

where H_, is the molecular Hamiltonian, A is a level-shift matrix, while I is
the decay matrix both originating from the coupling of the discrete states
with the radiative and the nonradiative continua. We have split the two
individual contributions originating from the radiative coupling and from
the coupling to the {|c)} intramolecular continuum as follows:

(B = (B s + (B

(A'}»... = PP 2.: <m‘ vag | Hi"'Ig‘ kE>£gk' k | Him | m'. vac)

(A‘),__.=PPZ<M' vac|H,|c, vz;;)—(c;vac|H,,|m,vac) (111

where PP standé for a principal part of an integral and
(M = (7 Yo+ (TN
(" b = 21<m, vac| H;, | g, kDp,(k)<g, k| Hini|m', vac)
(T = 27{m, vac|H,|c, vac)p<c, vac|H,|m', vac) (112)
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Here p,(k} and p, denote the density of states in the photon field and in the
intramolecular continuum, respectively.

The level-shift and the damping matrices provide a generalization of
these (scalar) quantities for the case of a single resonance. It is important to
notice that. in principle. both the level-shift and the damping matrix are
energy dependent. Concerning the level-shift matrix, we can quite safely
disregard the (divergent) radiative contributions AL,.. which can be handled
by the renormalization theory adopted in the study of the Lamb shift
(Schweber, 1961). The level-shift contributions Af,,. may be of importance in
modifying the energy levels.

The properties of the relaxation matrix ™ are as follows.

1. It provides a generalization of Fermi's golden rule for a multilevel
system.

2. It is, in general, nondiagonal.

3. The off-diagonal terms represent indirect coupling between the
discrete states via the continuum states.

4. The off-diagonal contributions are of importance only in the case of
near degeneracy; ie., [, ~ |En — En|.

5. T is Hermitian.

- 6. Usually it is safe to assume that I is a weakly varying function of
energy in the relevant range [an exception exists when we have a resonance
too close to some threshold (Goldberger and Watson, 1964)].

We now turn to the features of the effective Hamiltonian which can be
summarized as follows.

l. H_ g is non-Hermitian.

2. In general, H is not diagonalized by the eigenstates of H.,.

3. H_y can be diagonalized by the transfon;lation

DH. D~ = A (113)
Ay=AB,; = (E;— (i/2)[)) o,

4. The transformation matrix D is nonunitary. When the eigenfunctions
corresponding to |m. vac) are real, H,, is complex symmetric while D is an
orthogonal matrix.

5. The basis of zero-photon states |j, vac) diagonalizes H . via the
.transformation '

|j. vac) = 3 D, | m, vac) (114)

(Accidental degeneracies are disregarded in our discussion.)
6. The |j, vac) basis is nonorthogonal.



EXCITED MOLECULAR STATES 91

7. One can define a complementary basis |j, vac) via the
transformation

|/ vac) =Y [(D7')*]jm|m. vac) (115)

In the special case (4), the wave functions corresponding to |j) are the
complex conjugate of the wave function corresponding to | /).
The projection operator into the P space may be written as

P=Y |j, vac){J, vac| (116)
J

This relation is_a consequence of the orthonormality of |j, vac) and
|/ vac), ie, {j|7>=46,.

8. The diagonal sum rule applies to the transformation (113)
whereupon

Z(E...+A....)=};EJ (117)
Llm=1T,

9. The Green's function and the time evolution operator in the P space
are

5 A vac){j, v_:ﬂ
PG(E) = ),:E — E; + (i/2)T, Ll

and
P exp(—iH ()P =Y |j, vac) exp ( ~iE;t — %l",t) (, vac| (119)
]

A final important conclusion is emerging from the last formal result that
the molecular decay amplitudes combining any pair of zero-order |m, vac)
states can be expressed as a superposition of exponential functions

exp[—iE;t — (I;/2)]

It is thus proper to refer to the basis set | j, vac) as the independently decay-
ing levels of the molecular system. The doorway states ( and any other state
defined within the P subspace) may be then expanded in the form

