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We apply the Bloch equations to the study of time-resolved near-resonance photon scattering from a collisionally per-
turbed molecule. An explicit result is derived for weak fields. Application of these results to photon scattering from colli-

sionally perturbed molecular iodine is briefly considered.

The fundamental problem of the “transition” from
resonance fluorescence to near-resonance Raman scat-
tering from a molecular resonance has been of consid-
erable experimental [1—3] and theoretical [4,5] inter-
est. A new light was shed on this problem by recent ex-
periments in which the time-resolved intensity of the
scattered light was measured [6,7] . In these studies, a
light pulse was scattered by resonance excitation to a
single vibrational—rotational level of the B3I state of
I,, at pressures of 0.03 torr and 0.25 torr. Several theo-
retical studies were made [8—15] trying to provide an
adequate interpretation of the recent experimental in-
formation, which is
(1) the time-resolved decay pattern is characterized by
two types of decay modes, one governed by a molecu-
lar lifetime (= us) and the other by the extinction time
of the pulse (= ns);

(2) the relative contribution, {R}, of the molecular‘
long-lived decay mode to the total scattered intensity

is a decreasing function of the off-resonance energy dif-
ference A (i.e. the separation between the mean pho-
ton-energy and the molecular resonance energy) for val-
ues of A of the order of the Doppler width §;

(3) off resonance (A > f), {R} becomes approximately
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constant, independent of A;
(4) increasing the I, pressure from 0.03 torr to 0.25
torr results in a considerable enhancement of {R}.
Without alluding to any specific theoretical models
we may recall a basic result of the theory of resonance
scattering [16] which tells us that the time-delay, (Af),
of a wave packet due to its interaction with a two-lev-
el target is (A#) = 2I'/(T'2 + A2), where T is the width
of the resonance. Exactly on resonance (A = 0), we
have {(At) = 2/T, a result compatible with observation
(1). However, for A -> oo we have (Af) - 0; i.e. far off
resonance only a direct scattering process prevails, a
conclusion which is incompatible with observation (3).
We thus conclude [8--10] that even at pressures as
low as 0.03 torr, collisional effects play an important
role in the photon scattering process in this system.
Collisional effects on time-resolved photon scatter-
ing can be handled by considering the time-evolution
of the entire system, using the Liouville-space formalism
(with Fano—Zwanzig projection-operator techniques)
in the w (frequency) representation [9,10]. A basic ap-
proximation introduced in the course of this derivation
is the assumption of short memory times of the thermal
bath, allowing us to neglect transient effects of the col-
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lisions. Under this condition the system can be alter-
natively described by the Bloch—Redfield equations
[17].

In the present note we shall utilize the Bloch equa-
tions to the study of time-resolved near-resonance pho-
ton scattering from a collisionally perturbed molecule.
This approach has the merit that (using a classical re-
presentation of the applied field) saturation effects can
be introduced more readily to its perturbative solution.
In the derivation of the solution we invoke the follow-
ing assumptions concerning the molecular level-scheme,
its coupling to the radiation field and how it is affected

" by collisions:
(1) The molecule is characterized by a single ground
state |g), well separated in energy from a manifold of
closely lying n excited levels {l&)}, (k =1, ... n). The
light pulse is near resonance with a single transition
lg) = 1, where | belongs to the {l%)} manifold.
(2) Optical coherence prevails between Ig) and |2, and
is eroded by the effects of collisional relaxation. Pro-
vided that the spacings between the various Ik) levels
are large compared to their inverse lifetimes (sharp res-
onance), we can neglect transfer of coherence by cross
relaxation between |j) and other levels.

(3) Collisions result in population changes (T processes)

by inducing transitions between the {Ik)} levels (intra-
band relaxation) as well as causing relaxation from the
manifold (¢.g. predissociation). In addition, collisions
lead to the damping of coherence (T’ processes).

