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Collision-broadening theory is used to obtain a general expression for the steady-state rate of two-photon
simultaneous absorption as a function of their sum energies and momenta in gases, under conditions where
both homogeneous (collision) and inhomogeneous (Doppler) broadening take place. Effects of molecular
motion on the line-broadening parameters are discussed, as well as extensions to bands of overlapping lines,
inclusion of radiative damping, saturation effects, effect of intermediate resonating levels (consecutive

absorption), and time-resolved experiments.

I. INTRODUCTION

High-resolution two-photon optical spectroscopy’
was used recently as a means of studying atomic
and molecular spectra free of Doppler broaden-
ing.?® The method developed from an old idea of
Goppert-Meyer,® and followed earlier experiments
at radio frequencies'®® and in the optical re-
gion.'®® Under proper conditions, the simulta-
neous absorption of two photons of equal frequen-
cies and opposite momenta leads to the population
of an excited molecular level, followed by reso-
nance fluorescence, with a resonance line shape
(as a function of the frequency sum) which is in-
dependent of the Doppler effect. It is thus possible
to study fine features of atomic structure and pos-
sibly also the structure of small molecules at high
resolution, while the shape of ordinary absorption
spectra is dominated by Doppler broadening.

One aspect of this method is the possibility of
studying homogeneous line-broadening phenomena
at pressures and temperatures, and in spectral
ranges, in which Doppler broadening usually ex-
ceeds all other homogeneous broadening mecha-
nisms (collision, radiation, and power broadening
and shifts). This method is complementary in
many ways to the method of Lamb-dip spectrosco-
py''™ (as a steady-state spectroscopic technique),
and to the methods of maser beams, optical nuta-
tion, quantum beats, and photon echoes (as tran-
sient techniques),'* as Doppler-free methods of
obtaining information about homogeneous damping
mechanisms.

We shall present below an adaptation of the the-
ory of spectral line shapes in gases to two-photon
absorption, paying particular attention to collision
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broadening. In many cases, two-photon-absorption
is monitored by the measurement of one-photon
resonance fluorescence as the major channel of
decay of the excited system. The process can be
described as resonance scattering into a one-pho-
ton continuum of a two-photon system impinging
on a homogeneous and stationary molecular-gas
sample. We shall concentrate here on the calcula-
tion of the excitation rates by two photons irre-
spective of the decay mode of the excited system.
The theory is simplified under the condition® that
there exists no intermediate molecular level at
resonance with one of the photons (simultaneous
absorption). How little should we avoid the inter-
mediate level depends on a properly defined
correlation time introduced in Sec. IV (where con-
secutive two-photon absorption is discussed).

The only way in which the simultaneous-reso-
nance two-photon absorption significantly depends
on the radiation frequencies is contained (as shown
below) in a resonance-line-shape function of the
frequency sum. This function is the Fourier
transform (at the frequency sum) of a molecular
autocorrelation function, as in the linear-response
theory of one-photon absorption.'®'® Unlike the
one-photon case, however, the dynamical variable
involved in the time correlations is not the molec-
ular dipole moment but an operator intimately re-
lated to the molecular polarizability. This opera-
tor has a matrix element combining the initial and
final states of the two-photon absorption process,
and its selection rules are similar to those of the
polarizability operator. The general characteris-
tics of the correlation function (rotational-invari-
ance considerations, etc.) are therefore common
to two-photon absorption'” and to Raman spectra,'®
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with the most notable exception that Raman line
shapes depend on the frequency difference, where-
as two-photon absorption depends on the frequency
sum.

In Sec. II, the theory of two-photon absorption
by a single molecule is reformulated, introducing
radiative damping in a nonperturbative fashion.
The theory is then extended for the case of a col-
lision-broadened isolated molecular transition un-
der dilute-gas (impact) conditions. Starting from
the Brownian-particle model, in which the line-
broadening parameters are independent of the mo-
lecular velocities, the theory is later generalized
to velocity-dependent effects. Extensions are
further discussed covering the following topics:
(a) Transition from Doppler-free to Doppler-dom-
inated line shape by variation of the frequency dif-
ference; (b) bands of overlapping lines and effects
of relaxation; (c) combined radiative and colli-
sional damping; (d) power-broadening (saturation)
effects resulting from application of strong fields;
(e) transition from simultaneous to consecutive
two-photon absorption via an intermediate reso-
nant state; and (f) time-resolved fluorescence re-
sulting from short-pulse two-photon absorption is
investigated in some detail.

