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In this paper we advance a unified theoretical scheme for the description of direct photodissociation and
predissociation of polyatomic molecules. In the case of direct photodissociation we consider energy-resolved
variables, i.e., the cross sections for photon absorption, for elastic and inelastic photon scattering, and for
the populations of different dissociative channels. For predissociation we consider both time-resolved and
energy-resolved experimental observables. The various cross sections relevant for the description of a direct
photodissociation process were formally expressed by introducing a distorted wave basis to specify the
eigenvalues of the nuclear states on the dissociative potential surface and advancing a general wave
operator which is completely defined within the dissociative potential surface. Explicit expressions for the
cross sections were derived with a proper account for radiative coupling effects. Utilizing projection
operator techniques we have demonstrated that to a low (second) order in radiative interactions, which
constitute an excellent approximation to the problem at hand, the photodissociation process is isomorphous
with a coherent superposition of full collision processes on the electronically excited nuclear potential
surface. Similar theoretical techniques are utilized for the study of energy-resolved and time-resolved
observables in predissociation. Subsequently, we have invoked a set of systematic approximations to reduce
the formal expression to a tractable form. The Heitler K matrix formalism is utilized, and the introduction
of the first-order approximation for the K matrix results in explicit expressions for the time- and energy-
resolved observables in photofragmentation, where the cross sections are expressed in terms of products of
an initial coupling matrix, the wave operator matrix, and a radiative interference matrix. This formalism is
then adopted for the special case of linear photofragmentation of triatomics. Analytical, quantum
mechanical expressions for the experimental observables and, in particular, for the vibrational energy
distribution of the photofragments were derived for a linear triatomic, where the interfragment repulsion is
exponential and the diatomic fragment is characterized by a harmonic potential. The effects of
intercontinuum coupling on the vibrational energy distribution in the predissociation of XCN (X =H, Cl, Br,
and I) molecules in the energy range ~6.5-10.5 ¢V were investivated.

1. INTRODUCTORY REMARKS

The advent of new radiation sources, such as lasers,
vacuum ultraviolet lamps, and synchrotron radiation,
combined with spectroscopic detection methods and
molecular-beam techniques, made it possible to probe
some interesting new features of direct photodissoci-
ation (DP) and predissociation (PR) of polyatomic mole-
cules.!=® Experimental studies in this field have un-
folded the nature of the internal energy distribu-
tion'*%%%8 and the angular distribution®*7 of the photo-
fragmentation products. Related information originates
from the vibrational-energy distribution of the frag-
ments resulting from collisional dissociative reactions
between an electronically excited atom and a ground-
state triatomic molecule®!® and from collisionally in-
duced electronic-to-vibrational energy transfer be-
tween an excited atom and a ground-state diatomic
molecule.' There has been recently a considerable
theoretical effort directed towards the elucidation of
the dynamics of molecular photofragmentation, 12-3°
The following problems are relevant in this context:

{a) What is the proper theoretical description of the
optical excitation process which results in photofrag-
mentation? In most theoretical studies of molecular
photodissociation, the effects of the optical excitation
were disregarded and one has started with the dynamic
problem on the final potential surface,

(b) What are the effects of intrafragment structure
on the photofragmentation dynamics? One has to con-
sider the effects of the configurational changes and
frequency changes in the polyatomic radicals resulting
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from photofragmentation, relative to the bound mole-
cule. The latter corresponds to the ground electronic
state in the case of DP or to a metastable electronical-
ly~vibrationally excited (zero order) state in the case
of PR, These effects may be accounted for in terms
of the multidimensional Franck—Condon factors for the
optical transition, incorporating both the bound modes
of the fragments as well as the dissociative mode,

(c) What is the role of interfragment coupling on the
dynamics of photofragmentation? These effects stem
from interactions between final dissociative channels,

(d) What is the nature of the vibrational-energy dis-
tribution of the photofragmentation products? The in-
trafragment structure will determine the coupling be-
tween the dissociative exit channels and the ground
state for the case of DP, where the coupling is radi-
ative, or with a bound electronically excited state in
the case of PR, where the coupling corresponds to non-
diabatic intramolecular interactions. The interfrag-
ment coupling connects different decay channels. Thus,
both effects have to be simultaneously considered.

(e) What is the nature of the rotational energy distri-
bution of the photofragments ?

Concerning point (a), we note that time-resolved (TR)
excitation experiments, where the excitation and sub-
sequent decay processes can be separated are practical
only for the case of PR, In the case of DP the time
scale for the dissociation process is determined by the
Fourier transform of the absorption line shape function,
The structureless, bell-shaped, molecular absorption

Copyright © 1976 American Institute of Physics 3735

Downloaded 18 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3736

bands originating from DP are broad, being character-
ized by a typical width of 10°~10* cm™, which corre-
spond to ultrafast decay times of ~107'* sec, where-
upon time-resolved optical experiments are currently
not practical., Thus, DP has to be described in terms
of energy-resolved (ER) observables, such as cross
sections and quantum yields, for the population of final
exit channels. Predissociation processes are amena-
ble to experimental study both in terms of the above
(energy-resolved) cross sections or, alternatively,

via the short excitation experiments involving decay of
metastable states. Regarding the role of intrafrag-
ment structure {point (b}, it was recently suggested
by Simons and Tasker, ?® Berry, *® and Band and Freed?’
that Franck-Condon overlap factors, which determine
the transition amplitudes to the various dissociative
channels determine the vibrational-translational en-
ergy of the photofragments. Regarding the effects of
interfragment coupling [point (c)], Wilson and his col-
leagues'®? have advanced the “half-collision” picture
which was later subjected to some numerical calcula-
tions by Shapiro and Levine, !? while the present authors
have proposed a physical picture which rests on a se-
quential decay model involving multiple coupled con-
tinua.?*%% Most treatments emphasize exclusively
either the intrafragment coupling or, alternatively, the
interfragment dynamics, although we have recently
provided a phenomenological model which incorporates
both effects.?® The dichotomy between these two physi-
cal effects which determine the vibrational distribution
of the photofragmentation products [point (d)] cannot be
currently bridged on the basis of the available experi-
mental data, and a theoretical reexamination of the
problem is desirable. Our previous study?® of the final
vibrational-energy distribution in the photofragmenta-
tion of a linear triatomic molecule, which is deter-
mined by “initial” coupling to different dissociative
continua together with intercontinuum coupling, con-
tains the essential physical ingredient required for a
coherent description of the problem. However, we did
not provide explicit expressions for the interfragment
coupling between adjacent continua. Finally, from the
point of view of general methodology, it is important
to notice that the collinear photofragmentation models,
which are analogous to the popular approach to reactive
scattering in collinear chemical reactions, 3 are ade-
quate just for vibrational-energy redistribution. In or-
der to account for the rotational energy redistribution
[ point (e)], as well as for angular distribution, one can
either adopt statistical models assuming that all de-
grees of freedom are sufficiently scrambled to insure
a significant population of all exit channels or, pre-
ferably, a complete quantum-mechanical description of
angular momentum coupling in photofragmentation of
polyatomics should be advanced.

The present paper provides a theoretical scheme
for the description of DP and PR processes of poly-
atomic molecules, In Sec. II we define the various
cross sections in a DP experiment and express them in
terms of a distorted wave operator F;, completely de-
fined within the dissociative-potential surface. Utilizing
projection operator technigques we show that to low or-
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der in radiative interactions, which constitutes a very
good approximation, one can describe the photodissoci-
ation process as a coherent superposition of full col-
lisions on the dissociative potential surface, thus es-
tablishing the formal relation between photofragmenta-
tion and collision theory. In Sec. IV we express the
experimental observables in TR and ER, PR experi-
ments in terms of the F; matrix of Sec. II and the for-
mal similarity between PR and DP processes is demon-
strated. In order to reduce the formal treatment to a
tractable form we subsequently consider in Sec, V the
Heitler relation for the reaction operator (K). We show
how the first order X matrix can be applied to reduce
the problem at hand to the inversion of a finite-size,
on-the-energy-shell matrix, resulting in explicit ex-
pressions for the distribution of the products. This
formalism is applied in Sec. VI to the special case of
linear photofragmentation of triatomics. The role of
intercontinuum coupling in photofragmentation of tri-
atomics is explored, and compared with the experi-
mental results of Mele and Okabe® on the photodissoci-
ation of XCN molecules.