Under these assumptions, the Bloch equations [17]
for the system may be written in the rotating-frame re-
presentation (for a single molecular velocity-group) in
the form

6,(0) = 2o, — T,p, (1)  3ix() o) — p, )], (12)

n
B = Bt = ~ix@Dp, () — (D] —1 20 Rypy (1),
k=1 (1b)

(=i 20 R pp(D), k], (1c)
Here p(?)...p,(2).are the populations of the n excited
levels, pg(r) is the population of the ground state, while
p4+(2) and p_(¢) represent the off-diagonal elements.of
the molecular density matrix (i.e. “optical coherences™)
between lg) and |y, so that p,(£) = pg(f) and p_(r) =
p,-g(t). The off-resonance energy is A = wqy — w where
w, is the resonance frequency of the molecular velo-
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city group and w in the mean frequency of the light
pulse. Also, x(?) = u,-gEOnp(t) is the coupling strength,
u;, being the dipole matrix element between Ig) and

I7) while ¢(¢) is the envelope of the pulse amplitude
with maximal field £, given the applied electric field
E(t) = Eqo(t) cos wt. Finally, the relaxation processes
in eq. (1) are specified in terms of the level-decay ma-
trix R (for T processes) which contains diagonal (level
damping) and off-diagonal (intraband relaxation) terms,
and by the line width I"y which corresponds to the
damping of coherence (T, type processes). I'y consists
of contributions of population damping (T'; processes)
as well as proper T, processes (phase shifts and reor-
ientations).

Eq. (1) is valid for arbitrary intensities of the light
pulse. With sufficiently strong fields, the appearance of
x(9) on the r.h.s. of eq. (1) will lead to saturation ef-
fects, which can be studied by a numerical solution of
this set of differential equations. We shall now special-
ize to weak light pulses, whereupon we set in (1a)

= 40, =
Pg=Pgs P;=0,
where pg is the equilibrium population of lg), and we
neglect equilibrium populations of the excited mani-
fold. We can now solve eqs. (1a) for p.(z) and p_(2),

substituting these solutions into (1b) to obtain the set
of equations for the populations {pz(#)}

50)= =i I Rygpy®) + (@), (22)
b(1) = —i %) Ryppd,  k#J. (2b)
Here
7(0) = —ix() e, (&) — p_(1)]
. .t
= px(DRe f drp()G(t — 1), (3)

where we have defined a 1 X 1 T',-type correlation ma-
trix
G,(1) = O(r) exp[iar — Tyt], @)

and where ©(7) is the Heavyside step function.

Eq. (2) may be solved by the Fourier transform
method. We define (E) and n(E) as the Fourier trans-
forms of p,(f) and n(?), respectively, i.e.,
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7 4B = [ dtoy (o) exp (i),
7E) = [arn(r) exp (), ®)

utilizing the conditions px(?) 572, 0;k=1,2...n we
get the explicit solution

P®) =ilE1 - R 1K), ©)

for all k, where | is the unit n X n matrix. The inverse
transform of (6) is given by

o) = —(2mi)™!
X [ dE exp(—ED[(EV- R)™], A(E). )

Alternatively this result can be recast in terms of a con-

volution integral
t

o) =gy [ a7[G(t — D] (), ®

where the (n X n) T, -type correlation matrix is defined
by

G, (1) =—ni)! [dEEI-RY exp (=ifr).  (9)
Finally, utilizing the definitions (3) and (4) we obtain

i 4
P = ft [ drar'etm)e(r)

—©0 — oo

X [61(t — D] G, (r - 7). (10)
Time-resolved photon scattering monitors the pop-
ulations {p(¢)} each weighed by the radiative decay
rate ['}; of the kth level. The photon counting rate
F(A, t) from the {Ik)} manifold is
F(a, )= 250, (1) (11)
k
and making use of eq. (10) one gets
F(A, 1) = 2Rep0lu Bl E re
x [ drdr'o(r)e(r )[c; (t = 1],y — 7). (12)
The experimental photon counting rate {F(4, #)}
from a gas at thermal equilibrium is obtained by con-

voluting F(A, t) [eq. (12)] with the Doppler profile
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) = (B2 Y2 exp (—A%/6%), (13)
where f is the Doppler width, so that
{Fa, 1} =[da'FA’, HAA - A). (14)

{

This formal solution [eqgs. (12) and (14)], was obtained
previously [9] by utilizing the Liouville-operator for-
malism.

