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This paper is concerned with a complete quantum mechanical treatment for the photofragmentation of
linear triatomic molecules, going beyond the Golden rule calculation and quasidiatomic approximation.
Harmonic valence type potentials are assumed for the bound motions, while an exponential potential
describes the unbound motion. An analytical expression for the final vibrational distribution is obtained.
This explicitly incorporates the final states interactions which are responsible for the V-T energy transfer
during the half-collision following the bond breaking. The two-dimensional Franck-Condon factors are
evaluated using the Airy approximation, and a simplified statistical procedure to incorporate rotational
distributions is presented. This treatment is applied to the photodissociation of ICN and HCN, and the
effects of deuteration on linewidths are analyzed. A fit to the available experimental probability distribution

leads to physically acceptable parameters for the repulsive potential.

1. INTRODUCTION

There has recently been considerable experimental!~™*
and theoretical’®=? effort directed towards the elucida-
tion of the dynamics of molecular photofragmentation of
polyatomic species. The experiments provide the rela-
tive populations in the various internal states of the
fragments (vibrational and rotational). The theory aims
at relating this distribution to the excitation frequency
and to the nature of the intervening electronic states of
the parent molecule and of the fragments. From a
methodological point of view, two problems must be
considered:

(1) Data concerning the electronic states of the spe-
cies have to be collected. This may come from an
analysis of the electronic spectra, 1011 55 well as from
semiempirical or ab initio calculations. This informa-
tion serves as input in a formal theory of the fragmen-
tation process.

(2) A variety of treatments of the fragmentation dy-
namics is possible, starting from simple Golden rule
calculations™ to a complete three-dimensional analysis.
Along this chain, there is the collinear model, which
should be acceptable in the case of triatomics having a
linear geometry in all concerned electronic states.

The present paper applies the collinear model to the
fragmentation of the triatomic cyanides XCN, with the
assumption of rather simple potential energies. The
treatment includes a proper handling of the normal
modes problem, *!% thus relaxing the quasidiatomic ap-
proximation made in a previous paper.’™ The intramo-
lecular and interfragment!*~!" couplings are simulta-
neously included in order to assess the importance of
the latter. Finally, an ad hoc formulation of the effect
of rotational states is incorporated. The calculations
are performed both in the relative coordinates and dis-
torted wave approaches.

Il. RELATIVE COORDINATES TREATMENT OF
PHOTOFRAGMENTATION OF LINEAR TRIATOMICS

In the general quantum mechanical model, ™ direct
photodissociation and predissociation are described by
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a bound vibrational state of a Born—Oppenheimer (BO)
electronic state |s) (which is the ground state for the
direct photodissociation, and an excited state in the
case of predissociation) coupled to a set of vibrational
continua which correspond to another BO unbound elec-
tronic state |d). For a linear triatomic molecule (ABC)
dissociating into A +BC fragments, these continua cor-
respond to different vibrational states of the diatomic
BC. The two electronic states |s) and | d) are coupled
either by the electromagnetic field in the case of direct
photodissociation or by intramolecular nonadiabatic
coupling in predissociation. In this latter case, it is
assumed that a light pulse has prepared the system in
the |s) state.

The total wavefunctions for the two electronic states
are

| ‘I's.v,v'> = le(S)> l S, v, v’ »

1
| ‘I’d,n,e> = | e(d)> I d,n, €) s w

where 10'9") and |6'®") are the electronic wavefunctions
and |s,v,v") and ld, n, € the nuclear wavefunctions.
Labels v and v’ denote vibrational quantum numbers in
the bound states, n corresponds to the vibrational quan-
tum number of the diatomic fragment, and € is the rela~
tive kinetic energy of the fragments.

In this section we shall consider the partitioning of
the Hamiltonian utilizing a relative coordinate (RC) sys-
tem.'®'® An alternative approach, which involves ex-
pansion of the interfragment interaction in a power se-
ries of the intrafragments displacements, resulting in
the first order distorted wave approximation, will be
considered in Sec. IV. In the RC representation, the
nuclear wavefunctions | s, »,v") and |d, n, €) are the ei-
genfunctions of the Hamiltonian
i ( 1@ 1 8% 2 &

—_— —_ _—— +V(5) 2
2 \llap 9R%: Mpc OREc mp aRABaRBC) , @)

where 8=s or B=d; R,s and Ry are the distances be-
tween atoms; p,p and ppe are reduced masses; and

mp is the mass of atom B. The motion of the center of
mass of the entire system has been separated out. We
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now invoke the assumption that in the two electronic
states the potential V¥’ can be expressed as a sum of
two potentials between adjacent particles. This is a
very common approximation in the treatment of energy
transfer between vibration and translation in the collin-
ear model. For the linear molecule (ABC) this implies
that

V(B) (B)(RAB) + V(B)(RBC) B =s, d. (3)

For the bound state |s) the two potentials are sup-
posed to be harmonic,

ViR Ap) =1/21 ,p0sB%R 5 - Ri2)?, (4)
Vi2(Rpc) =1/2upcwip?(Rpc B2, (5)

where the force constants of the AB and BC bonds are

ESD = 1 apwiS? and kLD = wpowiR?, respectively, being

expressed in terms of the bond frequencies w‘s’

For the dissociative state |d), V;ﬁ; is taken as a pure

exponential repulsive potential, whereas Vx(adc) is still as-

sumed to be harmonic:

(d)(RAB) Ue-aRAB , (6)
(a)(RBC) 1/2#Bcw(d)2(RBc (d))z (7)
Here w““ corresponds to the frequency of the diatomic

fragment.