II. ISOLATED MOLECULE

As was already mentioned in the Introduction,
the theory of two-photon-absorption line shapes
involves time correlations of off-diagonal ele-
ments of a molcular-dynamical variable (7T,-type
correlations). We start with the ordinary (dyadic)
formalism of scattering theory to describe the
isolated-molecule response. The tetradic formal-
ism for scattering amplitudes'®'®?° will be intro-
duced in Sec. III as a convenient means for the in-
troduction of collisions. Consider a single mole-
cule undergoing two-photon absorption from a low-
er molecular level Ig) to an isolated level |s). The
radiation field before the absorption is represented
by two beams (¢=1,2) with n; photons of angular
frequency w,, momentum k;, and polarization A,
in each one.

The transition rate to the excited level (and
hence the resonance-fluorescence rate, assuming
a unity quantum yield for one-photon dipole emis-
sion, neglecting other radiative and nonradiative
processes) is given by the resonant part of the
decay rate of the initial state under the interaction
with the radiation fields.? Consider, therefore,
the total attenuation rate I',, which, by the optical
theorem, is related to the Lippmann-Schwinger T
matrix as follows®?:

T.=-(2/7) Im<g~'lT(E)|§) (1)

Here

T(E)=V+VG(E)V (2)
and

G(E)=(E -H+i€)™, 3)

H being the full radiation-plus-matter Hamilto-
nian, including the interaction V with the radiation
field. Also, |2) is a shorthand for the product
state of the bare molecule and photons,

lg>:lg: Ny, n2>, (4)
and E, is the total energy eigenvalue in this state,
E =€, +mbliw, +niw, . (5)

In order to spell out the particular resonant con-
tributions owing to scattering through the excited
state Is), let us introduce appropriate projection
and level-shift operators.?®'?* For the sake of
simplicity, we shall deal first with the case where
w, and w, are sufficiently far apart so that only
w, + w, (and not 2w, or 2w,) is near resonance with
ws, =7 (€~ €,). Also, let us not ignore, for the
time being, inhomogeneous-broadening and de-
generacy effects. The resonant states are then
spanned by the one-dimensional projection opera-
tor

P=[s) ], )
whose complement is

Q=1-P, (M
where

8 =ls,n, =1,m, - 1). (8)
The corresponding level-shift operator is*?

R=V+VQGyQV, 9)
where V is the interaction with the radiation and

Goo=(EQ - QHQ+1€)™., (10)

Using these definitions we can write
T=R+RPGPR, (11)

where the second term leads to the resonant con-
tribution I';;°. The first term (R) will give only
a practically constant background to the resonance

line shape. The resonance contribution is
T ;2= -(2/7) Im(Z|R[3) 5|Gl5) (3IR|2). (12)

The propagator (5|G|s) includes further interac-
tions with the radiation field through virtual emis-
sion and absorption of photons. Here we have to
distinguish between corrections depending on #,
and #n,, which constitute nonlinear saturation ef-
fects, and spontaneous-emission terms which
provide for the radiation damping of the propaga-
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tor. Considering, for example, the latter only
(the earlier corrections cause saturation or power
broadening), we can then write

(SIG'S) = 1/(w1+ Wa = ws‘— Ds+%2‘rs) Egs(w1+ (.02),
(13)

where wy, =%"(e; —€,) is the bare molecular res-
onance frequency, and D, and T'; are, respective-
ly, the radiative shift and width,*® given by

D, -%T,=(s|R|s). These are generally functions
of w=w,;+w,.

The factor giRIs') can be considerably simplified
if we assume that the denominator in Ggq is far
away from resonance.® Let all intermediate states
|) through which the molecule undergoes the tran-
sition from g to s be far from resonance. That is,
|w,, =w,| is large compared with a characteristic
correlation (or memory) time 7, (7,=I';%dT'/dw
in the case of radiation damping). We can then
neglect the interactions in the resolvent Ggq,
writing

RIS = T T @IV s FVIS),
& 7

i=1,2 7
(14)
where
I?1>=!T’n1‘19n2>; |7z>=|y’n1’n2"1>- (15)

Assume now the dipole approximation for the
interaction with the field,

== wh8N(R, W), (16)
11,2

/.L"i being the dipole-moment component along the
polarization of the ith beam and 8§ being the
electric-field operator. Using a box normaliza-
tion of the radiation fields in a volume L3 we
have?®