NS =Y | DGIND (120)
i :
and the decay amplitudes are

Cun (1) = ; exp[— (iE; — 4T ) KN, | >INy (121)
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Utilizing Eq. (121) the population probability of the |N,) state Eq. (115)
assumes the form

Put)= 2 T T 45452 CFHOF (o)) (122)
N

with the coefficients
A% = (N, j>{jINo> (123)

‘the time-dependent amplitudes

FA0)= | deg(e) expl(~iE, ~ IT,)e ~ 1) (124)

o

and the correlated time-dependent amplitudes

r

F3OF> =] | dedt expl(~iE; — 4T,)c - o)

x exp[(iE, — 4T, )t — v )[e* (v Jo(x)> (125)

Equations (122)-(125) together with Egs. (59)-(60) provide us with the gen-
eral theory of photon scattering from any molecular level structure.
Some general conclusions are immediately apparent.
1. The photon counting rate is determined by the cross products of
terms consisting of the coefficients A; and time-dependent amplitudes F;
2. The coefficients A; constitute the residues of the Green's function.
3. The time-dependent coefficients F(r) contain information concern-
ing the light pulse and the decay modes of the independently decaying levels.

X. Time-Resolved Photon Scattering from Large Molecules

To provide the background for the discussion of time-resolved experi-
ments under intermediate excitation conditions, let us consider excitation by
a Lorentzian wave packet so that ¢(t) = 0(t) exp(—ikt) exp(—,1/2), where
7, corresponds to the reciprocal decay time of the pulse. Equation (124)
takes the form

expl =ik — E)Jexp(~(io/2)) = exp(=(T/2)) )

Fr)=i k —E; + (i/2(T; - v,)

Since the pulse width -, can be varied at will, we shall now consider two
physical situations pertaining to short excitation experiments.
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A. Energy-Weighted Excitation

Provided that
' yp> T, all j (127)
the photon counting rate is
| "4;']2 exp(—T;1)

i(t)=h£nl¥ (E,—k)z+i“.«'f,

: A34,
55 (B — k+ (i12y7 M E; — k — (i72)7,)
x exp[i(E; — E;] exp[—(T; + l'j.}.er]} {125)

In this case, each component is weighted by the attenuation factors in the
denominator which account for the different absorption strengths of the
exciting pulse by the independently decaying levels. It is interesting to ex-
plore the behavior of Eq. (128) in different time domains. Consider first
short times after the excitation, i.e.,

ylSt<rIy! (129)

whereupon the exponential functions exp(—TI';t) can be set equal to unity
and Eq. (128) takes the form of the Fourier sum

A, exp(—iE;z) |?
L)ool S =21 )
o(t) >,:E, —k+ (i/2),
The time evolution is determined by the pulse widths 7 and by the * spread-

ing width ™ T, (i.e,, the energy-spread of distribution of the | j) states). As an
example consider a Lorentzian distribution 4, i.e.,

A;=(E; - Eo + (i/2),)"" (131)

Such distribution is known in nuclear physics as the “giant resonance”
model (Lane, 1969) and was recently discussed in connection with molecular
problems (Voltz, 1974).

In this case, the initial time evolution [Eq. (130)] for t < p; (where p; is
the average density of the | j) states) assumes the form

exp(iEot — 4T 42) — exp(ikt — 4 1) |?
(Eo — k) + (i/2)(7, — T)

Consider now another time domain where ¢ ~I'; ' >y, '. The photon
counting rate [Eq. (130)] consists of two contributions, a direct decay term

(130)

Io(t)

(132)
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and an interference term. Regarding the interesting interference terms, two
limiting situations will now be considered.
I. Energy Weighted Excitation of a Coarse Distribution

When the spacings between the [j) levels considerably exceed their
widths, i.e.,

the oscillatory terms will exhibit fast oscillators on the relevant time scale

~ ! and the second term on the right-hand side of Eq. (128) vanishes.
The decay rate is

|4, exp(=T 1)
(E; - k)* + g

being determined by a sum of exponentials.