Now making use of the dimensionless coordinates

V= (#Bcw(d)/ﬁ)llz(RBc ‘—R}adc) ’ (8)

z= (Uncw(d)/ﬁ)lm[(mn+mc)/mc]RAB 9
and the following definitions,

A=U/roi , (10)

a =alme/(mg+me)(LpcwiB/m)y 2 | (11)

m = aphec/mp (12)

the nuclear Hamiltonian for the dissociative state takes
the form (energies are measured in units of ﬁw(‘”)

B - - <1/zy7l>§z—z- 1/zgiv—z+1/2yz+Ae'"+ (13)

ayoz’

while for the bound state |s) the nuclear Hamiltonian is

S = - (1/2m) : ~1/25 +1/anC(y 0%
+1/2mQ%,(z -2 + 32/8yaz R (14)
where
(uBcw(d)/ﬁ)l/Z(ﬁts) (d))
z=(upcwh/m)"2[(ms+mc)/mc | RS, (15)

( (d (s) 7, (d)
Qpc=w 3)/‘05&, Dap = Wi/ Wse -

Now using the Rosen partitioning, 18 we keep that part
of H'® separable in y and z. The kinetic energy cross
term 5%/9y98z is incorporated at a later stage. This re-
sults in zero order eigenfunctions for the dissociative
channels having the form

ld, n, € = [ 22N pe2)) , (16)

where IX!#(y)) is the harmonic oscillator wavefunction
with energy (n+1/2), and | ¢,(z)) is the solution of

and wi?.
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1 98 ez

[ ﬁa—zzﬂée -E]}d)e(z)):o . (17)

This wavefunction is
1/2

|$.(2) ——[— sin h(z"k>] K.,) , (18)
with

E=02me)'?,

v=(2ik/a) , (19)

6=(2/a)(2Ame™**) 2 |

K,(8) is the modified Bessel function.?' The wavefunc-
tions (16) with | ¢.(z)) given by (18) are energy normal-
ized,

(d,n’,€'|d,n, € =5,,5(-¢), (20)
and the asymptotic form of |d,n, €) for z—~+> is
—\1/2
[d,n, € s |Xf.‘”(v)>(2ﬂ—7£) cos(kz - 6) , (21)
with
8=(/a)log(2Am/a?) - argl'(v) . (22)

For the bound state |s) it is possible to construct ex-
act eigenfunctions of (14) by using normal coordinates,
in terms of which the nuclear Hamiltonian takes the form

H(S)=w[1/2 z+1/2ql]+w2[ 1/2 z+1/2q2] (23)

where w; and w, are the molecular frequencies corre-
sponding to the normal modes g, and g, (note that both
frequencies are normalized by w("))

The total vibronic wavefunction |s, v, v") [see Eq. (1)}
assumes the form

|, 0,07 = [ X5 g ) [ x5 (@) (24)

where X, and X,» are harmonic oscillator wavefunctions
with energies w,{v+1/2) and w,(v’ +1/2), respectively.

Band and Freed® have pointed out that a proper eval-
uation of discrete—continuum coupling terms requires a
transformation between the normal coordinates (g,, 7,)
of the bound state and those specifying the dissociative
state, and attempted to provide such a transformation®
in terms of the distorted wave representation. In what
follows we shall present the appropriate coordinate
transformation in the relative coordinate representa-
tion, while the distorted wave representation will be
considered in Sec. IV. The coordinates g, and g,, Eq.
(23), are related to relative coordinates y and z, Egs.
(8), (9), and (15), by the linear transformation

)\ _{Cun cm)(z'E) 9
(Qz)_(czl Co/\v-3/" (25)
with

2o —0225) + (Wi - ))V2

- (R5c - Q%p) + (W - WD]'/2,
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- WzUZQABwél/a c
21 =~ 172 12 >
Qpcw;

-1/2
Ca =ﬁ% Cy . (26)
The transformation matrix C, Eqs. (25) and (26), may
be readily evaluated using the experimental data for the
atomic masses, the spectroscopic molecular frequen-
cies w,; and w, of the ABC molecule, and the frequency
w® of the BC radical. The parameters Q,5 and Qpc,
Eq. (15), are expressed in the following manner:

2 2 .2, .2
Qap+Qpc =wWi+ w3,

_ (27)
(4m - 2)0% 025 = (Wi — ¥ - -l ,
resulting in the simple relations
o =(QZAB+Qch _g)"z
1 2 2 ’
2 2 A\l/2
oan(Thagfie 5, (21

A= [(Q%c - QaAB)z + 472923093;5]1/2 .

l1l. INTRAFRAGMENT AND INTERFRAGMENT
COUPLING

The photofragmentation process can be conceptualized
in terms of coupling between the BO zero order states
I¥,, ., and | ¥, , ) [Egs. (1), (16), and (24)], which
are characterized by the energies

Es,v,v':E.2+ (’I) +%)w1 + (U’+%)wz ’
N (28)

Ed,n,ezEd"’(n"'E)*'E )
where Eg and EJ correspond to the electronic origins of
the two states. In the case of predissociation, the in-
terstate coupling involves just nonadiabatic coupling
terms H,, while for the case of direct photodissociation
the BO representation for pure spin states is adequate
and the interstate coupling is induced by the radiative
interaction H,,,. In addition, the zero order nuclear
wavefunctions for the dissociative state, Eq. (16), are
coupled by the intrastate coupling term 82/ 9ydz. The
total Hamiltonian for the system can be recast in the
form

H=Hy+V, (29)
where the zero order Hamiltonian is
Hy= Z J‘dEd,n, € I‘I’d.n,e>Ed,n, e<‘I’d,n,e l
+ Z Z |‘I’s,v,u'>Es,v,v'<‘I’s,v,v’I ) (29’)
v v
|

4037

and the perturbation terms are given by

V= Z Z’: E dednéd \I,sw’>stv', dne<‘pdne I +C.C.)
v v n

+ Z Z ff dEdnedEdn'e’ I ‘I,dne>vdne,dn’e’<‘1'dn'e’
n n

involving both interstate (bound—continuum) and intra-
state (continnum—continuum) coupling. The interstate
coupling is

Vs vv’,dne =<\I’svu’ le‘I’dne> ’

, (297

(30)

being expressed in terms of the perturbation X =H, for
predissociation and X = H,,, for direct photodissociation.
The interstate coupling in the dissociative state is given
by

Vdne,du’e' =<d) n, €|82/3yaz[d, n" €’> . (31)

We now proceed to the evaluation of the two types of
coupling terms, Eqs. (30) and (31), which enter in our
model.