(n;| 8|n; = 1) ==i @Ewyn, /2L3)2 1mn
in the dipole approximation. Hence
(ZIR[3) = (2 /2L s "2 (w;) + 08 "% (w,)]
X (w, (.uznlnz)l/2 , (18)

where

Glatls) =n1 3 iy —I— . (19)
r

s Wy — Wy, *

Equation (19) resembles a matrix element of the
polarizability tensor o'/, with the exception that
o'’ includes a mirror image of a'* reflected on
the imaginary w axis,

aii(w) = a(*)ii(w) + a(-)li(w)

- a(+)ij(w)+ a“’”(—-w*) . (20)

The coefficient o‘*’(w,) + a‘*’(w,) is obtained in-
stead of (20) since the process here involves ab-
sorption of two photons, whereas the Kramers-
Heisenberg expression for the polarizability re-
sults from emission and absorption. The exten-
sion to complex w is required if we want to re-
place w by w+2€ as we approach resonance with
Wyg .
As the difference w, — w, decreases, we have to
face the possibility that 2w, and 2w, will also be
near resonance, in addition to w, +w,. In this
case the projection operator P should be extended
to three dimensions including, in addition to (6),
also

|8') =|s,n, - 2,m,), |§")=|s,n,n,~2). (1)

To each of the latter final states corresponds only
one intermediate state, |7,) or |7,), respectively,
for a given molecular state ». The resonance line
shape will therefore consist of the sum

I3 .
e =——2F1m Z w;wm; ;- Gij)l(el g 2|2

i,=1,2
X go(w, +w,), (22)

where we have introduced the symmetrized ten-
sor

B“: a(*)“(wi),

BH = A2 & ¥ (wi)+ o P (wh)], (23)

where i #j.
In terms of the beam intensities I;=cL ™ w;n;
(assuming n; >1),

res 1 ij
L% = gz , 2o, DLl 1Y 1) P - Imgy(o, +0y)].
(24)

Under the condition of no intermediate resonant
level (simultaneous absorption), the resonance
line shape is given by g (w, + w,), which depends
of the frequency sum, and its bandwidth (in the
absence of collisions) is governed by the radi-
ative width.

We have so far avoided the problem of space
degeneracy.!” Both states g and s can be de-
generate, and (assuming the radiative-damping
process is isotropic) (24) splits into separate
contributions belonging to different bases of the
irreducible representations of the rotation group.
Let j; and m, be the quantum numbers for the
total angular momentum and its z projection in
the level s, etc. The irreducible bases are formed
by the vector-subtraction scheme?2’
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{ngsl }(MK)= Z (— l)js-msc(jl’js» K;r”g, _ms?M)

mgmg

X |gmy ) ( smyl. (25)
The symmetric tensor 8 can be split into the two
irreducible tensors (® and f(® only. We there-
fore have

res
FEE -

L LW (sl p g 2
Zﬁcz K=0,2 ‘Z g !

X[ - Img® (w,+ w,)], (26)

where (s||p¥?|| g) is the reduced matrix element
of the tensor 8%, and (using the terminology of
Fano and Racah®®)

W(;f) =[e(il)xe§1)](K).[e(il))(egl)](l() (27)

is a geometric factor determined by the unit vec-
tors 3,- and E, that specify the polarizations A;
and A;. By a proper choice of polarizations one
can separate the terms K=0 and K=2. This, for
example, has been used to separate the g (w, + w,)
contribution from the g,(2w,) and g;(2w,) contri-
butions.?

The Doppler shift can be easily incorporated
here if the molecular levels are extended to in-
clude the translational degrees of freedom. The
discrete level (and its corresponding projection
operator) is replaced by a continuum of trans-
lational states.'® The frequency difference
w; + W; — wg in gs(w; + w;) is replaced by

pz 2
Wi+ W — We — 2—:7— Z_fn—

-

=w,-+w,~—w5g—(R-+E,)-%, (28)

where, by momentum conservation,
5S=pg+E+Ej, (29)

Dq being the translational momentum in level a,
and where m is the mass of the molecule and &;
and k; are the wave vectors of the photons w;
and w;, respectively. In (28) we have assumed
k<p, and thus (neglecting a recoil energy) we
obtained a Doppler-shifted resonance frequency
w+ (K +Ej) +De/m. The expression for 'l (as-
suming there is no velocity dependence of the
radiative shift and width) is finally obtained by
averaging over a proper (usually canonical) dis-
tribution of the initial momentum p;. The Dop-
pler shift vanishes, and the momentum averaging
becomes redundant, as k, + Kk, approaches zero.