(134)

I(r) = §:3T% Z;:

2. Energy Weighted Excitation of a Moderately Dense Distribution

Now there are a large number of cross terms in Eq. (128). The indepen-
dently decaying levels are, of course, not equally spaced in real life [in
contrast to simple models (Bixon and Jortner, 1968)], whereupon destpuctive
interference effects between randomly spaced levels will result in the vanish-
ing of the interference terms on the time scale t > (E; — E;)” '. Thus on the
time scale p; < t ~ I'; !, the dense level structure will again exhibit the decay
mode given by Eq. (134).

From the point of view of the experimentalist, the decay mode (134)
following energy weighted excitation can be observed provided that the
following set of relations is realized: I'; ' < ; # ~ '[! > p;, which implies
that the following conditions pertaining to the molecular level scheme have
to be satisfied

while concerning the pulse width we require that y, < I', together with
Eq. (127) are obeyed. These two molecular conditions (135) are definitely
satisfied for the case of interstate coupling in small molecules (Douglas,
1966; Bixon and Jortner, 1969). They are also realized (under proper excita-
tion conditions) for the intermediate case, that of a small energy gap in a large
molecule (Freed and Jortner, 1969; Jortner and Mukamel, 1974). In real life
such systems (see Fig. 1) are characterized by a single doorway state |s),
where I, can be determined from the integrated oscillator strength, which is
now spread among a large number of levels, all of which are active in
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absorption and emission. In the low-lying electronic configuration of a tria-
tomic the total width T, of the doorway state is I, = I, while the sum rule
(117) implies that

J

whereupon for level scrambling in a triatomic
r,~T%/D (137)

where D > 1 is the dilution factor. Equation (137) provides the theoretical
basis for the Douglas effect (1966), i.e., long radiative decay times of triatom-
ics, relative to what is expected on the basis of the integrated oscillator
strength. In the case of a small energy gap in a large molecule I, = I + 7™,
where the width I']" originates from coupling of the doorway state to other
intramolecular decay channels, the most common case being electronic re-
laxation to lower levels and in particular to the ground state. From Eq. (136)
we now have

0 VI P i
D D

where D > 1 again corresponds to a dilution factor. It is important to realize
that the dilution effect due to interstate mixing of a doorway state with a
sparse manifold involves not only the radiative component but also the
nonradiative width.

We now proceed to consider the time evolution following a second type
of excitation mode.

(137a)

B. Broad-Band Excitation

To handle the excitation by a “ white ™ light pulse, we require that
>, (138)
and
v > |E; — K| (139)

Thus the pulse widths exceed the energy spread of the excited level distribu-
tion, that is,

34V (140)
The photon counting rate now assumes the simple form
4yi1 r,+r,
I(t)= 25" Y A;As exp | —-—=—Lt +i(E, — E;x (141)
3 2
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We can now obtain significant molecular information for certain level struc-
tures in the short time domain ;' <t <TI;' whereupon Eq.(130)
assumes the form

2

Io(t) < |} A; exp(—iE;t) (142)
i

The instant time evolution following such excitation is determined just
by the energy spread I',. For a Lorentzian distribution of the coefficients A4;
(131) we get the familiar decay mode

Io(t) c exp(—T,t) (143)
This decay mode will be exhibited on the time scale
t<p;! (144)

which is the Bixon-Jortner (1968) recurrence relation. This result is appli-
cable, in principle, to any level structure, subjected to the conditions that the
excitation mode will satisfy relations (138) and (139), and (144) is obeyed.
The “white™ excitation conditions cannot be accomplished in real life for
the small molecule, but can be realized for the statistical limit (Jortner et al.,
1969) and possibly for some intermediate cases. From the physical point of
view Eq. (143) implies that the oscillatory terms in the photon counting rate
in a large molecule result in shortening of the radiative decay time. The
reciprocal lifetime on this short timescale is roughly given by the average
(Bixon and Jortner, 1968) I', = 2aV3p, for a single doorway state |s)
coupled to an {|[)} manifold.