. AMODEL HAMILTONIAN FOR
PHOTOFRAGMENTATION

Consider a polyatmoic molecule RA, undergoing
photofragmentation into the fragments R and A, We
assume that only two electronic molecular states may
be considered in the description of DP, while three
electronic states are involved in PR, The total Hamil-
tonian for DP can be written in the form

H= lge>H(B‘C; @e’ + 'de>H(Bd(; <de| +Hr +Hlnt H (H‘l)

while for predissociation we have
H=|g) HE (g, | +|s.) HES (s, | +|d,) HES <, | )
(IL.2

+H, +H +H, .
The following notation is used in Eqs. (IL 1) and (IL 2):

lj,a@=1j, 1j® is a Born—Oppenheimer state of the
molecule represented in terms of the product of elec-
tronic 1j,) and nuclear |ja) states; ¢, —energy of the
|j.a) state where j and @ correspond to all electronic
and nuclear quantum numbers, respectively.

Hyo =3;1j ) HY3 (J.! is the total Born-Oppenheimer
molecular Hamiltonian.

HY =3,1j @) €, (jalis the Born-Oppenheimer Ham-
iltonian of the j th electrnoic state. HYJ acts on the
nuclear coordinate space. j =g,d,s.

lg,) is the electronic ground state.
|d,) is an electronically excited dissociative state.
ls,) is a bound, electronically excited state,

H, is the nonadiabatic intramolecular coupling (i.e.,
nuclear kinetic energy and spin-~orbit interaction),

H, is the Hamiltonian of the free radiation field.
H,,, is the molecule—radiation field interaction.

The various parts of the total Hamiltonian, as well as
the corresponding eigenstates, are defined in Table I.
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TABLE 1. Definitions of Hamiltonian and coupling terms for photofragmentation.
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Term Definition Eigenstates Eigenvalues Remarks
HE Ground state | geve) = 1800 1 gvg) E‘”x v, denotes all the internal
BO Hamiltonian guantum numbers.
Eigenfunctions (Q;| gv,)
are produces of H.O. wave~
functions and rotational parts.
HE3 Excited (discrete) state | sevs) = | 80 | 5057 Esy, v denotes all internal
BO Hamiltonian guantum numbers.
Eigenfunctions (Qg!| svs)
are products of H.O.
wavefunctions and rotational
parts.
HY BO Hamiltonian for the Wavefunction is a Nuclear coordinates are chosen as
dissociative state complicated super- Qg internal coordinates of R,
position of all avail- Q, internal coordinates of A,
able channels Qr 4 interfragment vector,
(usually not known),
A asymptotic form of 1 dgyaYrD) v, internal quantum numbers
HE when Qg — of A,
ygr internal quantum numbers
of R,
1 relative momentum of
fragments.
Vd(QRQAQRA) interfragment We assume that the | d,) elec~
=8 -8 =v,+ Vv, interaction tronic state has no bound

r

Vo

vy

T _ @)
B=A -+ v,

{dov I, vac) Hypt | go v, K)
:Dd,“"nFCd,(v,gl, U')

FColvgl, vp) = (dvd ™ | gv,)

(sgvs, vac| Hyy | 200, k)

— Ds,(“" )ch((vs , ‘U‘)

FCyplvs, vp) = (svsl gop)

Elastic part of V4(i.e.,

the part of V; which does not
cause internal excitation)

Vo=Dogunie 1 d g {d vl 1 Vgl d vgl” ) {d vgl" |
Inelastic part of V,

V=51 d vg1) {d vqll Vgl d v 1" ){d vj 1"
vg=vg, 1,1

Distorted wave (DW)
Hamiltonian, taking care
for elastic scattering of
AonR

ldeUql*) = | dg) | d vgl®)

[ vac) vacuum state
1 k) one photon state
with wave vector k

Hamiltonian for the free
radiation field

Radiative interaction
matrix element between
lg.) and | dp).

Franck—~Condon overlap
factor.

radiative interaction
matrix element between
Is,) and lg,)

Franck—Condon overlap
factor.

states, otherwise V4 would
have included additional terms.

1d vd®y =t d vd) + (E~BEB )1 vyl d vl

The + (=) signs pertain to
the asymptotic behavior of
an incident beam + an out-
going (incoming) spherical
wave.

We do not specify explicitly
the photon polarization e but
when needed it will be
specified,

We are not interested in high
field effects (saturation, etc.)
s0 we do not consider multi-
photon states.

D™ in an electronic transi-
tion moment.

DS s an electronic
transition moment.
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The BO discrete states corresponding to H%J and H'S)
are usually well defined. As for H{), its true eigen-
states are complicated scattering wavefunctions involv-
ing all the available channels, So we define in Table I
two kinds of zero-order Hamiltonians: A% correspond-
ing to the separated fragments, and a distorted-

wave®® 3 Hamiltonian Y] whose eigenstates are the
solutions of the approximate elastic scattering problem
of A onR.

Our zeroth-order molecular basis set consists of the
BO states belonging to lg,) and Is,) (i.e,, eigenstates
of lg,)H¥(g,| and |s,) HE) (s,|, respectively) and the
DW states |dy,l") which are eigenstates of |d,) HYS (d,1.
The Hamiltonian (II, 2) contains three interaction terms
having off-diagonal elements in our zeroth-order basis
set: V,, H;,, and H,. The V; term (the inelastic part
of the interfragment potential) will be discussed later
in detail. At this stage, let us just specify explicitly
the other off-diagonal terms. The radiative coupling
matrix elements may be factorized within the Condon
approximation into a product of an electronic transition
moment and a Franck—Condon overlap factor (see Ta-
ble I). In the case of PR we have to consider also the
matrix element of H,,, (d,v,I"| H,Is,v,). When the elec-
tronic configurations |s,) and |d,) correspond to dif-
ferent spin states, H,=H,, is the spin-orbit coupling
operator, whereas when nonradiative coupling between
the same spin states |s,) and |d,) is considered, the
interaction is due to the nuclear kinetic energy term
Ty. In both cases the matrix element of H, may be
described approximately in terms of appropriate
Franck-Condon factors.

H1. CROSS SECTIONS FOR DIRECT PHOTODISSOCI -
[ATION AND RELATION WITH SCATTERING THEORY

The half-collision concept has been introduced by
Wilson et al.'® for the description of the dissociative
dynamics. The idea is that the dissociating system is
initially prepared as a wave packet localized in the in-
teraction region of a dissociative potential surface,
and the evolution of this state leads to the dissociation.
The term half-collision stems from the fact that the
system is initially already in the interaction region
and undergoes only the “second half” of a usual col-
lision process. As performing TR direct photodissoci-
ation is not practical at present (see Sec. I), we shall
adopt here the complementary approach and consider
ER experiments in order to examine whether the ob-
servables of such experiments may be expressed in
terms of collision theory. The results of ER experi-
ments may be expressed in terms of the relevant cross
sections, i.e., 0¥ *(E)—cross section for dissociation
in the v; channel, 0"’ '(E)-—cross section for photon
scattering into the v, channel (the scattering may be
elastic if v,=v} or inelastic) and, finally, we have the
total absorptlon cross section (the line shape) o (E).
The cross section for photodissociation per unit solid
angle §, into the intramolecular continuum |d,v,l, vac)
is given in terms of the transition (T) matrix®3
(dod/dnd) (lgevn ke)— |devd’ Vac))

= (27L%/kc)|{d,v,l, vac| T |g,v,,

ke)|?p(E) , (HL1)
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where L? is the volume of the box and p,(E) is the den-
sity of states in the dissociative continuum. We shall
define also an integrated dissociation cross section by
summing up Eq. (II. 1) over the momenta of the final
states and averaging over the initial photon polarization
and propagation directions, resulting in =" (E)—the
photodissociation cross section into channel v,

(|gev3, ke) ~ |d,wv,, vac>)> .