A. Discrete-continuum coupling

Invoking the Condon approximation, the interstate
coupling Eq. (30) reduces to

Vioor, ane =09 | X|09Xs, 0,0 |d,n, €) (32)

where the wavefunctions are defined by Eq. (1). We
thus have discrete—continuum couplings which are pro-
portional to the generalized Franck—Condon factors:
{s,v,v’1d,n,€). Using Eqs. (16) and (24), they can be
written in the form

(s,v,v'|d,n, €

= (det)/ zfj dy I: dzx\? (Mo (XS (@) (g2) ,  (33)
where

X(a)(y)
and

X9y G=1,2)

are harmonic oscillator wavefunctions, and ¢ .(z) is de-
fined by Eq. (18). det=m2Q,595c/(w,w,)"? denotes
the determinant of the coordinates transformation (25).
The two-dimensional integral in Eq. (33) can be trans-
formed to a sum of one-dimensional integrals by apply-
ing the method of Band and Freed.®? This procedure,
outlined in Appendix A, results in

<S, v, v’ l d, n, €> - (det)l/z,n,-lﬂ(l +c¥2 +ng)-l/az-(vm'm-l)/a(v! o' In! )-1/2

v v’ n
% Z Z Z;di’"ld:"'zcig"s(” )(v')(n
71=0 7320 rg= Y1/\72/\7

The coefficients d; are given by
d{ =d§/dti y (35)
where z is defined by Eq. (A5), and the functions ¥ and

>£F(v+v'+n-rl — vy = ¥)T(ry, 73, 73) - (34)
[
T are defined by
° d¥ S(g2)3
F(N) =f dz¢>e(z)d? g 128tk (36a)

ty,tg,tg=0
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and

a\'1/ 5 \z/fa\3
o) =(52) ) G)

xexpl flt,, ta, £5)] (36b)

tl,iz,ta=0

flt1, 5, t5) is defined by Eq. (A8). Evaluation of the in-
tegral Eq. (36a) cannot be performed analytically for
the modified Bessel function ¢.(z), and a numerical in-
tegration method has to be applied. Band and Freed®
linearized the repulsive potential around the classical
turning point, and this approximation results in an ana-
lytical expression of Eq. (34). In our case we then have

F(0) = / " exp[v®/12&° +v¥(z, ~ 3)/23)]

XAI[ Lt y(z, — )] ) (37)
4 tl,ia,t3=0
with
mA\ @
y=(ak?)/3, Z,:ln[(z%—) ] . (38)

The higher order functions F(N) are easily obtained by
taking the nth order derivative of Eq. (37) with respect
to Z and using the recursion relations'? for the Airy
function,

av Aiz) _ zd¥% Ai(z)

d¥-3 Ai(z)
dz" dz¥-2 Tdr

dN-3

+(N=-2) (39)
Explicit expressions for a special case where v=v"=0
in the bound state are presented in Appendix B. The
T(ry, 75, 7;) factor may be also evaluated using recur-
rence relations.®

The interest in this linear approximation is that it
can be generalized to polyatomics involving more than
three atoms. We have accordingly performed numeri-
cal integrations of Eq. (36a) to test the validity of this
approximation. For the parameter a of the exponential
repulsive potential corresponding to real life situations
(i.e., o inthe range of 0.1 to 0.3), the discrepancies
between the results of the linear approximation and
those obtained from numerical integration of Egs. (34)-
(36) are very small if the kinetic energy exceeds one
quantum of the diatomic vibration.

B. Continuum-continuum couplings

Turning back now to the dissociative state, the inter-
fragment coupling terms, Eq. (31), are
Vdné,dn'e' =<Xnd) | le.d))(qﬁ | ‘ ¢5 . (40)
These coupling terms have already been discussed in

detail in previous studies of V-7 transfer.!®!7 The
main features are as follows:

(a) Intracontinuum coupling prevails only between ad-
jacent continua, i.e., for n’ =n+1.

(b) For €~ ¢’ Eq. (40) behaves like a principal part
distribution producing “persistent effects” and leading

to a redefinition of the asymptotic states and energy. In

Photofragmentation of linear triatomics

first approximation one has only to consider energy
shifts; this ultimately leads to the replacement of w by
m = (myme/mpM) in the expression for k2, Eq. (19).

(c) These matrix elements can finally be expressed as

ZTZ%W +1)'/2 ginh!/2(2nk/ @)

Vd,n, esd,n+l, €’

X sinh'’/2(27k’/ @) eschl(7/a)(k + &')]
xeschl(n/a)(k -2")], (41)

with

)1/2, k’=(2me’)1/2 . (42)

k=(2me
1IV. PHOTOFRAGMENTATION IN THE DISTORTED
WAVE BASIS

In the preceding sections we have used relative co-
ordinates and the Rosen partitioning of the Hamiltonian'®
to represent the zero-order basis in the repulsive state
|d). Inthe distorted wave approximation, 2 the Hamil-
tonian for the repulsive state is written in terms of the
distance between atoms B and C (Rpc) and the distance
between atom A and the center of mass of the BC mole-
cule

m
Ra(sc) =Ram +K_+_CWL_CRBC . (43)

As in Sec. II, it is convenient to define two reduced co-

ordinates®
(@\1/2
w
y_(lJ'ECﬁ BC) (RBC__R(d))
( (44)
(ML%"&)”Z(RMC, - R4 M} :
n e

in terms of which the Hamiltonian for the repulsive state
is

3 5%
I{(d)=__2_1ﬂ;F %W"’é})z"'A e-a(x-y) , (45)
with
m=mame/ mpM . (46)

We see immediately, by comparing these equations with
those given in Sec. II, that coordinates y and x are re-
lated to y and z, Eqgs. (8) and (9), by the transforma-
tion

y=y, Z=x-Y, (47a)
and that
m=m/(L+m) . (470)

Thus the transformation between the normal coordinates
(g1, q5) of the bound state, Eq. (25), and the coordinates
x and y would be

a1 =< 1 Ciz)(""i) (48)
(‘k) Csi Ch/\y-v/’

X=z+vy, (49)

and y given by Eq. (15). The coordinate transforma-
tion, Eq. (48), appropriate for the distorted wave ba-
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sis, was originally given by Band and Freed.® This
transformation matrix C’, Eq. (48), is related to the
transformation matrix C, Eq. (25), in the relative co-
ordinate representation via

Ci1=Cyy, Cip=Cyp- Cu, Ch =Ca1y C32=Cp~Cy
where z, ¥, {C;;} have been defined in Sec. II.

For the zero-order nuclear wavefunction in the dis-
torted wave approximation, we write

|d,n, €= XN b, alx))

where |X{?(y)) is the harmonic oscillator wavefunction
with energy (n+1/2), and | ¢, ,(x)) is the solution of

1 82
-2—7;L-a—xz+A e —¢ |q§€ Ax)=0,
with
A, =AX [ | XsD),

(50)

(51)

(52)

It should be noted that | ¢ ,(x)) has the same form as
in relative coordinates [Eq. (17)] with m replacing m
and A,, Eq. (52), replacing A. The first-order dis-
torted wave approximation (FODWA) is based on the
linearization of the interfragment potential with respect
to y (i.e., setting e =~1+ay). In this case, A,=A and
the intercontinuum coupling assumes the form

Vdn’e’,dne E<d’ n,’ € | (H(d) -E) |d, n, €>
=ADer, | €| Dy X [ €[ XDy (53)

In relative coordinates and in the FODWA, these inter-
continuum couplings have the same form; the only dif-
ference is that in the relative coordinates approxima-
tion m is replaced by m.!%!" For the discrete—continu-
um interstate couplings, we have the following result
for the overlap integrals:

(s,v,v"|d,n, €

= (et~ [ araw @xP O Do), (54)

and again, all the calculations presented in Sec. II can
be transposed here, by merely replacing m by m, {C;;}
by {C{,}, Aby A,, and Z by x.