Without alluding to any specific calculations we can conclude that for
the general case of a discrete (complex) spectrum in the excited state, the
only decay modes that can be exhibited in the time-r&solved experiment are:
(a) The real molecular decay times I'; ! exhibited under all excitation condi-
tions. (b) A short decay mode ~ I'; ! which monitors the inverse of the
energetic spread of the eigenstates of H., and which is realized under
the conditions of a coherent short excitation. (c) Decay modes characteristic
of the fall time of the pulse, which provide " adiabatic following ™ type con-
tributions to the time evolution (Courtens, 1972).

In the statistical limit, I, is the only observable decay time. This leads to
the well-known results concerning exponential (to a good approximation)
decay mode, shortening of the experimental decay time, ie., [, > IT,
compared to that estimated from the Einstein relations for the integrated
oscillator strength, reduction of the emission quantum yield from unity and
insensitivity of the decay time [; ! to external perturbations by an inert
medium. To answer the question " under what conditions there are no other
decay modes except I'; ' exhibited in the decay pattern of a polyatomic
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molecule?” we have to bear in mind that the widths T'; incorporate all
sequential-decay processes of the states of the {|[)} intermediate manifold.
Such sequential-decay phenomena may involve infrared decay, optical decay
in the case of internal conversion from highly excited levels, and collisional
perturbations. A complete theory of sequential decay was developed (Nitzan
and Jortner, 1973), and we shall not dwell on it here. For the sake of the
present discussion it is sufficient to note that the magnitude of the widths T';
of the independently decaying levels (relative to ', and to p; ') will deter-
mine the long-time behavior of the decay pattern. On the time scale exceed-
ing the recurrence time, t > p; the interference terms in Eq. (141) vanish,
resulting in

I(e) o 3 1A, exp(—T;e) (145)

i

Usually (Jortner and Mukamel, 1974; Nitzan et al, 1972) T'; €T and a
dilution effect of the lifetimes will be exhibited in the intermediate (or large)
molecule on the time scale ;' <! <t~ I provided that this decay
mode is amenable to experimental observation. Thus the conditions for
observing the asymptotic behavior [Eq. (145)] are again given by Eqgs. (137)
and (137a), being identical for the case of coherent excitation to that of
energy weighted excitation.

We have already argued that white excitation conditions prevail only
for the statistical limit and for the intermediate case, so that we do not have
to discuss interstate coupling in small molecules in the present context. In
the statistical limit p; is expected to be overwhelmingly large, whereupon
any contribution to I'; from sequential decay processes will result in the
condition

L,>p!t (146)

violating condition (137). Thus relation (146) provides the basic condition
for the applicability of the statistical limit, when the background dense levels
are sufficiently broadened. relative to their spacing, to provide an intra-
molecular dissipative channel.

We finally turn to the interesting case of intermediate level structure in
large molecules where * coarse graining”™ procedures regarding the back-
ground {|[)} levels are not applicable. In this case one can observe two
decay components, the short decay exp(—T,t) on the time scale t < p; ',
[/ ' and the long component which is a sum of exponentials on the time
scale t 2 p;'. I ' provided that I, < p; ' and I; < I,. Such a state of
affairs can be realized for a large molecule characterized by a small energy
gap, whereupon p; ~ 10’ cm. while [; < 1072 cm ™", i.e.. the background
states correspond to a triplet manifold, or to a singlet state whose transitions
to lower-lying levels are symmetry forbidden. For the sake of general method-
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ology it is important to emphasize that the observation of two decay com-
ponents cannot be described in terms of a reversible kinetic scheme as
proposed by Lahmani et al. (1974), where the initially excited state |s)
decays to the {|/>} manifold, which subsequently undergoes a reversible
process back to |s). It is well known that the Pauli master equation (Zwan-
zig, 1961), which provides the ideological basis for kinetic schemes, breaks
down when interference effects are exhibited, as is the situation for the
intermediate level structure, whereupon the conventional kinetic picture is
inapplicable.