0% v1(E) < f aQ, d(’d
(IIL. 2)

The differential photon scattering cross section (per
unit solid angle Q' of %’ photons) is given by

(do,/d2")(|g.v,, ke) ~ | g,vl, k'e"))

= (2nL%/ne)|(g0t, K'e' | T|g.v,, ke)|?ol(k").  (UIL.3)
Here pl(k’) is the density of final photon states
pl(k") = R'2LY/(2m)%nC . \ (IIL. 4)

The photon scattering cross section o3¢~ (E) into the
final molecular state lvi,) will be obtained by summing
up Eq. (IIL. 6) over all final spatial directions and polar-
ization directions

0% v (E) = <Zd9 (do,/dQ') (| g.v,, ke)~ |gv), K'e >> ’

(1L 5)
where { ) denotes averaging over initial molecular ori-

entations with respect to the photon polariza.tion.‘ Final-
ly, the photon absorption cross section is now given by

0y (E) = = (2L%/Fic) Im{ g0, , ke | Hyo G(E) Hyye | 8.0, k)

(111. 6)

The quantum yields for the various channels, when the
incident field has an intensity distribution W(E), are

Y’;s'"’:de W(E)ols" /de W(E)o¥(E) . (1. 7)
Substituting a =%, f=wv} results in photon scattering
yields, whereas substituting o=d, 8=v, results in
photodissociation yields, The relevant T matrix ele-
ments appearing in Eqs. (OI.1), (fII.3), and (IIL. 6) will
now be evaluated utilizing projector—operator tech-
niques.“'as For the treatment of a DP process we shall
partition our Hilbert space as follows:

ﬁ: Z lgev:’ k> <gevr’ kl (III. Ba)

Vgr

and

Q= Z |d,v4l, vac) d.u,l, vac| .

vdv

(I11. 8b)

The cross sections for photon scattering (absorption)
and for photod1ssoc1at10n are glven in terms of the ma-
trix elements of PTP and QTP respectively. In Ap-
pendix A it is shown that these matrix elements may be
written in the form

dgv,l, vac|QTP|gv,, k)
= Z: {dv,l, vac| QRP|g0l, k) |87 |v,) (01. 9)
ve

and
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(g.vs, K lf’Tﬁlgev, , k)

=2 (g, K| BRB|g !, k) Wl | &7 vy, (IIL. 10)
v’
where R [Eq. (A4)] is the level-shift operator, whereas
® is an mXm matrix, m being the number of open radi-
ative channels in the ground state, i, e., the number of
| 8.0, states. The & matrix accounts for high order
radiative transitions between the P and @ subspaces,
and provides an interference between the various radi-
ative channels. We have estimated elsewhere®® 7 the
order of magnitude of & for a diatomic molecule, which
is characterized by a single dissociative channel, We
have established that & =1+ O(10-7), so that for all.
practical purposes & may be replaced by a unit matrix,
This amounts to treating the problem to lowest order in
Hy, (i.e., first order for dissociation expressed in
terms of éTP and second order for photon scattering
determined by PTP). The rough estimate of the effect
of radiative coupling is valid also for polyatomic mole-
cules since it is based on orders of magnitude consider-
ations of the radiation-matter interaction. In Sec. V
we shall provide explicit expressions for the matrix
elements of ® for a simplified molecular model, which
will further confirm this conclusion. We thus conclude
that to low order in radiative interaction we have the
compact results

QTP~QRP, (IIL. 11a)
PTP~PRP (ITL. 11b)

We are now in a position to investigate the concept of

half—collisiop in energy-resolved experiments. Operat-
ing with QRP,
QrRP=QVP+ ORQGC,QVP, (111 12)

on a state |g,v,, k) results in

éRf’Igev,, k)=éH,,,t13lgev,, k) +éRé' Z; ldeval>
vg

X(E - Ev¢l+ in)-l <devd1| Hlntlgev(’ k>9

(11, 13)
where we have explicitly introduced a complete set of
@ states,

The first term in Eq. (III.13) is a direct coupling
term, while the second term consists of the operator
(':)Ré acting on a wave packet defined on the excited elec-
tronic surface, Note that QR§ is actually the transi-
tion (7') matrix on the upper excited electronic surface,
when we ignore any interaction with the ground state.
The second term in Eq. (III. 13) thus represents a su-
perposition of full collisions on the dissociative poten-
tial surface. This superposition forms a well-defined
wave packet at the interaction region (since Ig.v,,Kk) is
strongly localized in this region), and this wave packet
undergoes the second half of a usual collision process.
We have thus provided the theoretical justification for
treating photodissociation as a half-collision on the sin-
gle potential surface which corresponds to the excited
electronic state.

The following conclusions concerning half-collisions

can be drawn at this stage:

(1) The half-collision is a meaningful concept for ER
measurements and in view of Eq. (II. 13) it can be rep-
resented as a well- defined superposition of full colli-
sion processes on the excited electronic surface,

(2) This superposition yields an appropriate wave
packet located at the interaction region at time ¢=0,

(3) The final distribution amplitudes are sums of the
direct coupling plus the contribution of the half-colli-
sion.

(4) Numerical solution of the § matrix on the dissoci-
ative surface together with Eq. (III. 13) will result in the
photodissociation cross sections, We have thus estab-
lished the connection between photodissociation pro-
cesses and the general framework of scattering calcula-
tions. Previous attempts® to establish the connection
are, in our opinion, incomplete,

(5) It is important to notice that in spite of the fact
that in ER scattering there is no “preparation” of states
in the usual sense, we can still treat the system in
terms of a collision of a wave packet of virtual states.

After discussing the general framework for handling
photodissociation problems, let us consider in more de-
tail how evaluation of the various cross sections is
really made. We have shown that the problem of dis-
tribution of products is actually equivalent to a coherent
superposition of full collisions on the excited electronic
surface, which may bg handled using the appropriate
transition matrix QRQ. As was already noted in Sec.

II, it is convenient to handle the inelastic collisions
problem by means of the DW basis set (see Table I).
Using this basis we shall be able to treat the elastic
part of the potential (V,) rigorously and obtain an exact
result for the contribution of the inelastic part (V,)
which can be subsequently simplified by various system-
atic approximation procedures. In this section we pre-
sent the exact formalism, while the approximate meth-
ods will be given in Sec. V. We shall now apply the
formula of scattering by two potentials®*3? to rewrite
the matrix elements of QRP in the form3%37

{@4l, vac|QRP|g,0,, k)

= Zl <dvdl- l é‘FIé 1 d’l){,l'-> <de’l/',; 1,- ‘ Hlnt lgev: ’ k> ’
vq ’

where (T11.14)

éF1é=é+ évl‘é(E—Ho— Vo—- Vl)-lé ’ (I11. 15)
satisfying the integral equations

QF13=9+QV,Q(E - Hy- Vo'QF,Q (I11. 16a)
and

QF,Q=Q+ QF,QV,Q(E - Hy- V) (1L 16b)

and ldv,x 17) are the incoming solutions of the elastic
scattering problem given in Table I, Note that Eq.
(I11.15) is a version of the Lippman—Schwinger equa-
tion.®® We have thus expressed the Q7D matrix ele-
ments in terms of the DW solutions of the excited, dis-
sociative, electronic state, Substituting Eq. (III.16) in
Eq. (II.14) results in
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d,0,1, vac|QRP|g,v,, K) = {d,v, 17, vac|Hy,|g.0, k)

+ 2 {dv,17, vac|QR,Q| v}, vac)(E - Eyppe+ 1M N ug !, vac|Hylg,v,, B,
vyl*

where
Qr,Q=4rF,Qv,Q

is an operator whose matrix elements in the DW basis

give the inelastic scattering amplitudes within @ [see

Eq. (I, 21)], Equation (III. 17) is the distorted wave-
form of Eq. (III, 13).

(I11.18)

|
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1. 17)

—

In a similar way, we have for 13Tﬁ, utilizing Eq.
(IIL. 11),

- Vl)-l éHlntﬁ °

(111, 19)
We now make use of the Dyson equation and the defini-
tion (III. 15) to get

PTP=PRP=PH,_Q(E~Hy-

(&eVss k'[IsTP|gevg, k) ={g.ve, k'|ﬁH“téG0éF1éH“tﬁ[gev‘,, k)

Z (gve k' lHint‘d v 17) 5 E - E <d”d1|QF1Q|dUdl'-><d val’” lHintlgev:’ k).