V. DECAY SCHEME FOR PHOTOFRAGMENTATION
AND FINAL VIBRATIONAL DISTRIBUTION

The decay scheme for photofragmentation’ involves an
initial discrete state 1s, v, ") coupled to an infinite num-
ber of interacting continua {ld, n, €)} #=0,1,...). For
simplicity, we are going to denote the zero order states
by is)=is,v,0"); In,€)=d,n, €) and the couplings by
Vs,ne for the discrete—continuum interaction and by
Vae,ne e« for the continuum—continuum interaction. The
probability to be in the nth continuum at time ¢, if at
time ¢ =0 the system was in the discrete state |s), is®

palt) =z [ aE,.

where G, . is the matrix element of the Green’s func-
tion G*(E)=(E* -H +in)™!, n~0*, E,. is the total (zero-
order) energy of the state | ne) [in our case it will be

f dEG;, (E) e"E' (55)

4039

E,.=(n+1/2)+€]. The final probability distribution of
the fragments among the vibrational channels is

P,=pu() .

The evaluation of the matrix elements of the Green’s
function in Eq. (55) can be accomplished’ by the appli-
cation of the projection operators method.?® Let us de-
fine the projection operators

=[s)s]

(56)

and

‘=1—13=Zdenelne>(n<|. (57)
n

The calculation of G,,,((E) in Eq. (45) requires the pro-
jection QGP which has the form®

QGP=(E - QH,Q)'QRP(E - Hy - PRP)'P , (58)

where we have used the dissection H =Hy+ V of the Ham-
iltonian according to Eq. (29). The level-shift operator
Ris

R=V+V(E-QHQ)QV , (59)

which can be separated into its Hermitian and anti-Her-
mitian parts,

R=A-%;iT, (60)
A=V+V[PP(E-QHQ)* |GV (60")
I'=27V6(E ~QHO)V , (60"")

where PP in Eq. (60’) denotes the principal part of the
integral. Making use of Eqs. (58)-(60), we get for the
relevant matrix elements

(nel QRP!s)

("€[QGﬁ|s>=(E- +in{E—E,—-b,+3iL )’ (61)
where

a,=(s|Als),

r,=(s|fls) . (©2)

We may now perform the integration in Eq. (55) by in-
voking the usual assumption regarding the weak energy
dependence of the matrix element of R in Eq. (61).%
The probability distribution is’

A A

PAGE !<ne |QRP|s)|?[1 - exp(~T,#)] (63)

and

P, =22 [(ne|QRB|5)|2 . (64)
S
We are now able to separate formally the contribution
of the Franck-Condon interstate couplings terms QVP
and the 1ntercontmuum coupling QVQ Defining the wave
operator F for (half) collision on the dissociative poten-
tial surface

QFQ=Q+QVQ(E - QHY)" , (65)
we obtain
QRP=QFQVP . (66)

Equations (64) and (66) constitute the formal solution to
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the photofragmentation problem where the contributions
of interfragment coupling éf‘é and intrafragment cou-
pling QV P have been separated out.™ To obtain an ex-
plicit result for P, we take only on-the-energy-shell
contributions, whereupon Eq. (64) for the vibrational
distribution probabilities takes the form™!?

IEn:F(n, n')ansl 2

P RS Van Flots YWy (67)
where
F(n, n’)=<n€!éﬁé|n'€> . (68)

It can be also easily shown’ that the total photofrag-
mentation probability which can be expressed in terms
of Egs. (65) and (60’') takes the form

r.=27/("|x|{6')|%,,
(69)
'ys=ReZ Z VsnF(n’ n’)Vn’s ’
n n¢

where the electronic matrix element (6'®’|X|16'®) ap-
pears in Eq. (32). In the case of predissociation, T,
corresponds to the predissociation probability from an
“initially prepared” bound electronically excited state,
while the direct photodissociation Iy denotes (apart
from irrelevant proportionality constants) the photodis-
sociation cross section accessible by optical excitation
at the energy E.

Equations (67)-(69) incorporate the relevant informa-
tion concerning photofragmentation dynamics in terms
of the (half) collision matrix F. In our previous work,”!’
we have advanced a first order K matrix approximation
for the £ matrix (defined in the § subspace), which as-
sumes the simple form

QFQ=(1+inQVQ)" .
In this model the ¥ matrix can be expressed in an ana-
lytical form, ‘"

(70)

— B8-1
F(n, n’)=(‘)7;';(-‘)ﬁ H(—invj,m) ; (1)

N
with @ =min(n, n'), B=max(n,n'); @, and @; are poly-
nomials determined by the recurrence relations
@o=@;=1,
Qi =Q;+7| Vo,
and
61\1-1 =§N-2 =1,
Q—i-l = 61 +7T2| Vi |2§1+1 .
In Egs. (67)—(73) both the intracontinuum couplings
terms V;; =V, ;. and the intercontinuum couplings Vj,
=V, ze are evaluated on the energy shell and therefore
the label € was omitted.

(72)

2
Qa1

(73)

VI. ROTATIONAL STATES AND ENERGY
PARTITIONING

In the last section, V, we presented a global model
for a strictly collinear photofragmentation process.
Mele and Okabe! investigated the vibrational excitation

Atabek et al.: Photofragmentation of linear triatomics

of CN radicals following the photodissociation of ICN,
BrCN, CICN, and HCN which, except for HCN, are
quasilinear molecules in the (predissociation bound) ex-
cited states, and they found high rotational excitation of
the CN radical. This does not contradict the linear hy-
pothesis since, as Simons and Tasker pointed out, 8a
deviation from linearity £5° could give this high rota-
tional excitation. However, if there is rotational exci-
tation, the collinear results have to be modified in or-
der to take into account the different number of rota-
tional states available in each vibrational channel.