III. COLLISION BROADENING

Consider now the collision-damped molecular
system. The expression for the absorption and

scattering of radiation has to be modified in two
ways. First, the single-molecule operator phi
in (16) should be replaced by the many-body op-
erator

N
MiE)= ), whie't T (30)
A=1

pertaining to N molecules, with positions _IiA
(A=1I,...,N), assuming the dimensions of the
molecules are small compared with the wave-
length of the radiation. Second, the Hamiltonian
H, for the single molecule should be replaced by
the many-body molecular Hamiltonian H,,, which
includes the intermolecular potentials. Assume
that the molecular levels g, », and s are well
separated, and collisional couplings between them
are negligible. Nevertheless, each of them (to-
gether with other close-lying molecular levels)
are smeared into a continuum of eigenvalues of
H. Consider momentarily a complete set of
eigenvalues of H. If the collisional coupling of
g and s mentioned above is sufficiently weak, we
can still define continuum subsets of eigenstates
of H associated with each molecular level. Let
P, and P, be, respectively, the projection op-
erators for the subsets labelled g and s, and let
the individual states in each set be labelled v and
o, respectively, with the energies €, and ¢,
forming continua. Also, suppose a distribution
p(E,) of initial states is specified. The resonance
attenuation of the initial set of states is then given
by

r7,- - %;chyxﬂP,RPs l6)

1

XETE_—OIIP RP, |7), (31)

where E; = €, +n,/iw, + n,fiw,, etc., and the gen-
eralized summation over y and ¢ includes inte-
grations over the energies €, and €,. We further
neglect effects of the interaction onp, assuming
it is separable,

PE;)=p(e,)|nm,) (niny| (32)

(i.e., it represents a pure state of bare photons).
The expression (31) for T'% can be easily ex-
tended to an arbitrary complete set of wave func-
tions. Introducing tetradic Liouvillian notation®®

LX=n"'H,X] (33)
(where X is an arbitrary dyadic operator),
2
TS = -?tr{pPgRPS[ 1/(~L +i€)] P;RP,}.
(34)
Here L operates on the dyadic operator P RP,.
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This operator forms a vector in Liouville space
which can be denoted R, |sg) in the double-bracket
notation of Liouville-space vectors.'?:?®

Assume, again, that the resolvent Ggq in R
is far from resonance. It is then possible to
neglect the interactions and leave only the inde-
pendent-molecule contributions to the Hamiltonian
in Gog. We can then rewrite R, replacing g*/
by the sum of one-molecule operators

N
BY (R, +K,)= Z pie #i(% sk Ra (35)
A=
The plus and minus signs pertain to emission
(P,RP,) and to absorption (P;RP,), respectively.

The Liouvillian L can in general combine terms
with different molecular labels in P,RP_ and
P,RP, (resonance exchange of excitation by colli-
sions'®), The situation is simplified in foreign-gas
broadening, where this becomes very unlikely,
since interactions between absorbing molecules are
neglected. In this case one can replace the sum
over A by a single term, adding a factor N to
I'7z°. The extension to self-broadening, where
resonance exchange can occur, produces a change
only in the line-broadening parameters,'® adding
a contribution to the linewidth,

We are thus led to the conclusion that if no in-
termediate level is at resonance with the field the
operator P RP, defines a basis of single-molecule
excitations on which L operates. This basis is
specified by the internal states g and s and by the
number of photons absorbed in each field mode.
The translational states are unspecified, subject
to the momentum-conservation condition (29)
which results from the exponential factor in (35).
If B¥ is independent of translational degrees of
freedom, then P RP, is proportional to the sum
over momentum states (using a discrete “box-
quantized” set) of one-molecule operators

Z '5753+Ei+i;j><§95g i (36)

Pg
The terms in this sum can be used as vectors in
Liouville space spanning a subspace with fixed
initial and final one-molecule internal states.'
The radiative degrees of freedom can be simply
removed by using the identity

L|3)(Z|=[- (w;+w)) +L,]]3)(Z] 37

if we neglect in L the interaction between mole-
cules and radiation (L,, being the molecular Liou-
villian corresponding to H,), assuming that colli-
sion-broadening exceeds the radiative damping.
We can therefore replace (- L +i€)"! by (w; +w;

- L, +i€)™', leaving R an operator on the molecular
degrees of freedom only, and removing the tilde

signs (7) from (36). The analysis from now on
proceeds as in the theory of collision broadening
of one-photon absorption spectra.’® The subspace
on which L, operates is spanned by the operators

|s, B, +k; +K,) (g, B, | (38)

with variable p,.