Vg

For the sake of completeness let us also recall the for-
mula for the scattering amplitudes within the |d,) sur-
face, i.e,,’3 "
@vi1’| QR dv,1) = (dvj1 | §V,@|dv,1*)

+{dvil” | QR §|dv, 1%y, (L 21)
where the first term represents the elastic scattering,
whereas the second is responsible for the scattering due
to V, in the presence of V,,, and contrlbutes to the in-
elastic and elastic cross sections., QR Q was already
defined in Eq. (III. 18). This completes the formal
procedure for providing explicit expressions for the

matrix elements which determine the relevant cross
sections for the photodissociation problem,

IV. ENERGY PARTITIONING IN PREDISSOCIATION

The level scheme and Hamiltonian of a molecule un-
dergoing predissociation were described in Sec. II. As
before, we utilize the projection-operators technique
and partltlon the HlIbert space by the projections P and
Q Q,+ Q,, where P projects into the states |s B, vac),
@, includes the states |g,v, k), whereas Q, includes the
dissociative states |d,v,1).

As in the case of direct photodissociation, an ER ex-
periment is completely specified in terms of the cross
sections for dissociation (o,), photon scattering (o,),
and absorption (0,). We now assume that (i) H;,, cou-
ples lg,) with |s,), whereas H, couples |s,) with |d,).
This assumption implies that there is no direct scatter-
ing between lg,) and 1d,), and it strictly holds in many
cases of physical interest. (ii) The P space consists of
a single discrete state |s). The various cross sections
(111. 1), (11.3), and (II1.6) now assume the form (see
Appendix B)

do
d(lgev,,k) |dv,l, vac))

27rL

l(d 2a,11§,RDP|s,, vacy|?

1
E<F,- D)7+ 1%’

(Iv.1)

X l(ses Vac|Hlnt|gev:! k>l2

(I1L. 20)

—

do. 2rL’®
—d—s;/(lgevgu k) - |gev;7 k’)) =W l<gev;7 k’lHint| SE) Va,C>

1
2
X (se’ vac l Hint‘gev" k>| (E - E; - Ds)z+ %Pi ’
. (v.2)
and finally,
21‘
(E)_ * (&g, Kl Hygsl's,, vac)l 1v.3)

(E E D)+4r2

Here E, is the zeroth order energy of |s), whereas D,
and I'; are the level shift and width of |s, vac). We
note that the partitioning among products is determined
by Q.R‘CP, in analogy with the direct dissociation
where it was determined by QRP, except that R, Eq.
(A4), is replaced in the case of the predissociation by
R, FEq. (B5), a level shift operator due to dissocia-
tive states, All the manipulations performed in Sec.
III with QR P also apply here. In particular, we can
make vse of the DW basis set to rewrite the matrix ele-
ment of §,R‘’P, and Eq. (IV.1) may be recast in the
form?%?

doge""e 21TL

dsy

(E) =

|<d ”dl-‘QaF;d)QaH,,Pl Py Vac)|2

2 1
X |(Se, vac| Hyn| 250, K | E-E.~ DI
(Iv. 1a)

Turning now to TR experiments we inquire what is
the probability P(¢) of the system to be found at time ¢
in the |s) state, in the |d,v,, 1) dissociative state (with
any 1) [ P,,(#)], and to emit a photon into the 1g,v,, k)
state (with any k) [P (t)] These quantities may be
written in the form®?

P (t)=exp(-T,?), (Iv.4)
P, =%l: [{d,v 1| QRDB|s,)|?[1 - exp(-T,#)], (IV.5)
Py (0)=27 (.0, k| §,R®B| 5|21 - exp(~ T, ),

y {Iv.6)

where RW, R, and I', are defined in Appendix B.

Assuming that the radiative channels are not coupled
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among themselves, i.e., §,VQ,=0, which is physically
reasonable, we have

(g,0,,k|Q,R®P|s,, vac)={g,v,, K| Hin|S., vacy.(Iv.7)

Regarding the relative populations of the dissociative
states, we note that as in the ER case they are deter-
mined by @dR(‘”ﬁ‘, whose matrix elements may be writ-
ten utilizing the DW basis

{dp,1, vac|Q,RPP|s,, vac)
=, |Q, F{*Q,H,P|s,, vac).

The various quantum yields are obtained from Egs.
(IV.5) and (IV.6) as Y;’d:Pud(oo) and Y= Pn‘(oo).

(Iv.8)

In concluding the present treatment of TR and ER ob-
servables in predissociation we note that, utilizing the
formal expressions [Eq. (A5)], we can easily relax as-
sumptions (i) and (ii), invoked here merely for the sake
of simplicity. Relaxing assumption (i) will result in in-
terference terms between direct and resonant scatter-
ing,* %7 Relaxing assumption (ii) is trivial in view of
the effective Hamiltonian formalism3*3%3™3% and the
general expression for PGP in terms of the indepen-
dently decaying levels.*™? Inserting this expression
into Egs. (B4) and (B6) will result in the generalized T
matrix elements for an arbitrarily complex P space,

V. APPLICATION OF THE REACTION (K) MATRIX
FORMALISM TO THE PHOTODISSOCIATION OF
POLYATOMIC MOLECULES

In this section we shall utilize the Heitler (K) ma-
trix®* % to present a simplified scheme for evaluating
the various T matrix elements involved in the photodis-
sociation of polyatomic molecules, Eqs. (IIL.9) and
(111. 10). The results will be expressed in terms of a F,
nX n matrix (where is the number of open dissocia-
tive channels). The F, matrix Eq. (III.16) is obtained
by the inversion of an X »n coupling matrix. The set
of cross sections thus obtained satisfies the optical
theorem and enables us to evaluate the quantum yields
for the various processes. It will be explicitly demon-
strated that ®1=1, 0(10°7) and its contribution is thus
negligible,

We have already introduced in Table I the partitioning
of the V, interaction into elastic and inelastic parts (V,
and V,, respectively), where V, is responsible for the
vibrational excitation. An important feature of this dis-
section is that it enables us to treat V, rigorously (by
finding the DW basis set) and take account for V, in an
appropriate manner. One possible approximate scheme
involves the replacement of QR,Q [Eq. (IIL 21)] by
QVl(:), resulting in the well-known distorted wave ap-
proximation (DWA).3*** [In this work we shall adopt a
different method based on Heitler’s reaction matrix
(the K matrix),?%3 defined as

K=V4+ VPP[1/(E- 1)K, v.1)

where PP denotes the Cauchy Principle part of the in-
tegral. It can be easily shown that the T matrix [Eq.
(A3)| may be expanded in terms of K as

T=K—inT6(F - H)K . (v.2)

For any Hermitian K matrix, Eq. (V.2) results in a
unitary S matrix.

1t should be noted that the form of Eq. (V.2) is a spe-
cial case of a general class of exponential approxima-
tions to the S matrix,*® all leading to a unitary S matrix,

At this stage we shall introduce an approximate form
of the K matrix for the evaluation of F;, Eq. (OI.16),
which determines all the relevant cross sections. Con-
sider first the inelastic scattering matrix within @,
i.e., @R, [Eq. (IIL.21)]. In analogy with Eq. (V.2)
we may write

GR,§= K- imQR,35(E - QH,Q - QV,Q)K, (vV.3)
where
9K =49v,§+ §v,QPP(E - GV, . (V. 4)

Expanding K to first order in V,, i.e., substituting
K=V, in Eq. (V.3) results in

QRr,Q=QF,Qv,Q, (V.5)
where
QF, Q=4 —inQF,§v,Q0(E - H,- QV,Q), (V.6)

which is an “on the energy shell” approximation to Eq.
{II1, 16b), Next, utilizing Eq. (III, 14) we can now write
the first order K matrix approximation (FOK) to the ma-
trix elements of (:)Rj3

(dql, vac|QRP|g,v,, Ky = {d v, 1", vac|QFQH,,P|g.,, K.