Denoting by P:(E) the collinear probability for being
at time / =+« in the vibratioral state » of CN at total
energy E, then an approximate procedure®'%8 to include
rotational states is the following: let P(J/E) be the con-
ditional probability for obtaining CN in the rotational
level J. In the rigid-rotor harmonic oscillator (RRHO)
approximation the rotational energy is given by

E}=hcB,J(J+1), (74)
while in the vibrating rotor (VR) level scheme

E}=hcB, JWJ +1), (75)
where

B,=B,-a,(v+1/2) . (76)

Now, since part of the energy is in the rotational de-
grees of freedom, the vibrational + kinetic energy will
be E — Eg instead of E. Thus, P(J/E)P:(E — E}) will be
the probability of having the CN radical in the vibra-
tional state n and rotational level J. The final (approxi-
mate) total probability for being in channel # is

7

P(n/E)= )_ P(J/E)PXE - E3) (77)
J=0
where J¥ is the maximum J“compatible with energy
conservation, i.e., for the VR level scheme,
heB, JX(J* +1)=E - i (n+1/2) . (78)
The total number of rotational states satisfying energy
conservation is

J*
N= i(2J+1)=J3(J3‘+2). (79)
J=0

If we assume a Poisson distribution of the rotational
levels
7\"

Y
‘e

T (80)

P(J/E) = J<JI*,
and if J* > 1, we can transform the sum by an integral

and N~ J§(J§ +1). Thus, finally,

“EndEqP(E — Eg)P(J/ER)

TEEn P(J/E ) ; (81)

P(n/E) = I3

with E, =#iw'@(n+1/2). A reasonable choice of the dis-
tribution parameter X can rest on the available experi-
mental data® identifying A with the most probable rota-
tional state of the diatomic photofragment.
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TABLE I. Spectroscopic parameters used in the calculation.

CN (B%sY)

0w =2164,1 cm™!

HCN ICN

l:gl.{ 5,8~ 10° dyn/cm ké‘l' = 3x10° dyn/em

L&Y 17.95 10° dyn/em R&)=16.7x10° dyn/cm R&=1.15 A

REL: 1,06 A R 2,12 3

RE&- 1,156, 1.334 A R&I=1.159, 1,169, 1.183 A

wys 2089 em’? wy=470 em™!
@y 3312 em™ wy=2158 em™
VII. MODEL CALCULATIONS FOR THE

PHOTOFRAGMENTATION OF SOME LINEAR
XCN MOLECULES

We have presented explicit analytical results for the
distribution of products and for the photofragmentation
probabilities in direct photodissociation and predisso-
ciation of triatomics, which incorporate the effects of
both interstate intrafragment coupling and intrastate,
interfragment, continuum-continuum interactions. In
what follows, we shall attempt to account for some fea-
tures of a photofragmentation of the popular XCN mole-
cules.! The following information is required for the
application of our theory to a real photofragmentation
process:

(1) Specification of the vibrational state (vv') of the
“initial” |s) state. In the case of direct photodissocia-
tion at moderate (i.e., room) temperature, one can
safely take v =0’=0. In the case of predissociation, v
and »’ depend on the nature of the metastable bound
state which is accessible by optical excitation. From a
cursory examination of the available absorption spec-
tra, it can be concluded that all the available' photo-
fragmentation experiments on ICN, BrCN, and possibly
HCN in the range 7.2-10.6 eV result in predissociation
from Rydberg states.

(2) Information concerning molecular geometry in the
bound state of the triatomic. The predissociating states
of the halogen XCN (X =Cl, Br, I) molecules are linear,'®
so our model is strictly applicable. On the other hand,
the low excited states of HCN are bent. ! Neverthe-
less, we shall also provide model calculations for this
system.

(3) Interstate coupling terms, Eq. (39). These are
determined by (a) the initial state quantum numbers

4041

(v,v') (Sec. A above), (b) the masses m,, mp, and mc,
(c) the equilibrium separations Ry, R in the |s) state
and Ry in the dissociative state 1d), (d) the molecular
frequencies w, and w, in the |s) state and wi? of the
diatomic fragment, (e) the reduced excess energy
E=(E,-E,)/ w2, where E, is the photon energy while
E, corresponds to the dissociation threshold; E corre-
sponds to the number of open vibrational channels; (f)

the repulsive potential parameters A and a.

(4) The intercontinuum coupling terms, Eq. (41).
These are determined by (a) the reduced mass m, Eq.
(46), (b) the excess reduced energy E, and (c) the expo-
nent « of the repulsive potential.

We have noted in Point (1) above that the majority of
the available data for photofragmentation of XCN mole-
cules involves predissociation’ and, unfortunately, the
identity of the (vv') nuclear state from which predisso-
ciation occurs is not known. Therefore, it is impossi-
ble at present to provide a quantitative account in terms
of our model for the experimental data of Mele and
Okabe.! Furthermore, calculation of the multidimen-
sional Franck—Condon factors [ Point (3)] is franght with
difficulties as the spectroscopic constants for the pre-
dissociating | s) states are unknown. We have therefore
performed a set of model calculations for ICN and HCN
in an attempt to elucidate the gross features of the pho-
tofragmentation of linear triatomics. The input data
were as follows: (i) We have chosen (v, 2') =(0, 0), (0, 1),
and (1.0); (ii) The spectroscopic constants for the |s)
state were taken as those corresponding to the ground
state (Table I); (iii) The spectroscopic data for the CN
radical were taken as those for CN(B%z); (iv) the re-
duced energy E was calculated (Table II) for the experi-
mental excitation energies of Mele and Okabe!; and (v)
the repulsive parameter a was roughly estimated from
the relation

i m b )l /2 ( )
=Lt —¢— NYTAVES 82
mp + Mg ﬂlac k’fsc ’
where L is the range of the repulsive potential. For

ICN, Holdy et al.® give L=0.15 Aand @~0.17. A
reasonable universal estimate L=0.2 A for a variety of
systems was provided® resulting in @=~0.13 for XCN
molecules. The repulsive parameter was thus varied
in the range @ =0.1-0.2; (vi) the pre-exponential term
A, of the repulsive potential. For ICN, Holdy ef al.
give A =0.9x107, while for HCN Band and Freed® have

TABLE II. Experimental data for photofragmentation of HCN and ICN.,!