Let us associate with this subspace a projection
operator P,. We should note here that this sub-
space belongs to the (k; +k;)th invariant subspace
of the translation group in Liouville space.

The molecular Liouvillian L, contains all inter-
molecular interactions, in addition to the free-
molecule Liouvillian L, which is constructed from
energy differences of the isolated molecule. These
interactions couple the basis defined by P, with
its complement,® defined by Q. =1 - P,,.

The situation is particularly simple when all
velocity effects (Doppler shifts, velocity depen-
dence of scattering amplitudes, etc.) can be ne-
glected. This situation is realized in the so-called
Brownian-particle model, describing a heavy mo-
lecule imbedded in a gas of a light perturber.'°
In this case we can ignore translational degrees of
freedom altogether and confine the projection op-
erator to the one-dimensional space spanned by
ls) <z |-

Using the density operator p as a metric to de-
fine scalar products in Liouville space,' we can
use the Zwanzig-Fano method of projection oper-
ators to reduce (w;+w; - L +i€)™" into a one-mole-
cule operator.'®' In the case of the one-dimen-
sional operator we simply get

P (w;+w;— L +5€) P, = (0;+w; — Wy — O + 1) ™",
(39)

where 6, and v, are the line shift and width, re-
spectively. In dilute gases, where binary colli-
sions prevail, these parameters are proportional
to the number density of the perturbing gas. Over
a spectral range

Aw =T, (40)

where 7 is a characteristic correlation time of the
collision (the “duration” of the collision), 8§ and

v are practically constant, independent of w;+w;
(the “impact” approximation).'®?® At ordinary
pressures and temperatures y7>>1, and there-
fore the Lorentz function (39) constitutes a good
approximation to the resonance line shape. In
dilute gases, the distribution of collisions is iso-
tropic. Hence it can be shown that 3., and v, are
rotationally invariant and therefore confined to the
irreducible representation of the rotation group.*’
Therefore in the case of space degeneracy the
line-shape expression splits up into independent
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contributions of the different irreducible repre-
sentations (K=0 and 2), as in (26), each one hav-
ing its single shift 5 and width y{f? parameters.
The calculation of the K =2 parameters, for exam-
ple, is made precisely in the same manner as
those of Raman spectra.'®

The theory has to be modified in order to incor-
porate velocity effects. The one-dimensional set
|s)(g|is replaced by the continuum (38) with vari-
able P, (or the quasicontinuum, if box quantization
is used). The single resonance frequency wg, is
then replaced by the diagonal matrix (or kernel, in
the continuum limit) of Doppler-shifted resonance
frequencies,

Q 35;§g(ki +k;) =[wg, + (Ei +Ej) . ﬁg/m]ﬁsé;sg. (41)

The shift and width parameters are replaced by
the nondiagonal Hermitian matrices (or kernels)

Aag';ig(ki"'ki)’ rﬁé;ig(ki"'kf) (42)

representing the particular effect of the scattering
from ﬁg to ﬁ{, by collisions. The shape of these
matrices is generally quite complicated and can
be simplified under specific models.*® General
expressions can be given to these matrix elements
in terms of the binary-collision Lippmann-Schwin-
ger T matrix.’ The resonance line shape is then
given (for a single K term) by (24) with g (w; +w;)
replaced by the sum

N —
(gslw;+w;)) = VA Z o3 l(@; + W)~ Q- A+iTJ 50
Pgbg

(43)

where [« - ]g;;;,é denotes the matrix element of the
inverse matrix and 7 is the unit operator. P, is
the distribution of initial momenta. The volume
(L®) factor within the summation sign disappears
in the continuum limit (L®~«, N/L®=const) where

the sum over P, and p’ turns into an integration.®
P Pe

IV. DISCUSSION

The theory formulated above can be used to study
various physical phenomena concerning collision
broadening, with or without the interference of the
nonhomogeneous Doppler broadening. Further-
more, some of the assumptions made along the
derivation of the theory can be relaxed, enabling
its extension to other physically interesting situa-
tions. We shall briefly discuss here some of the
applications and extensions:

(a) Velocity effects. Two-photon absorption
can be used (in the same manner Lamb-dip spec-
troscopy is used'') to study effects of translational
motions on collision broadening under conditions
of temperature, pressure, or spectral range in

which the Doppler broadening ordinarily obscures
all other broadening mechanisms.