V.7
Finally, PRP [Eq. (III. 20)] will be given to the same
degree of approximation by

PRﬁ: PHintéFlQ(E - Hy- QV[,@)'“QH“,IS

== inﬁHinté;‘léé(E - Hy— évoé)élfutﬁ . (v.8)

These approximate relations to first order in the K ma-
trix (FOK) have several advantages. Firstly, the in-
tegral equation (V.6) is defined on the energy shell,
which appreciably simplifies its solution. Secondly,

the cross sections obtained from Egs. (V.5), (V.7),
and (V.8) are usually better than those obtained by sim-
ple DWA, as the present procedure includes certain in-
teraction terms (on the energy shell) to infinite order
in V;. Finally, as we have seen, the S matrix thus ob-
tained is unitary,

Equation (III. 11) together with Egs. (v.6), (V.7),
and (V. 8) constitute a solution to the general photodis-
sociation problem within the framework of the first
order approximation to the K matrix. We invoke now
the most drastic approximation involved in our work,
specializing to the case of linear photodissociation, i.e,,
we consider a collinear model for the dissociation pro-
cess (say along the breaking bond). In this case I (the
relative momentum of the fragments) is a scalar. We
note in passing that, alternatively, we could have as-
sumed a three-dimensional model with isotropic inter-
fragment coupling. This assumption immediately im-
plies energy normalization of the distorted waves, i.e.,

(v.9)

In Table IT we define the relevant interactions, wave

@osl'~ |dvgd™y=56, +8(E,~ Ep.).

’
vavd
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TABLE II. Matrices for one dimensional photodissociation
problem.?

Matrix Definition Dimension
Vi VilE)ygo,= (dvg 1771 Vil dogl") nxn
Py FUE) = f—inP (B)F (E) =1~ iV, (EVF | (E) nxn
or alternatively:
FyE)= @+ inP (BN
(f is the unit matrix).
W R 213 \1/2 ) «
(W(E)),,d,,f (m) {dgval™, vac| Higy | g8o04, k) nxn
() is the wavelength of the k proton )\=gk£).
Ry (Ry(E)) 0, = (dvg 171 QR,Q | dud*) =Fy- ¥y nXn
(Note that in our collinear model | dvyl*) = | dvgl™)).
R, (éz(E),,‘,,‘= {dvgl, vac| éRIslgev,, k) mxn
2172 .
RyE)= (-3%;-“-) F{EYW(E)
(%; is the wavelength of the incident photon).
1%3 R3(E) (gv, , k7| BRDI £v,, k) mXm
-3 -~ A
: imTHcM A W £
213
: 2m
(A’ is the wavelength of k' (A’ =% ).
& N=mW pW mxm
$ o=1+ 1:/' mXm

#Note that the 171, f‘i, vf/, d:, and N matrices are dimensionless.

operator, and level-shift matrices required for express-
ing the experimental observables for linear photodisso-
ciation within the framework of the FOK approximation,
All these matrices are defined on the energy shell (i.e.,
the energies of the bra and ket states are the same),

In the definition of the interference matrix N we have
ignored the real part of Af [Eq. (A9)]. This is justa
Heitler-matrix type approximation for the radiative in-
teraction. We have thus provided explicit expressions
for the relevant transition matrices @Tﬁ, PTH in terms
of the F, matrix [which in turn can be evaluated by in-
verting an nX» matrix (see Table II)]

(v.10a)
(V.10b)

OTP = Brex2/2L3) 2 F,W(l+ ),
PTP= - 3inhcA2/2L%) WE, W(I.+ N)™
In addition, we have an expression for QRIG:) [Eq.

(I11. 21)] which provides the solution to the inelastic, full
collision problem on the dissociative electronic surface

éR1é=ﬁ‘lf/l . (V.10¢)

The photodissociation cross section is now obtained by
substituting Eqs. (V.10a) in (II1. 1), and utilizing Eq.
(IIL. 2),

03””‘(E)=ﬂ7\2|[131‘i’(i+1§’) vdvz|2 (v.11)
Making use of Eq. (V.10b), we obtain for the photon
scattering cross section, Eqs. (Ill. 3) and (III. 5),

0% (E) = ;| [n W E, W(T D)), |2, (v.12)
and the photon-absorption cross section [Eq. (III.6)] is

given by

vgvg
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0% (E) = M2 Re[ WTF, W+ N)™] (vV.13)

Vgbe *

where we again made use of Eq. (V.10Db),

The ratios between these cross sections [Eq. (IIL. 7)]
result in the relevant quantum yields, Equations (V.11)-
(V.13) are direct extensions of previous results® to in-
clude several dissociative channels (via F,) and several
radiative channels [via (I+ N)!]. Let us now consider a
special case where we have only one open radiative
channel. In this case N is just a number and W is a
vector. The photon scattering quantum yield becomes

_ | s W E W12
T TWTE,WI2 R, WEW

(V.14a)

the photodissociation quantum yield for channel v, is

L(Fy W)y, | 2
[ a W E, W2+ R, W E W

Ve~ vy _

Yf

, (V.14b)

and the total dissociation quantum yield is
R

Y,= Z VLI (v.15)
|rW B WIEL R, WTE, W
The optlcal theorem?®'® results in the relation
WHEtE W=R, WHE, W, (V.16)

Finally, we note that the , wave operator matrix
determines also the energy partitioning in predissocia-
tion, Defining an » dimensional vector U

U, (E)=d, v, I|H,s.), (V.17

then the matrix corresponding to QdR“”P [Eq. (B5)]
(R®) is given by
RO-F T . (v.18)

This matrix appears in the expressions for the photo-
dissociation cross sections [Eq. (IV.1)] and in the dis-
sociation rates [Eg. (IV.5)]. Making use of Eq. (V.18),

the dissociative width of {s), T assumes the form
T =200 B\ U (V.18a)

Conservation of probability requires

3 Pl 3 Py o)1
Yq Ve

(V.18) and (V.19) into Egs. (IV.5)

(V.19)

Substituting Egs.
and (IV.6) gives

2nl FIF, U+ T =20 ReUF U+ T, (V. 20)
i.e.,
UtEL R U=ReD'F, U, (V.20a)

which is analogous to Eq. (V.16).

VI. VIBRATIONAL-ENERGY DISTRIBUTION IN THE
PHOTODISSOCIATION OF A LINEAR TRIATOMIC
MOLECULE

We shall now consider the linear photodissociation
of a triatomic molecule ABC resulting in the diatomic
fragment BC and the atom A. The repulsive inter-
fragment interaction term V, is assumed to prevail be-
tween adjacent atoms, i.e.,
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Vo= VAB(RAB) ’

where R,y (and Ry¢) are the internuclear distances,
Vag is repulsive, and the BC molecule is assumed to
be harmonic. Making use of the reduced coordinates*

(V1. 1)

y=[(IJ'BC X)llz/h_]lla(RBc"ﬁsc) , (V1. 2a)
w= e /) A [FEEE 2oRyl] , (vL20)
c
and of the reduced mass parameter
m=MyMc/(My+ Mg+ Mc)My , (V1. 2¢)

the nuclear Hamiltonian (Table I) in the dissociative
state (in units of the oscillator quanta 7w) assumes the
form
2 52

HEd=— 2—17; Ea;z - % 237 +% yi+Vylx-3), (VL3)
where V,(x - y) is a repulsive term, In Egs. (VI.2) x,
Ry and ppe are the BC oscillator force constant,
equilibrium distance, and reduced mass, respectively.
Ry is the BC distance and X is the distance of A from
the center of mass of the BC molecule. Note that Eq.
(VI. 3) is mathematically equivalent to the Schrddinger
equation of a particle of mass m colliding with a har-
monic oscillator of unit mass,

Let us now take an exponential repulsive potential

Vy(x = y) = Cexp[- afx - y)] (V1. 4)
which to first order in the oscillator coordinate becomes

Vi Cexp(—ax)(l+ay)=Vy+ Vy, (V1. 5)
where

Vo= Cexp(- ax) (VI. 5a)

Vi=Veay . (VI. 5b)

V, is the elastic part of the potential (does not couple
different oscillator states), whereas V; couples oscil-
lator states differing by one quantum (see Table I), In
terms of the oscillator creation and annihilation opera-
tors (a' and a, respectively) we may write

Vy=(Ca/V2) exp(- ax)(a+a") . (V1. 8)

Jackson and Mott* have solved the full collision problem
represented by the Hamiltonian (VI, 3) and (VI. 4) in the
DWA. The solutions are products of the harmonic
oscillator wavefunction X,(y) (where v is the vibra-
tional quantum number) and a continuous part ¥, (x),
which up to a normalization factor is equal to a modified
Bessel function. [, denotes the relative momentum of
the fragment in the vth channel. Denoting the total (di-
mensionless) energy of the system (relative to the zero

of the potential) by ¢ we have
lI,=[2m(e —v=$)]"/%= (2me,)' /2 . (VI.7)

It will be convenient to introduce also a reduced wave
vector,

q,=21,/a .
Adopting an energy normalization for ¥, (x), i.e.