XL Photon Scattering from a Dissociative Continuum

There has been considerable experimental (Fouche and Chang, 1972;
Holzer et al., 1970, Kiefer and Bernstein, 1972a,b) and theoretical (Jacon et
al, 1971a,b; Berjot et al., 1971a,b; Mukamel and Jortner, 1974b) interest in
photon scattering from a dissociative molecular continuum. Such a molecu-
lar continuum can be smooth, as is the case for direct photodissociation of
diatomics and triatomics (Herzberg, 1966), or structured, as is expected for
the case of predissociation into a continuum which carries oscillator
strength from the ground state (Fano, 1961). The theory of energy-resolved
observables, i.e., photon scattering cross sections, photofragmentation cross
sections, and lineshapes is well known for diatomics (Jacon et al., 1971ab;
Mukamel and Jortner, 1974b) and was also worked out for polyatomics
(Mukamel and Jortner, 1976). We shall address ourselves to the problem of
time-resolved photon scattering from dissociative molecular states.

A. The Dissociative Continuum

We now consider the gross features of time-resolved photon scattering
from a molecular dissociative continuum. The molecular level scheme con-
sists of 2 bound ground clectronic state having vibronic levels { | gr)} and an
excited dissociative state {|dl)} with | denoting the relative translational
energy of the dissociating fragments. The radiative coupling matrix elements
within the Condon approximation are given by (Mukamel and Jortner,
1974b)

1, vac| Hinlgv. k> = Bk~ V(E,) (147)

where f,(E,) is the nuclear Franck-Condon overlap integral between |gv)
and the dissociative continuum, and f is a constant. The photon k is taken to
be polarized along the direction of the transition moment between |g) and
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|d>. The (discrete) doorway states are now superpositions of the continuum
states:

IN> =35 [ dE,p|dl, vac)(dl, vac| H,y,| gu, K (148)
where p, is the density of states in the dissociative continuum, and
7= |‘ dE,p,| <dl, vac| H,,,| gv, k> |2 (149)

corresponds to a radiative width of the |gv) state. The molecular Green's
function is (Mukamel and Jortner, 1974b) to second order in H,,,:

ax, SHEVAED,

Grno(E) = [
ﬁz
l“"&f:(ﬁ)fo(ﬁlpu(ﬁ) + PP ' dE,

SEEUED )| (150)

with PP denoting the Cauchy principal part of the integral. Equation (150) is
valid up to corrections of the order 10°°-10"7 (Mukamel and Jortner,
1974b). Performing a Fourier transform of Eq. (150) we get for the molecu-
lar decay amplitude

Crnolt) = 6(t) [ dESf2(E)fo(E)py(E)

x exp(—iEt) (151)

This result can be recast in an alternative form. Utilizing the definition

,(e) = [ exp(~iE,0) f,(E)o/(E)) * Bk 17 dE, (152)

we get

Canolt) = 0(2) .[_ d1Q,(t — 1) (1) (153)

It is apparent from Eq. (151) that the molecular decay amplitudes behave
like the Fourier components of the generalized Franck-Condon factor
2(E)fo(E)
The decay amplitude Cy, v,(t) [Eq. (151)] which determines the elastic
photon scattering from the dissociative continuum is determined by the
Fourier transform of | fo(E)|?, i.e., the optical lineshape function at zero
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temperature, in accord with the general discussion of Section VII. We note
in passing that as o,(E) x | fo(E)|* for dissociative continua is quasi-
Gaussian, the above-mentioned decay amplitude is not exponential. Usually
the half linewidth of a,(E) is of the order of A =~ 10° — 10* cm ™! so we
expect that Cy,y(t) (and the other decay amplitudes) in Eq. {151) will decay
on the time scale of A™" =~ 107 '*-10"'% sec, which is the “ duration ” of the
photodissociation process from the point of view of the experimentalist. At
the risk of triviality we mention that a time-resolved photon counting exper-
iment on a photodissociating system requires a light source where the decay
time of ¢(r) is shorter than or comparable to A", which is at present
impractical in the optical region.

From the point of view of general methodology we wish to note that as
the partial photon counting rates to all the final |ge) channels are deter-
mined by the Fourier transforms of the products fo(E) f *(E), these quantities
for inelastic scattering (v # 0) cannot be obtained from absorption spectro-
scopy which just yields the “diagonal ™ terms | f,(E)|*. This analysis of a
special model system concurs with the general discussion of Section VII.