By choosing E, +§j =0, the Doppler shift is com-
pletely removed. However, the expressions for
the A and I matrix elements still remain p depen-
dent, and the resulting line shape is generally not
Lorentzian, except in very special situations (as
in the Brownian-particle model mentioned above).

The removal of the condition k =k; +k; =0 intro-
duces a new interesting possibility. By increasing
K, the relative magnitude of the Doppler width,
compared with the collision broadening, can be
varied at fixed density and temperature. The in-
terplay between the two (inhomogeneous and homo-
geneous) broadening mechanisms can thus be
brought to light. For example, the mixing of the
different Doppler modes by nonforward scattering
(®;#D,) can be studied in cases where the elastic-
scattering cross sections are large in comparison
to the collision-broadening cross section.*?

(b) Bands of overlapping lines. The theory as
formulated above can be readily extended to the
case where g and s are embedded in bands of
close-lying levels (e.g., vibrational-rotational
levels of a single electronic configuration). If the
resonance-absorption process is nonselective, not
restricting the absorption to a single pair g,s, we
must consider the absorption from the band of
levels g €C, to the band s €3¢, where ¥, and 3(;
are the subspaces (in Hilbert space) covered by the
two bands. In this case, the projection operator
P,, should be replaced by the sum

P=, 2 P,. (44)
g€ JCg sEJCs

The line shift and width are then associated with
matrices A and I defined on this subspace. They
remain matrices, and not numbers, even if all
velocity effects can be dropped out (as in the
Brownian-particle model), and the line shape will
generally not be a sum of Lorentzians. Equation
(39) is replaced then by the sum

Z:, Pe ;é Bi{:’[(“’i +w)[ ==+ iT] ;tl'.s’g’ ’

S8 &

45)

where Q. ,r =W, 0,00, is the diagonal (tetradic)
matrix of resonance frequencies and A and T are
generally nondiagonal tetradic matrices. The
diagonal elements are the shift and width of in-
dividual lines and the off-diagonal elements I, /.
are cross-relaxation rates, which depend on in-
elastic scattering involving the transitions g— g’
and s—s’ (i.e., intraband energy transfer). The
generalization to velocity-dependent relaxation
follows by inspection of (43) and (45). The various
elements of A and I" remain frequency independent
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if all the band frequencies w;, stay confined to an
interval Aw= 77! [the impact approximation; see
Eq. (40) above].

(c) Combined radiative and collision broadening.
To the intermolecular interactions contained in
the Liouvillian we can add the radiative interac-
tions that lead to radiative damping, as in the iso-
lated-molecule case [Eq. (13)]. The resulting
line-shift and width parameters are then com-
posed of radiative (pressure independent) and col-
lisional (pressure-dependent) contributions with
(possibly) interference effects. The question of
whether and when we may simply add the two con-
tributions independently or not has not been suffi-
ciently clarified as yet. Doppler-free spectro-
scopy can provide us with conditions where the
two broadening mechanisms are comparable in
magnitude and the pressure dependence of the
combined effect can be elucidated. These ques-
tions are particularly intriguing in the case of
resonance broadening,3?

(d) Saturation effects. In the preceding example
we have discussed only spontaneous-emission
effects leading to radiative damping. These in-
volve matrix elements of the interation V inde-
pendent of the occupation numbers »; and #; of
the applied beams. Nonlinear optical phenomena,
such as saturation, involve higher orders of the
applied-field-dependent interactions. An approxi-
mation under which these phenomena are con-
veniently studied is the external-field approxima-
tion in which the applied field is treated as a time-
dependent c-number field, leaving only internal
radiation fields in the second-quantized form. The
justification of such an approach for laser coherent
fields has been demonstrated recently.?

Under the external-field approximation, satura-
tion phenomena can be formally studied, to arbi-
trary orders of the applied fields. A simple dia-
grammatic method for dealing with such calcula-
tions has been developed recently.*® The resulting
line shape will include a power-dependent satura-
tion broadening and shift.