<‘I’xv|‘1’16)=5(€,- €0 ,

(V1. 7a)

(V1. 8)

3743
we require the following asymptotic behavior
2\ V2
V0 (;l—v) cos(l,+ ¢) . (VL. 9)

The dimensionless coupling matrix elements of Eq.
(V1. 5b) in the DW representation {lvg,)}={x,(»)¥,, )}
now assume the form

<U’qv' l Vl ‘ qu> =8y 60. vi=1t+ 8y’ Gv, v'sl (VI- 10)
where
g,=alw+1)/21'21(q,, q,) (VL. 102)
and
I(q,, q,9)= J dx exp(- ax)¥,; (x)¥, (x)
_ 1 (sinhng,, sinhng,)!/? g~ g
"8  sinhza(g,+ q,) sinhzm(g,. — q,)
(V1. 11)

Let us consider now another possible partitioning of
the Hamiltonian, utilizing the relative coordinate sys-
tem*

Z2=X=1%,

(V1. 12)
y=y,
in terms of which H{ assumes the form
1 1) 9% 1 92 92 1
@ _ _ 2 2 _z " Lo
H{ = 3 (1+ m)é? 3 897t 3y797 3 ¥ +V,y(2) .
(V1.13)

We notice that in this coordinate system the potential is
vibrationally adiabatic, whereas the kinetic energy
couples different vibrational states; this is exactly the
reverse situation than in Eq. (VI.3) where the Kinetic
energy was separable in terms of x and y and the inter-
action potential provided the nonadiabatic coupling. The
interaction V, (Table I) is now

Va=Vo+ Vy, (VL 14)
where

Vo= C exp(~ az) (V1. 14a)
and

v,=08%/8y'0z . (VI. 14b)

We notice that the distorted waves for this partitioning
are the same as for the previous partitioning [Eq.
(V1.5)] except that the coordinate x is replaced by z. A
favorable property of the inelastic potential V, [Eq.
(V1.14b)] is that it couples only states of the oscillator
differing by one quantum Ap=+1, (In the previous
partitioning this was obtained as a result of linearizing
the potential in the oscillator coordinate.)} Thus, one
may think that it is preferable to use the coupling g, ob-
tained from this partitioning and improve the results of
the model. However, it should be noted that the inter-
action potential [Eq. (VI.14b)] does not vanish at infinity
(as z ~ ), as is the common situation in scattering
theory, and so the wavefunctions ¥} have a wrong
asymptotic behavior ’

zp;u(z) acos(l,z + @)

rather than

(V1. 15)
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Intercontinuum coupling strength f? [Eq. (VI.16)] for
(a) @, m taken from Secrest and Johnson®!;

FIG. 1.
various € values:
(b) @, m corresponding to ICN (see Fig. 3).

Yy, (0) < cos(l, x+ §')

given by Eq. (VL 9). This point has been investigated*
recently by using a renormalization procedure?® based
on an appropriate shifting of the energy of the continuum
states. The result is that the renormalized coupling is
given by Eq. (VL. 10) with g, replaced by 3,, where

é’v:(1+m)'1 ” (VI. 16)
and I(g,, q,.) is given by Eq. (VI.11),

(VI.15a)

At high energies ¢,+ g,,, we have the limiting form of
gD ’

R 1 1/2
g,,»(”“; ) o ,  (VI.17a)
1+m sinh—g-—
( " ) (qu+qo')
and if in addition g, + q,. > 4mm/ 2% we have
o (v+1\'? (gt gp)a
g,,—-( - ) Lo dus (VL 17b)
At low energies q,+ ¢, <1 and we get
s o+ N2 m 2(g,q,)' "2
& 2 1+m alg,+ )sinh-—-a————-————m ’
Ao+ 9w (g, + 4,
(VI.17¢)

which when ¢, + q,. < 4mm/a® assumes the form
A o+ INE m Alg g )P dmm
S T+m  aof I )
Qu+ Qe a*(qy+ qy0)
(VL. 17d)
In order to obtain an insight into the variation of the
coupling strength over the entire energy domain, we
plot in Fig, 1 gv as a function of » for several values of
€ and m. The explicit evaluation of the F matrix for a

coupling of the form (VI.10) was given elsewhere 3% 44p
The result is

— v'-t

QéQul H (_ iﬂg,) , v’ > v,
n J=v
Q@ 1T
Fiw, v')={ H (-ing¥), o'<v, (V1.18)
Qn I=v’
QQ, ,
-2 v=v,
&,

where @, and 6,, are polynomials in the interference
parameters N, (N,=7%|g,|?) and # is the number of open
dissociative channels. The polynomials @, and @,. are
defined in terms of the recurrence relations

QO:Q1:1 »

Q=@+ NpiQpy, j=1,2, -+, (V1. 18a)
and

6»—1:‘@"-2:1 , j=m=2, n=3, ..,

Q=@+ Ny Q. (VL. 18b)

The ﬁ‘l matrix provieds us with the transition ampli-
tudes within the @ space, i.e., F,(v, v') is the amplitude
of the system to escape in the »th channel if it had en-
tered in the v’ channel. The I (~ ing,) term is the low-
est order transition amplitude (i.e., direct transition
between adjacent continua from »' to »), whereas the
polynomial factor which has the property®™*¢® ¢
<(Q,@,/Q,) <1 is a retardation factor. This factor is
equal to unity when the continua are not coupled, when
£,=0, and F(v, v')=0,,. The explicit expression for
F,, when substituted in Eqs. (V.11)-(V.13) will re-
sult in all the cross sections involved in our problem,

VIl. NUMERICAL SOLUTIONS FOR THE ROLE OF
INTERCONTINUUM COUPLING IN LINEAR
PHOTOFRAGMENTATION AND IN COLLINEAR
COLLISIONS

In the preceding section we have provided an analyti-
cal, quantum mechanical expression for the cross sec-
tions for photon absorption, photon scattering, and
photofragmentation into different vibrational channels
of a linear triatomic, where the interfragment repul-
sion is exponential and the diatomic fragment is char-
acterized by a harmonic.potential. To consider the vi-
brational energy distribution in photofragmentation, we
make use of Eq. (V. 11) with one channel feeding the
dissociative states, so that the coupling matrix W
(Table M) for DP and U [Eq. (V.17)] for predissociation
is a vector. The wave operator f‘l is given (in both
cases) in terms of Eq. (VI. 18). The probability for
finding the product BC molecule in the vibrational state
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v,, starting from an initial vibrational state v, (v;= v,
for DP and v; = v, for PR) will be denoted by P(v;, vy, E).
This probability is proportional to o%% [Eq. (IIL. 1)
for DP and Eq. (IV.1) for PR]. Thus, the vibrational
distribution of the diatomic molecule is

P(vy, 0 E)= | vy, TA® v) g (VIL 1)

d

where the wave operator ﬁl, Eq. (VI. 18), depends on
the molecular parameters a and » and on the number
n of open dissociative channeis (or the translational
energy € above threshold). “A(7,, v;) is the initial cou-
pling matrix

A(Z—}M vi)E W, Ug) (VII. 2a)
for DP and
Alvg, v)= U7, v) (V1L 2b)

for PR. A is nothing but the vector of the multidimen-
sional (generalized) Franck—Condon vibrational overlap
factors given in Sec. II.

Equation (VIL. 1) constitutes a general analytical solu-
tion for the product distribution in the photofragmenta-
tion of a model system, It contains the two essential
ingredients involved in our problem. First, the direct
initial coupling to the dissociative channels are ex-
pressed in terms of the Franck—Condon factors, Sec-
ond, the intercontinuum coupling effects are recast in
terms of the approximate form for the wave operator
F, which is given within the framework of the FOK ap-~
proximation.

One new feature of the global model advanced herein
is the recipe for the systematic evaluation of the inter-
continuum coupling terms., The following approxima-
tions for 131 were utilized in this context:

(i) FODWA is the first-order distorted wave solu-
tion,* i.e., F,= V..