Average excess energy

Rotational

Nature of {AET)=(E,) —E; distribution

Molecule Excitation energy (E,) (eV) photofragmentation (eV) parameter A
HCN Br lamp 8.4 0.17) 6
Xe lamp 8.4, 9.5 1.31 18
Kr lamp 10, 10.6 1.98 23
ICN Hg lamp 6.7 Photodissociation 0.39 6
Br lamp 7.2-8.5 Predissociation 1.43 23
Xe lamp 8.4, 9.5 Predissociation 2,1 40
Kr lamp 10, 10.6 Predissociation 3.9 40
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FIG. 1. (a) Vibrational population of CN from ICN irradiated by the Xe lamp, in relative coordinate basis, for a =0.1766 (L
=0,15 A), A =0.65%x10° (0.174x 107 eV), A=40, y=0.07 (0.34x10™* A). Total population is arbitrarily taken as 100. (b) Same
parameters as in Fig. 1(a) for distorted wave basis, except E=8,3 (2.22 eV), A=0,35x10" (0.94x10° eV}, A=0, $=0. (c) Vibra-
tional population of CN for HCN irradiated by the Xe lamp, in distorted wave basis, for E=5.2 (1.4 eV), A=0.13x 10% (0.358

x10% eV), A=0, $=0. Total population is taken as 100. (d) Same as in Fig. 1(a), with E=8.3 (2.22 eV) and y=0. (e) Same as in
Fig, 1(c), with E=5.4 (1.45 eV) and ¢ =0.1766 (L=0,15 A). (f) Same as in Fig. 1(a), with E=8.4 (2.22 eV).

J. Chem. Phys., Vol. 65, No. 10, 15 November 1976

Downloaded 17 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Atabek et al.: Photofragmentation of linear triatomics 4043

100,

T T1UTTTET

=

o
N
w

100,

T T YT

T

HCN-Xe lamp

T

(h)

100

T Illlllll\

O TTITTIT

ICN -Xe lamp N

1 | |
1 2 3 4

(1)

FIG. 1. Cont’d. (g) Same as in Fig. 1(c), with E=5.0 (1.34
eV) and @ =0,1766 (L=0.15 &), A=0,12% 104 (0.32X10% eV).
(h) Same as in Fig. 1(c), with E=5.4 (1.45 eV) and @ =0. 1766
(L=0.154). (i) Same as in Fig. 1(a), with E=8.3 (2.22 eV).

chosen A =3.6%10°. Again, this parameter was varied
in a reasonable range A =0.5x107-10" for ICN and over
a wide region for HCN; (vii) the parameter A, intro-
duced in Eq. (80), which specifies the rotational distri-
bution. “Best choice” of this parameter from the avail-
able experimental data' is given in Table II. Numerical
calculations were performed using both the relative co-
ordinate representation (Sec. II) and the first-order
distorted wave basis (Sec. IV).

A. Model calculations of vibrational distribution

We have conducted a series of model calculations to
assess the dependence of the vibrational distribution on
the excess energy, on the various molecular parame-
ters, and on the final rotational distribution. The spec-
troscopic molecular data, i.e., atomic masses and
frequencies, are those appropriate for ICN and HCN
(Table I). These calculations were performed using
the global model advanced herein and were conducted
utilizing (1) the relative coordinate representation (RC),
and (2) the first-order distorted wave approximation
(FODWA). From these results, summarized in Figs.
1(a)~1(j), we conclude the following:

(a) The vibrational distribution is broader with in-
creasing the excess energy E [Fig. 1(a)];

(b) The vibrational distribution is very sensitive to
the parameters A and @ characterizing the repulsive
potential, as is evident from Figs. 1(b)-1(e). Increas-
ing the range of the potential, i.e., decreasing a,
which affects both intrafragment and interfragment cou-
pling, results in an enhanced population of the lower n
states and a sharper vibrational distribution. Increas-
ing the pre-exponential potential parameter A, which
affects only intrafragment coupling, has a similar ef-
fect as decreasing a.

{c) The configurational change ¥ of the B—C bond
(which affects the intrafragment coupling) modifies the
distribution [Figs. 1(f) and 1(g)], depending not only on
the magnitude but also on the sign of y. For high values
of y the distribution is not monotonic [Fig. 1(g)]. How-
ever, such appreciable configurational changes are not
encountered in real life (see Table I);

(d) The vibrational population (vv’) of the initial state
|s) drastically modifies the vibrational distribution
[Fig. 1(h)]. While v=¢" =0 usually results in a mono-
tonously decreasing distribution with increasing »n, for
other (vv’) values P, peaks around n>1. The latter case
may be appropriate for predissociation;

(e) The effects of final distribution of rotational states,
expressed in terms of the parameter A, Eq. (80), are
presented in Fig. 1(i). Increasing the rotational energy
of the diatomic fragment is roughly equivalent to the de-
crease of the excess energy E, as expected.

Finally, in Fig. 2, we compare the results obtained
using the RC representation and the FODWA for HCN at
E=7.0 (appropriate for excitation by the Kr lamp), to-
gether with the available experimental data. Good
agreement between the results of the two methods is
obtained, as is expected from the fact that in this case
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FIG. 2. Vibrational population of CN from HCN irradiated by
the Kr lamp in distorted wave (=) and relative coordinate
bases (---), for E=7.0 (1.88 V), &=0.1766 (L=0.15 A), A
=0.16x10%(0.43x10% €V), A=0, $=0. The points represent
the experimental data of Ref. 1.

m <1 and thus m~ m. The case for ICN is different
(m~1), and we have observed large discrepancies be-
tween the results obtained by the two approaches. A
similar discrepancy was found in energy transfer prob-
lems where the RC representation was very superior
compared to FODWA. !®!7 In the present case, in the
absence of comparison with full quantum mechanical re-
sults for the same model, no assessments concerning

100
LP (a)

T T

(b)

T T

ICN-Xe lamp

1 L | 1

0 i 2 3 4

FIG. 3. Vibrational population of CN from ICN irradiated by
the Br lamp, E=5.8 (1.55 eV) (a), and by the Xe lamp, E
=8.6 (2.30 eV) (b} in relative coordinates basis, for @ =0.175,
A=0.65x107 (0.17x107 eV), A=25, §==10.07 (—0.34x10™ A).
With (~) and without (---) interstate couplings.
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FIG. 4. Vibrational population of CN from HCN irradiated by
the Xe lamp, in distorted wave basis, for E=5.4 (1.45 eV),
0=0.1766 (L=0.15 A), 4=0.13x10% (0.35x10% V), A=0, ¥
=0, with (=) and without (---) interstate couplings.

the RC representation can be made. It should be kept
in mind that this representation is affecting both the in-
tra- and interfragment couplings.