B. Interference between a Discrete State and a Dissociative Continuum

Finally, we focus attention on the Fano (1961) level scheme, which con-
sists of a single ground state |g) coupled radiatively to a discrete state |s>
and to a dissociative continuum {|dI)}, while |s> is coupled to {|dI>} via
nonadiabatic intramolecular coupling H,. The relevant matrix elements are

{dl, vac|H;,|g, k) = V,(E)) (154a)
(30 VaclHinllg' k>= Vlg(&) (154b)
(dl, vac|H,|s, vac) = V,(E,) (154¢)

The system is characterized by a single doorway state
IN, vac) = ;=1 |V, |s> + | dE,p, Vi, (E)|dD> (155)

where

y:=|(s, vac|Hio|g, k)P
+ [ dEp(E))| <l Honlg. K> (156)

The detailed calculation of the T-matrix elements have been carried out
elsewhere (Mukamel and Jortner, 1974b), resulting in the following expres-
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sions for the Green's function Gux(E):

(Ve + A%E))(V,, + A%(E))

-
GunlE) = 772 (A1) + SRR L s7)
defined in terms of the following Hilbert transforms:
I I P;';{El)lz
AYE) = [ aE, Ty 2 (158a)
™ v, (E:)";.(E;)
A*(E) = [ dE, EE iy PlE) (158b)
and
Z"(E) i J‘ dE; V:'(E!)V:’(El)p(f;) (158(:)

Equation (157) is valid to second order in H,,,, being accurate up to the
order of ~ 107%-10"7.

For the purpose of evaluating the molecular decay amplitudes it is con-
venient to define the following auxiliary functions:

Q(0) = [ dEV,(E)p(E))"? exp(~iEr) (159)
(1) = [ dEVlENP(EN]? exp(iEyr) (159a)

Q,(t) = (2ni)~! | dE exp(—iEr) (E —E, + %l‘,)—l
= 0(t) exp[(—iE, - i, ¢] (159b)

We can now express the Fourier transform of 4! 4% and A [Egs.
(158a)~(158c)] in terms of these functions as follows:

[ dEAY(E) exp(—iEt) = 2mit )
% [ dE|| V. (E) p(E) exp(~iEz)

= if(t) J;m dtQd,(t — 1% (—1)

= i6(t)a'(r) (160)
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| dEA*(E) exp(— iEx) = 0(¢)2ni
x | dE,V.(E)ValEe(E) exp(~iEvt)
= if(r) | dfﬂm(t — th(—1)
= if(c)a"(c) (161)
- ‘|' dEAY(E) exp(—iEr) = i0(t)a™*(z) (162)

Following straightforward algebraic manipulations, the molecular decay
amplitude assumes the form

Cunlt) =7 720(1) ‘

Vial? | dE, exp(—iE1),(0)

+ | dE, exp(—iE,t)| Vo (E)

+ L l't de[V, a"(t — 1) + Vja**(—t + 1)]4(r)
2, .

(2 o . dt | d'a®(t — t)a"* (-t + r)(),(:)} (163)

The molecular decay amplitude (163) consists of four contributions: the
first term is just the decay of a single discrete state (see Section (VIII)), the
second term corresponds to the contribution from the dissociative continu-
um discussed in Section (XI.A), while the last two terms represent interfer-
ence contributions. The decay mode in this case corresponds to the Fourier
transform of the Green's function which is given by the imzzinary part of
Eq. (157), which constitutes a slight generalization of Fano's lineshape form-
ula (Fano, 1961).
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XIL Epilogue