(ii) FODWN is a normalized version of (i) using rela-
tive coordinates where we take V, - V,/(1+m) [see Eq.
(V1. 18)].

(iii) FOKL is the first-order K matrix, using the
linearized coupling [Eq. (VI. 10a)].

(iv) FOKRC is the first~order K matrix using rela-
tive coordinates. The coupling terms ;t;rj are given by
Eq. (VI.18).

Before presenting our numerical results for the role
of the intercontinuum coupling in photofragmentation
problems it is crucial to assess the accuracy of the ap-
proximate schemes involved in the evaluation of f‘lo To
do so we have considered the simpler case of a full
collinear collision of an atom and a harmonic oscillator.
This is a key problem in molecular scattering theory
and was extensively studied in the literature.*® An ex-
act numerical solution of the transition probabilities
was obtained by Secrest and Johnson*! and may be used
as a check. In our approximate treatment, the transi-
tion matrix (V.5) is given by

R,=F\7,. (VIL 3)

3745

Utilizing Eq. (V. 11) we can rewrite Eq. (VII. 3) in the
form

B =(im) (I - ).
Substitution of Eq. (VIIL.4) into the § matrix®®"*® results

in the transition probabilities (per collision) f{rom chan-
nel v’ to v, P,., i.e.,

(VIL. 4)

Py = |Spue |22 | 80y = 2 F (0, 2") |3, (VIL. 5)

the F, matrix [Eq. (VI.18)] is determined by the cou-
pling factors g, [Eq. (VI. 10a)] or g, [Eq. (VI. 16)] (and
by the interference parameters N,), which in turn are
functions of the intrinsic parameters of the problem mr,
a, and €. Extensive numerical results for the scatter-
ing problem were presented elsewhere, # The main
conclusions from these recent studies of approximations
(i)=(iv) for the full collinear problem are:

(1) The results of the first-order transition prob-
abilities using the relative coordinates (ii) are com-
parable in accuracy to the results of the adiabatic ap-
proximation, **

(2) At low transition probabilities (small @, low en-
ergy) the FODWA is sufficient and both K matrix ap-
proximations coincide. However, at high transition
probabilities (large @, high energy) the K matrix treat-
ments are much better than the first-order approxima-
tions FODWA and FODWN.

(3) Usually the FOKRC approximation is better than
FOKL.

(4) For multiquantum transitions where the first-order
approximations completely fail, the K matrix results
agree fairly well with the exact calculations and here
also the FOKRC is superior to FOKL.

In conclusion, we note that as a by-product of this
work* an analytical, quantum mechanical expression
for the transition probabilities in the collinear collision
of an atom and a harmonic oscillator was provided.

We can now proceed with confidence to the study of the
role of intercontinuum coupling in photofragmentation
using the same approximation schemes.

Consider the photofragmentation of triatomic cyano
molecules XCN, which under vacuum ultraviolet ir-
radiation yield the CN radical in the B%% excited state.
The compounds studied by Mele and Okabe® are ICN,
BrCN, CICN, and HCN. The following information is
required for the application of Eq. (VIL 1) to the theoret-
ical study of the vibrational energy distribution:

(1) Does the photofragmentation proceed via DP or
by PR?

(2) Once point (1) is established, one has to evaluate
the components of the coupling vector A, Eq. (VIL 2).
For the case of DP one can take v,=0, while for pre-
dissociation v, depends on the (metastable) vibrational
state of the |s,) manifold which is accessible by optical
excitation.

(3) The calculation of the wave operator F, requires
the molecular parameters » (number of coupled channels
on the energy shell), w [the reduced mass, Eq. (VI.2c)],

J. Chem. Phys., Vol. 65, No. 9, 1 November 1976

Downloaded 18 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3746

ITe 1 e
c CICN
d A
;| T T T T T T T T T T
c
Do f B BrCN
Eo
a A
|
T T T l T T T T T T T T
Do ¢
B ICN
J a A
1IN
T T ¥ T T 7 T T T l T
1500 2000 2500 A

FIG. 2. Absorption spectra of halocyanides.?® Arrows mark
excitation energies used by Mele and Okabe,’

and « [the exponent of the repulsive potential, Eq. (VI 4)],

Regarding the first point, it is apparent from the ab-
sorption spectra®” presented in Fig. 2 together with the
energetic data summarized in Table III that all the
photofragmentation experiments of Mele and Okabe on
ICN, BrCN, and possibly HCN in the range 7.2-10.6
eV result in PR from Rydberg type states, while for
CICN both DP (in the @ continuum) at 7,2 and 8.5 eV and
PR from Rydberg states at higher energies are ex-
hibited, Furthermore, we note that the predissociating
states of the halogen XCN (X =1, Br, and Cl) molecules
are linear, so that our model is strictly applicable.

On the other hand, the low excited states of HCN are
bent and it is questionable whether the linear model
does apply. We now consider point (2), noting that in
the majority of cases photofragmentation of XCN mole-
cules in the energy range experimentally studied pro-
ceeds via predissociation. Thus, the identity of the

| s,v,) metastable state(s) from which the predissocia-
tion takes place is unknown. One can, of course, in-
voke the somewhat naive and unjustified assumption that
predissociation always takes place from the |s,v,=0)
electronic origin. But even then the calculation of the
multidimensional Franck-Condon factors will be fraught
with difficulties as the spectroscopic constants (i. e. ,
frequencies) for the metastable excited states are not
completely known. As we are interested here in as-
sessing the effects of the intercontinuum coupling, we
assume (somewhat naively) that direct coupling cccurs
to the |d,, v;=0) state. Some support for this assump-
tion stems from our previous model calculations which
demonstrate that when substantial initial coupling oc-~
curs to higher |d,u, states, the vibrational distribution
peaks around that », value, which is incompatible with
the experimental data. We thus take for our model

calculations

AlDg; 1) = 55,20,0,20 5 (VIL 6)
whereupon Eq. (VII. 1) takes the simple form

P, = P(v;, v, E) = | Fy(v,, 0) (VIL 7)

S. Mukamel and J. Jortner: Theory of molecular photofragmentation

Consider now the molecular parameters pertinent to
point (3). m is determined by the atomic masses. The
number n of effectively coupled continua was estimated
from the excess electronic energy (E,) above the dis-
sociation threshold (E,), i.e., n=(E, - E,)/wcy, where
wey IS the vibrational frequency of the CN B2y radical
(see Table III). Finally, we have to estimate the re-
pulsive parameter @, which is not accurately known,
This quantity can be approximated by the method sug-
gested by Herzfeld*® and by Secrest and Johnson?! and
is taken in the form

=gt M 2 )”2 (VIL. 8)
T Mg Mo \upe X2 ’ :
where L is the range of the repulsive potential, Holdy,

Klotz, and Wilson'® provide the value L =0.16 A for the
I-CN exponential repulsive potential. A reasonable
universal estimate (L=0.2 A) was used by Secrest and
Johnson for a variety of systems. The latter estimate
results in @=0.13 for the XCN molecules. In Figs.
3-5 we provide the results of numerical calculations of
the vibrational distribution [Eq. (VIL.7)] for X=1, Br,
and Cl for a broad range of @ values together with the
experimental data.® From these results we conclude
that for the halocyanogen photofragmentation, the in-
terpretation of the experimental data solely in terms of
intercontinuum coupling effects requires very high
values of a. The optimal values of the repulsive
parameter « for ICN, CICN, and BrCN are about o
=0.5 in all cases. This value of « is considerably
higher than our rough estimate (0.13) and we cannot
provide any justification for such a high value of «.,
We tentatively conclude that in the predissociation of
CICN, BrCN, and ICN the role of Franck—Condon vi-
brational overlap factors is important for the determi-
nation of the vibrational partitioning. This conclusion
for those special molecules concurs with the recent
proposals of Simons and Tasker?® and of Band and

TABLE UI. Energetic and structural data for photofragmenta-

tion of XCN compounds, ?*%?
Excitation
Energy Photofragmentation
Molecule m E, (eV) n mechanism
ICN 0.9677 6.7 2 DP
7.2~8,5 6 PR
8.4, 9.5 9 PR
10, 10.6 16 PR
BrCN 0.8797 7.2--8.5 4—-5 PR+DP
8.4, 9.5 7 PR
10, 10.6 14 PR
CICN 0.6726 7.2=8.5 4-5 DP
8.4, 9.5 5 PR
10, 10.6 12 PR
HCN 0.4349 8.4 1
: 8.4, 9.5 5
10, 10.6 8
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ICN
(a)

a=05 |

=03

ICN
(b)

a>

FIG. 3. Comparison of the FOKRC model {Eq. (VII.7)] for
various values of o, with experimental results (marked by
black dots) for ICN% (a) A=1165, 1236 A, Averaged distribu~
tion for n=16 and n=17; (b) A=1450~1700 &, »n=7,

Freed.?” We, however, differ from these authors re-
garding important details and maintain that at present
the calculation of these factors for predissociation, as
is the case here, is fraught with considerable difficui-
ties and cannot be considered as reliable.