(e) Transition from simultaneous to consecutive
two -photon absorption. The condition requiring the
intermediate states |») to be far from resonance
with any of the two field modes may not be always
sustained. In such cases, the simple relation of
R to the one-molecule operator does not hold. The
resolvent Gy in R then includes many-body colli-
sion effects, bringing out a complicated non-Her-
mitian w-dependent expression. If (as in the case
of levels s and g) » is sufficiently close to reso-
nance,
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lw,, —w; | =772, (46)

we can invoke the impact approximation also in the
calculation of Ggq. It can be shown thatthe product
E,RP,GP,RP, then factorizes into a productof three
Green’s functions, each defined on the one-mole-
cule basis, as is PGP. This result can be inter-
preted as a succession of radiative processes.
Fluctuations in the thermal bath in which the mole-
cule is imbedded decay within the correlation (or
memory) time®:37 which can be defined as

1 d4dr

T= T ZZ)—’ (47)
where T measures the strength of the coupling to
the bath. In the binary-collision limit, this is the
duration of collisions. Since Aw~! (where here
Aw=w,, —w) is a lower limit for the time it takes
to absorb a photon off resonance, fluctuations in
the bath are too rapid to be discerned by the radia-
tion, and therefore each photon separately sees a
“dressed” (i.e., collision-broadened) molecule
under the mean influence of the thermal bath
(“consecutive absorption”). In the other extreme,
both photons interact before the bath fluctuations
have time to damp. We then must treat the absorp-
tion of the two photons as a single event, from the
point of view of the dressed molecule (“simulta-
neous absorption”).

Following this line of thought, a theory can be
developed for consecutive two-photon absorption
similar to the theory of resonance Raman scat-
tering. 740

(f) Time-resolved pholon scalteving. So far, only
steady -state situations have been considered. The
formalism can be extended to the study of time-
resolved fluorescence which follows two-photon
absorption from a short-lived pulse, containing
the two field modes. An experimental study of the
corresponding one-photon problem has been car-
ried out by Williams et al.** They observed a
gradual transition from characteristic resonance
fluorescence to direct scattering (that adiabatically
follows the pulse profile) as the incident radiation
is tuned off resonance with the molecular transi-
tion. The range of frequencies over which this
occurs is determined by the Doppler width, but
the characteristics of this behavior are very
sensitively pressure dependent. A theoretical
analysis of both the isolated-molecule case*® and
the collision-broadened case*® has been carried
out recently. The time-dependent resonance
excitation probability was found to be given (for
the single-photon transition g— s) as*?

PO(t)= -2Rel( 5|V]$)|? f drdr' 6(t=106(t -7 e*aX{(ss|G,(t =DIss)){(sg|C,(t - 1")|s2)). (48)
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Here ¢(t) is the envelope of the pulse amplitude,
G,(t) is the line-broadening (or “coherence”) Green’s
functionrelated to the correlationfunctionfor the
dipolar transition (T,-type correlation), whereas
G,(t) is the level-damping Green’s function (T',-
type correlation) which describes the dynamics of
the level population.

The extension of the two-photon problem, in the

)

case where the two photons are absorbed simulta-
neously, is immediately obvious. All we have to
do is to replace the dipolar correlation functions
by the corresponding correlations involving the
operator B (in order to obtain the resonant part

of the decay pattern of level s), and the field
amplitudes ¢(r), by appropriate binary forms. We
thus get, for simultaneous two-photon absorption,

P(t)= -2 Rel(s|gl @ I?IE, 21E2|2dedT'9(t -1 0(t =1)0,@) 0.0} a") f ')
X{(ss|G,(t -)|ss)H{sglG,r =7)|sg), (49)

where the subscripts 1 and 2 denote the two-pho-
ton beams, and E; (¢=1,2) is the maximal field
amplitude of the ith beam. It should be noted, how-
ever, that there will be nonresonant contributions
in which ((sg|G,|sg)) is replaced by other (off-
resonance) terms. These will add a broad back-
ground which will follow adiabatically the pulse
shape. Therefore the adiabatic component will

not vanish completely even when the frequency

sum is right in resonance, contrary to the one-

photon case. In the case where the mean frequen-
cies of the two beams are equal (and the mean
momenta opposite) the Doppler broadening will
cease to play a role, and the transition to the adia-
batic-type scattering will occur at a much smaller
frequency mismatch, of the order of the linewidth.
Moreover, interference effects which usually are
smeared out by the Doppler broadening, may be
exhibited in this case.
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