We have advanced a general theoretical framework for the treatment of
time-resolved photon scattering from a single molecule which is charac-
terized by an arbitrarily complex level structure. Utilizing a quantum
mechanical description of light pulses in terms of wave packets of one-
photon states, the results are valid for weak fields, within the framework of
the rotating-wave approximation. The latter approximation is valid also for
strong fields, as in the case of the well-known Rabi (1936) two-level problem.
Thus, the present treatment is of general applicability for (a) a general
level-structure, (b) a collision-free molecule, and (c) excitation by weak elec-
tromagnetic fields. Concerning point (a) the formulation of intramolecular
dynamics as inferred from time-resolved and energy-resolved photon scat-
tering provides a laboratory tool for the elucidation of the diverse and
interesting decay modes which were observed in electronically excited states
of polyatomic molecules. It should be noted, however, that we have focused
attention on intramolecular coupling and relaxation between different (zero-
order) electronic configurations. The interesting problem of intramolecular
vibrational relaxation within a single electronic configuration (Fischer,
1972; Nitzan and Jortner, 1972; Nordholm and Rice, 1974) was not con-
sidered. This problem is of considerable interest regarding chemical activ-
ation, unimolecular processes, mass spectrometry (Lee et al., 1972), infrared
chemiluminescence (Moehlmann et al., 1974), optical selection studies (Rice,
1975), relaxation of large molecules in molecular beams (Sander et al., 1976),
and molecular photofragmentation in intense laser fields (Bloembergen,
1975; Mukamel and Jortner, 1976).

Concerning collisional perturbations, point (b), the theory was quite
fully developed (Mukamel et al., 1975) fc - i%e simple case of a single reson-
ance. For the interesting case of a complex level structure, general conclu-
sions were drawn regarding the insensitivity of excited states, which
correspond to the statistical limit, to collisional perturbations (Jortner and
Mukamel, 1974, 1975). The pronounced effects of collisions in the inter-
mediate level structure require a complete study. A first step in that direction
was undertaken by Freed (1976).

Finally, it will be interesting to consider point (c) regarding the behavior
of complex molecules in intense electromagnetic fields. The problems of
excitation modes and intramolecular dynamics in intense laser fields are of
considerable interest in relation to molecular photofragmentation and iso-
tope separation in intense laser fields (Ambartsumyan et al., 1975a,b.c; Rob-
inson et al., 1975; Lyman et al. (1975); Bloembergen, 1975; Mukamel and
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Jortner, 1976). The theoretical understanding of these problems is still in
embryonic stages and will open new horizons to the elucidation of new and
exciting molecular phenomena.

Appendix
The Time-Dependent Wave Functions

Let (r') be the wave function of the system at a given time t’. Then, for
any time ¢ we have

Y(t) = exp[—iH(t — ¢')]y(t) (A1)

which for ¢ > ' can be rewritten in the form:
W(t) = —(2ni)"* | dE exp[—iE(t — )]G(EW() (A2)

where G(E) is the retarded Green’s function of the system
G(E)=(E—-H +in)™! n—0" (A3)

We construct a state of the radiation field ¢,(0) in the form of a wave packet
of eigenstates of H, traveling along the x axis and arriving at the origin at
t =~ 0 in the absence of the interaction with the molecular system.

We expect that at sufficiently early times t’ the system is not subjected to
the interaction H;,, since the photon wave packet is far from the origin, so
that

U(€) = exp(—iHo ' Wo(0) 5 - (A%)

where /,(0) is the wave function the total system would have at ¢ = 0 in the
absence of H;,,. '

¥o(0) = ¥, (0, (A5)

V. is the initial molecular wave function (usually an eigenstate of H,,)
Equation (A4) thus contains the boundary conditions for our problem.
Substitution of (A4) in (A2) yields

w(t) = — (2ni)~* '|' dE exp[—iE(t — t')]G(E) exp(—iHot }so(0) (A6)

Making use of the Dyson equation
G = Go + GOHian (A?)
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where
' Go=(E—Hy +in)"" (A8)

results in

W(e) = Volt) - (2i)™" [ dE exp(—iEC)GH,,

. exp[i(E — Hq)r']
E - Hy + in ¥o(0) (A9)

Here y,(t) = cxp(éiHnr}gbo(O) is the hypothetical wave function of our
system at time ¢ in the absence of H,,. We now make use of the identity;

SOlE — Hol] _ 1™ gre = ) de
E—H, +in “-m

X expli(E — Hy + in)yt] £222, _2pi
and Eq. (A9) results in

W(e) = Wolt) + (2mi)~! ‘|' dE exp(—iEt)

X GH;.(Go — Gg Wo(0) (A11)
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