B. The effects of intercontinuum coupling

There has been a lively controversy™® %2 35 to

whether the major factor affecting the vibrational dis-
tribution involves interfragment (continuum-continuum)
or intrafragment (bound—-continuum) Franck—-Condon-
type coupling. To resolve this point we have conducted
a series of calculations using the global model which in-
corporates both effects, and compared these data with
the results of other calculations where the effects of in-
tercontinuum coupling are neglected, by setting F(n, n')
=0,, in Eq. (67). As evident from Figs. 3-5, the ef-
fects of continuum-—continuum coupling are by no means
negligible. For ICN at E=5.8, E=8.6, and £=14.7
eV, the intercontinuum coupling increases P, at n=0 by
about 30%, while at high » values P, is decreased by a
numerical n factor of ~2-3. For HCN at £=5.4 and

E =8, intercontinuum coupling effects are not dramatic
at low n=0.1; however, at higher n values P is in-
creased by a numerical factor 5-10. Thus, intercon-
tinuum couplings drastically modify the population of
high vibrational levels. Thus we do not concur with the
qualitative conclusion of Band and Freed® that continu-
um-—continuum interactions are negligible, and we as-
sert that these effects have to be incorporated in any
quantitative theory of photofragmentation.

C. Some naive fits of experimental data

We have attempted to account for the experimental
vibrational distribution (Table I) observed in the pre-
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FIG. 5. Vibrational population of CN from HCN irradiated by
the Kr lamp in distorted wave basis for E=8.0 (2.14 eV), «
=0.1766 (L=0.15 &), A=0.18x10? (0.48x10% eV), A=0, y=0,
with ( ) and without (~-=) interstate coupling.

dissociation of ICN at £E=5.8, 8.4, and 14.7 eV and of

HCN at E=5.4 and 8.0 eV by assuming photofragmenta-
tion from the initial |s, 0, 0) state, an assumption which
cannot be taken seriously. Nevertheless, we have cho-
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FIG. 6. Vibrational population of CN from ICN irradiated by
the Br lamp, £=5.8 (1.55 eV) (a) and by the Xe lamp, E=8.6
(2.30 V) (b) in relative coordinates basis, for a=0.1766 (L
=0.15 &), A=0.65%107 (0.17x107), A=25, F==0.07 (—0.34
x10™ ),
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FIG. 7. Vibrational population of CN for HCN ( ) and DCN

(-—=) irradiated by the Xe lamp in distorted wave basis for
E=5.4 (1,45 eV), a=0,1766 (L=0.15 &), A=0.13x10%
(0.35%10% eV), A=0, y=0,

sen the optimal repulsive potential parameters A and a
together with the reasonable value |yl ~0-0.1 and a
value of A close to experimental values according to
Table I (but this latter parameter does not appreciably
affect the results). The results of our calculation for
ICN and HCN over the available energy range' are pre-
sented in Figs. 6-8. The “best” potential parameters
(which are independent of E) are summarized in Table
III. For ICN the potential parameters are in reasonable
agreement with those of Holdy et al.® For HCN, a
marked difference between our pre-exponential term A
and that used by Band and Freed is observed. We be-
lieve that this discrepancy cannot be resolved at pres-
ent on the basis of the available experimental P, data.

D. Isotope effects

We now proceed to discuss two types of isotope ef-
fects in the photofragmentation of triatomics: (a) the

100

T 1 T TTIT7T7T

TTTTTT

~-=- DCN
— HCN

0. 1 I 1 n

FIG. 8. Vibrational population of CN for HCN ( ) and DCN
(-—-) irradiated by the Kr lamp in distorted wave basis for
E=8.0 (2.15 eV), a=0.1766 (L=0.15 A), 4=0.13x10%

(0.35% 10° eV), A=50, =0,
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TABLE I. Repulsive potential parameters.
Molecule A o
HCN a 3.62x10° 0.1760
b 1.3x10° 0.1766
ICN a 3,16x 107 0.0876
b 0.65x1074 0.1766
[0.27x107]°
c 0.91x107 0.1760

3Reference 9.
®present work.
°Reference 5.
%Relative coordinates.
®Distorted waves.

vibrational distribution, Eq. (67), and (b) the relative
photofragmentation probabilities, Eq. (69). We shall
address ourselves to the HCN molecule, comparing our
results with the recent interesting work of Band and
Freed.®

In view of the reasonable fit of the HCN data (Figs. 7
and 8) with our global model using physically acceptable
values of the potential parameters, we can provide an
estimate of the deuterium isotope effect on the vibra-
tional distribution. Using the same value of @ for DCN
as for HCN, we now predict the vibrational distribution
in DCN for the excess energies E=5.4 and E=8." This
prediction is shown in Figs. 7 and 8, and we expect the
vibrational distribution in the photofragmentation of
DCN to be characterized by a lower value of Pj and by
somewhat higher values of P,~P, than HCN. The iso-
tope effect on P, is quite appreciable, P,(DCN)/Py(HCN)
=~ 0.3 and P;(DCN)/P,(HCN) ~5, at both energies so that
“ordinary” and “inverse” isotope effects are exhibited
for different » values. There are some quantitative dif-
ferences between our prediction and that given by Band
and Freed, ? who predict that Po(HCN)/Po(DCN) =~ 1 and
P4(DCN)/P,(HCN) = 3; however, this is not serious in
view of the rather different (unreliable) potential pa-
rameters used in both calculations. Obviously, studies
of the isotope effects of P, will be useful and informa-
tive.