Finally, we turn to the case of the HCN molecule,
which is linear in its ground state but bent in its lowest
excited states.*® Despite this, it is tempting to examine
qualitatively this system in the light of the present
model in the hope that the vibrational distribution is not
appreciably affected by the bending, Figure 6 shows
the fit of our model [Eq. (VIL.'7)] to the experimental

3747

results for HCN, Best agreement with the experimen-
tal data is accomplished for the value @ =0.25, which
is quite reasonable and corresponds to an interaction
range of L=0.,1 A. Tt thus appears that for the HCN
photofragmentation the role of intercontinuum coupling
is important in determining the dynamics of predissoci-
ation. This conclusion differs from that of Band and
Freed, 2" who attribute the vibrational distribution sole-
ly to the initial coupling via Franck-Condon terms.

In view of the reasonable fit of the HCN data with our

FIG. 4. Comparison of our FOKRC model [Eq. (VI.7)] with
experimental results (marked by black dots) for BrCN.% (a)
A=1165, 1236 A, »=14; (b) A=1295, 1470 &, =7,
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model using a physically acceptable value of @, we can
provide an estimate of the deuterium isotope effect on
the vibrational distribution. Using the same value of

L (and o) for DCN as for HCN we now predict the vibra-
tional distribution in DCN with the same excess energy
€. This prediction is shown in Fig, 7 and we expect

the vibrational distribution in the photofragmentation

of DCN to be narrower than that of HCN.

The global model presented herein incorporates all

CICN
(a)

a=15
=075

FIG. 5. Comparison of our FOKRC model [Eq. (VII.7)] with
experimental results (marked by black dots) for CICN® (a)
A=1165, 1236 A, n=12 (results of =10, 11 are averaged on
n=12 and n=13); (b) A=1295, 1470 A, n=5,

S. Mukamel and J. Jortner: Theory of molecular photofragmentation

10° - :
|
|
<5 i | J
00 > g 6
v
FIG. 6. Comparison of our FOKRC model [Eq. (VII.7)] with

experimental results (marked by black dots) for HCN%: A
=1165, 1236 A, n=8.

the physical features of the vibrational energy partition-
ing for the linear photofragmentation problem. Once
the spectroscopic data concerning the nature or mo-
lecular constants of the relevant predissociating states
will become available, the coupling matrix U will be

10 K I T
\\ DCN.
AN
\_\\
o \\
N
L \ *
s \ AN
L NN
\ \
102 o \ :\\
o~ \ N\
\ NS
\_\ AN
0 - \
g \ \
F \ \
. \
[ \
- \
-4
10 =
J ! L
0] 2 4 6
\

FIG. 7. Predited distribution of products for DCN (=+—=+)
m=0.8379, ¢=0.25, =8, For comparison we present also
the experimental (@) and theoretical (----) distribution for
HCN (see Fig. 6).
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amenable to calculation and the model will be subjected
to a rigorous test. A complete solution of the problem
of distribution of products in photofragmentation will
require the analysis of the three-dimensional case. In
this context we believe that our theoretical results re-
garding the connection between photofragmentation and
scattering theory are of interest.

APPENDIX A. SOME FORMAL MANIPULATIONS FOR
DIRECT PHOTODISSOCIATIONS

The Hamiltonian in DP [Eq. II.1)] may be partitioned
into Hy +V, where

V=H,+V, , (A1)
Hy=H-V .,

Using the projection operators [Eq. (II.8)] and since
V,P =0, we may write for the T matrix®?

TB=vP+V GVP , (A2)
which may be recast in the form

TP=RP +TPG,PRP , (A3)
where Gy =(E — Hy +in) and R is the level-shift operator

R=V+VQ(E-H,-QVd) v . (A4)
Since in our case VP=QH,,, P, we can

(@ +VGQ) §H,, B(P - PG,PRP) =RP . (A5)

Suppose now that our molecular orientation is fixed
in space so that its transition moment for the |g,)
- |d,) transition lies along the z aixs. We also take
a photon %2 whose polarization is along z. Considering
a matrix element of Eq. (A3)between lgev,k) and any
other state |a) (belonging either to B or to §), and bear-
ing Eq. (A5) in mind we may write

(@|TP|g,,, 0 =2 (@|RP|g,0, ) ] |87 |5,y , (A6)

where cos6=k- k’ and we have defined a matrix ®, m
Xm, where m is the number of open radiative channels
in the ground state

(| @] v, =Z: /k—, cosé'(gv}, k' | P - PG,PRP|gu,, k) .

(A7)
The & matrix elements [Eq. (A7)] may be rewritten in
the form

Syry, = Byt,0, = 1A% (B~ Ey)(g.v;, k| PRP|gp,, k) ,
(AB)
where
3
L f dnkdk
£ _ 2TRar A
Af(E-E, ) (2"> E<E, k< (A9)

and E,, +k is the energy of the |gu}, k) state. Substi-
tuting the relevant « values in Eq. (A6) results in Egs.
(I11. 9) and (IIL. 10).

APPENDIX B. 7 MATRIX ELEMENTS IN
PREDISSOCIATION

We wish to have explicit expressions for the 7 matrix
elements relevant for predissociation.

Utilizing assumption (i) (Sec. IV) and the general ex-

pression for the T matrix, 3 we see that

élTQl = érHlntGﬁ H'intQI’ (Bla)
whereas

Q.,74,=8,V,+H,)GPH,,4,. (B1b)

Since (H,+ V,)Q,=0, we can recast Eqs. (Bla) and
{B1b) in terms of the symmetric T matrix [Eq. (A2)],
where V is now

V=Vd+Hv+Hint' (BZ)

We can now use the formal relation (A3) and obtain
for the relevant 7 matrix elements

(dgval, vac| Q,TQ, | g,0,, %) (53)
= (devdls vac | édR(d )PHintég I gevnk>’

and

@ev;’klleTlegevqu ) (B4)
= (gev;, k| Q:HthGP Hth; ! 8eVes k),

where R'® is a level shift operator due to the dissocia-
tive states, i.e.,

R =V+ VO E~H,-§,v4,)'§,V, (BS)
and V is given by Eq. (B2).

Consider now the dissociation T matrix elements
(B3). As was done in Sec. III, they may be rewritten
in terms of a DW basis set (Table I) diagonalizing the
{ldv,)} states with respect to the elastic part of V,
(i.e., Vy)

(devdli vac | éd Tél | 8eVsps k)
={d,v )| Q. F1QH, PGP H | g,0,, 1.

Q,F{"Q, is defined in terms of the inelastic part of
ViV, i.e.,

édFﬁd)éd = Qd + éd Vléd(E - Ho - Vo)-léang )an (B7)
Equation (B7) is analogous to Eq. (III. 16).

(BS6)

Invoking now assumption (ii) of Sec. IV, we have

I 54, vac){s,, vac|

PGP= .
iy ey (B8)

Defining a second level-shift operator, this time due to
the interaction with the photon continua,
R®W=V+VQE-H,~-§,v3)"4,V, (B9)

we can write formal expressions for D, and T,

D(E)=Re(s| PR(E)P|s)= D{" + D’ (B10a)
and

I'y=-2Im(s| PR(E)B|s)=T{"+ T®, (B10b)
where

R(E)=RY“XE)+R“(E), (B11)

and D{*’, T'* are the appropriate matrix elements of
RWa=1y, d,

Equation (B4), (B6), and (B8) result in Eqs. (IV.1)-
(1v.3).
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