To obtain a more tangible result we now introduce
a set of simplifying assumptions:
(a) Let the radiative widths I'}, be equal,i.e. I}, =T
for all k.
(b) Let the n excited states be characterized by the
same damping rates I’ and cross relaxation terms I’
so that

Ty =8, —T"(1 = 5p). (15)

In view of assumption (a) we need to evaluate Z;(G1)y;
in eqgs. (12) and (14). As a result of assumption (b) it
follows that 2 [G1(7)] g = exp(—T';7), where I’y is

an eigenvalue of the I" matrix, given by

=T~ (- Dr. (16)

Eq. (14) can now be written in the form

{Fa, 1) = [da" faa"Fo(a - A, DL’ - A"AA",
17)

where

t
0= |/,tgiE0|2 | f dre(r) exp[-—H‘l(t — T)](P )
L 18

is the photon counting rate from a hypothetical “iso-
lated molecule” characterized by the decay time I'y
only, and lacking T, processes. This counting rate is
convoluted with the lorentzian function

L(A) = (T/m)/(F2 + A2), (19)

where " = I'; — 4T is a line-broadening rate from
which the contribution of the decay of the band is
omitted.

The photon counting rate from a collisionally per-
turbed model molecule, assumes the form of a triple
convolution of FO, eq. (18), L, eq. (19), and f, eq. (13).
Collisional effects enter into the photon counting rate
in two ways. First, they modify I'; via inelastic colli-
sions, e.g. collisional induced predissociation in the case
of the B3I state of L. Second, they result in a convo-
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lution of the photon counting rate with the lorentzian
function L(A), whose width is determined by cross
relaxation within the excited manifold and by proper
T, processes.

In order to account for the recent experimental
data we take a simple, physically realistic model for
the light-pulse envelope,

@(t) = exp($71), t<0;
=1, 0<t<T; (20)
=exp(—471), t>T.

The relevant molecular parameters have been deter-
mined from various experimental data [6,7,18]. From
fluorescence quenching experiments [18] it was found
that the levels of I, around 5145 A are subjected to
collisionally induced predissociation and that

I, =T, +2.264(70/A%)(p/torr)s,

where 'y =4.2 X 10% 571 is the inverse lifetime of the
collision-free molecule (including contributions of both
radiative decay and spontaneous predissociation). From
high-resolution spectral measurements [7] we.have de-
termined I" = 1.4 X 107(p/torr)s"1. The appropriate

{F(A,n}

{Flan}

L]

[
t (us)

Fig. 1. Comparison of the experimental results of the time-
resolved.photon scattering in I, with our model calculations.
A =1.7 GHz, § = 0.4 GHz, I" = 14 MHz (p/torr), v = 0.75 GHz,
T=0.1 us. ——— exp., calc. (@) p = 0.03 torr, I'y = 0.9
MHz; (b) p =0.25 torr, I'y = 4.5 MHz.
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pulse parameters are T = 1077 s, y=7.5X 108 571,
The Doppler widthis 8 = 4 X 108 s~1. In fig. 1 we com-
pare the calculated time-resolved photon counting for
I, at off-resonance energy difference A = 1.7 X 109
Hz with the recent experimental work of Rousseau et
al. [7].

We conclude that in this system which is character-
ized by a long decay time (I's! ~ 2.5 us), even at the

“lowest pressure (0.03 torr) studied up to date, colli-

sional perturbations are crucial in determining the
time-resolved photon scattering, and these effects are
adequately accounted for in terms of our theory.
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