Band and Freed® have recently argued that the direct
photodissociation of DCN will not be observable as the
isotope effect on the absorption cross section is
y,(DCN)/v (HCN)~ 107**. It should be noted that this
astronomical isotope effect also applies for predisso-
ciation from the (v=0, »'=0) state if this is the dom-
inating photofragmentation mechanism in the energy
range studied by us. The theoretical prediction of
Band and Freed® contradicts both physical intuition
and experience. We have conducted a series of nu-
merical model calculations of the photofragmentation
probability v,, Eq. (69), of HCN and DCN at E=5. In
view of our ignorance of the potential parameter A, it
was varied over a broad range (Table IV). Taking our
value A =1,5x%10° obtained from the fit of the P, data
(Sec. V.C) we predict v,(DCN)/v,(HCN) ~0. 25, while
Band and Freed’s pre-exponential parameter A =3.6
x10° yields v,(DCN)/y,(HCN) =~ 10%. Our prediction re-
sults in a reasonable isotope effect, as encountered in

Atabek et al.: Photofragmentation of linear triatomics

experimental studies of photofragmentation of three and
four atom molecules.!® We note that only for extremely
large unphysical values of A =10°-107 for HCN and DCN
astronomical isotope effects ¥ (DCN)/y (HCN)=~10®,
which are somewhat lower than envisioned by Band and
Freed,® are predicted. However, for such high A val-
ues the resulting photofragmentation probabilities are
exceedingly low, y,(HCN)=10"1*~10"%2, To provide a
rough idea regarding the expected order of the magni-
tude of y, for a physical system, let us consider the
cross sections for direct photodissociation. The cross
section ¢ at the wavelength X can be expressed in the
form

8r® . .
o= M

) (83)
where ; is the transition moment for bound-continuum
transition. As the continuum states are energy normal-
ized |12 is given in the units of e*?/E. Making use
of Eq. (69), we can identify ¥, with | us|% getting

87°
=— "1
7773

(slulad)|?, . (84)
As an order of magnitude estimate we take A =1500 A,
{sluld)=~0.1 D for the electronic transition moment,
and 0=10"%-10"' cm? (which corresponds to an absorp-
tion coefficient of 10°-10° '+ cm™). We then get
y,~1.5%10"% (erg)!-1.5%10!" (erg)™. In the dimension-
less units of Table IV, we estimate y,~0.6~0.06. Thus
high values of A>2x10* will result in too low values of
7 for the photodissociation of HCN. As only these high
A values are associated with abnormally large isotope
effect on v,, we may assert that only our choice of the
A parameter for HCN (Table 9) is acceptable, as it
yields (Table IV) to reasonable values of y,. We con-
clude that the cross sections for direct photodissocia-
tion (and the predissociation probabilities) of HCN and
DCN in the energy range E =5-10 will exhibit a normal,
ordinary isotope effect.

TABLE IV. Photodissociation cross sections for HCN and
DCN.

E =5(1.34 eV) @=0.1766 (L=0.149 A) A=0
Z=40.1(1.06 &) ¥=0.1(0.5107% A)

Qchl' QHC=1'5 QDC:l'l

myen =0.0432 mpex = 0. 0832
A(X0.268 eV) vs(HCN)* ¥,(DCN)
10 0.12x 1072 0.39x1073
2% 10° 0.2 0,9%1071
3x10° 0.67 0.587
4x10° 0.95 0.104x 10t
5x10° 0.99 0.116x10!
10t 0.38 0,34
2x104 0.38x107! 0.15x 107!
4x 10! 0.12x 1072 0,13x 1078
10° 0.29%10°° 0.32x 1077
108 0.14x 1074 0.68x10°%
107 0,46x 1072 0.19x10°%

2y, in the units of 1/w].
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ViIl. CONCLUDING REMARKS source of information concerning the latter problem for
direct photodissociation may be obtained from the anal-
ysis of the experimental absorption line shape functions
according to Eq. (69). This work is now in progress.

We are able to incorporate all the physical charac-
teristics of the vibrational energy partitioning in the
linear photofragmentation problem. The main new fea-
tures of the present work involve the detailed treatment
of the intercontinuum intrafragment coupling as well as ACKNOWLEDGMENTS
the role of rotational states. Two types of additional

input information are still missing. First, spectro- One of us (J. A. Beswick) would like to acknowledge
scopic data concerning the nature and the molecular the benefit of helpful discussions with Dr. M. Baer and
constants of the predissociating states are needed. Professor M. Berry during the workshop on Molecular
Second, reliable information regarding the parameters Collisions organized by C. Moser at C.E.C.A. M.,
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APPENDIX A: EVALUATION OF TWO-DIMENSIONAL FRANCK-CONDON FACTORS FOR RELATIVE
COORDINATES

Using the generator form of the Hermite polynomials appearing in the harmonic oscillator wavefunctions,

1, =(Z) exol-t+219)

’ (A1)

t=0

we have for Eq. (33)

<S, v, ’U’ld, n, E) - (det)l/zﬂ -3/4 2-(v+v'+n)/2(v! ' 1nl )-1/2

N ) a '/ o\
f Az, (z)f dye tafrages? /2 (8t1> <8tz) (3_t;> expl — (2 + 12+ 12) + 2t,q, + 2t,q, + 213 ] .

tystaety=0

A2)
Integration over coordinate y can now be performed by writing g, and g, of y and z by means of the transformation
Eq. (25). The result can be recast in the form

(s,v,v"|d,n, € =(det)/2m"1/4(1 + C%, + C2,)1/2

ay ERY ® 1~ -
vt oty 1/2 (Y () () exol st 09) [ de (o) empl- 23 20

’
t1ata l3=0

where (A3)
-2 2 _(C11Cyp +Cy Cpp)?
w=C% +C5 1+C5+C%, (A4)
= = myf-CCp+CsyC (Cy,Cy2+Cp Cap)
- ot § b PB4 N+ B
z2=Z+@ l(y 1+C% 4 CE, (2, C12+2tzcaa+2t3)-—‘i1:g:nz—n-+ 2t1C1,+2tsz) (A5)
and

1~ ,~

1 C
f(tl, tz, t3) =z3W\Z ~ Z) +“(1—+'c_22162_)' [(CIZ+ Cza)y+2tlclz + 2t2C22+2t3] - (2tlclz+2t2C22)y —(_lz+2_czzl (t +t§+t32 .

(A8)
Using now the well-known formula for the nth derivative of a product,

t,.f(t)g(t) E( ) dt,g,;%. (A7)

Equation (A3) results in Eq. (34).

I

APPENDIX B: FRANCK-CONDON FACTOR FOR with
DIRECT PHOTODISSOCIATION .L 2 s 3 -
When the initial bound state is characterized by A= 28 ( B+——> 12& & 25 2@ ( —z- wB)
v=v'=0, Eq. (34) yields 2
(s,0,0]|d, n, €)= (det)*/2n 1/ 4(8m/Bpy2"n! )1 /2 B=1+C}+C3, T=Cy;Cip+Cy Cos, 5’=C§1+C§1—L

ﬁ b
xexp(d) (V" ArPWH W), (Bl a=22T,
r=0 \¥. B
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4
Prl 2 3
v=%(3_1_;—®)+22;ﬁ, (B2)
and
H,(U)=d_: e-Bt2+2tv) , (B3)
at t=0
with
2 272
B=1 _E_Bz_d’ . (B4)
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