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The reaction operator K is used to treat the collinear collision between an 
atom and a diatom in relative coordinates representation. With this choice 
of coordinates the coupling between the zeroth-order channels is due to a 
kinetic crossing term. The inadequacy of the channel functions to describe 
properly the asymptotic motion can be partially corrected by a renormaliza- 
tion procedure consisting of a shift of the energies. An analytical solution 
for arbitrary inter-continuum couplings can be given for the T matrix when 
the diatom is approximated by a harmonic oscillator. Calculations are 
presented for two types of atom-diatom interaction potential : an exponential 
Or a Morse function. The results are compared with the exact available 
numerical calculations and with the linearized distorted wave approximation. 
The treatment in relative coordinates with renormalization is found to 
yield, for many cases of physical significance, very good results. 

1. INTRODUCTION 

Recent theoretical studies of photodissociation and predissociation of tri- 
atomic molecules [1, 2] have considered an initial discrete state relaxing into a 
manifold of coupled continua. An explicit expression for the vibrational 
distribution of fragments was obtained when the intercontinuum perturbation 
only couples adjacent continua. This occurs in the relative coordinates treat- 
ment of a linear triatomic system ABC, in the harmonic approximation, when 
the Rosen [3] partition of the hamiltonian is used. 

The same multicontinuum problem appears in the energy transfer between 
vibrational and translational degrees of freedom in atom-diatom collisions. 
In this latter case the system is initially in a continuum describing the asymptotic 
motion when the atom is far away from the oscillator, and the problem is to find 
the vibrational distribution of the diatomic after the collision. This problem 
has been solved numerically [4, 5] for the collinear collision of a particle A and 
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2 O. Atabek et al. 

a harmonic oscillato.r BC, neglecting the interaction between particles A and C 
and taking for the potential VAn a repulsive exponential curve [4] or a Morse 
potential [5] .  Several approximate methods have also been used to handle this 
problem: (a) First-Order Distorted Wave Approximation (FODWA) [6, 7], 
(b) K matrix in Distorted Wave Approximation (KDWA) [8], (c) Adiabatic 
approximation [9]. 

Recently [10] some comparisons have been made between the exact or the 
approximate results listed above and the first-order Born approximation using 
the Rosen partition of the hamiltonian in the relative coordinates representation. 
The perturbation is a kinetic crossing term in the RAB and RAC coordinates, 
which does not vanish at infinity. Consequently the asymptotic states are not 
well-behaved and it is necessary to work out a renormalization procedure in 
order to describe properly the asymptotic motion. This renormalization can 
be achieved approximately just by shifting the energies of the states and this is 
equivalent to evaluating the probabilities with matrix elements of the perturba- 
tion between non-resonant states. The results for a wide range of parameters 
are in good agreement with the exact calculations for sufficiently low energies. 
At high energies the first-order probabilities diverge and become even larger 
than unity, but this state of affairs is common to all first-order treatments in the 
Born approximation. This divergence can be avoided by using the K matrix 
formalism [8 (a), 11, 12 (a), (b)], which is one of the exponentiation schemes 
ensuring automatically the unitarity of the $ matrix [12 (b)]. The first-order 
approximation for the K matrix is equivalent to taking all the couplings inde- 
pendent of energy with unbounded continua, that is to neglect all the principal 
part distributions appearing in the Born expansion. The leading terms in this 
expansion can be summed up and an $ matrix is obtained which is unitary. 

In the present paper we present K matrix calculations for the Rosen parti- 
tion of the hamiltonian for the collinear collision of a particle with a harmonic 
oscillator utilizing different forms for the atom-diatom interaction potential. 
Explicit formulae were obtained for the probability of translational-vibrational 
energy transfer and compared with the results of exact results and with other 
approximate methods. 

2. THE UNPERTURBED HAMILTONIAN 

The SchrSdinger equation describing the collision between a particle A and 
a harmonic oscillator BC is, in terms of dimensionless quantities [411 

+ (2.1) 

with m = mAmc/m B (m A + m B + mc) ; in this hamiltonian the motion of the centre 
of mass of the whole system has already been separated and x is a dimensionless 
coordinate proportional to the distance between particle A and the centre of 
mass of the oscillator BC, while y corresponds to the distance between particles 
B and C. The energy E and the potential U are measured in units of h~OBC. 

Let us now write the hamiltonian in the relative coordinates between particles : 
R ~ B = R x - R  B and R B c = R B - R c .  The dimensionless quantities associated 
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Atom-diatom collinear collisions 3 

with these coordinates are z = x - y  and y. 
equation takes the form 

1 b 3 0 3 
2~ Oz 3 �89 ~ + �89 + U(z) 

with 

In this representation the wave 

03} 
+ ~  Italy, z))=E]Cs(y, z)) (2.2) 

m=m/(m+ l). (2.3) 

In the Rosen partition method [3] the unperturbed hamiltonian is taken to be 

H o  = 1 0 2 . �89  0 2 
2~ 0z 2 ~ + �89 + U(z) (2.4) 

and the perturbation is the kinetic crossing term 

02 
V = H -  H~ OyOz" (2.5) 

H o is now separable in the coordinates y and z. Its eigenfunctions can be 
written : 

I C.EO(y, z)) = l x.(y))14,.dz)), (2.6) 

I X.(Y)) being the harmonic oscillator wavefunction of energy (n+�89 and 
I4',~E(Z)) the solution of 

2m 0z 2 ~- U ( z ) - ( E - n - � 8 9  ] r  (2.7) 

The potential U(z) goes to zero as z->oo. Thus, asymptotically 

[C.E~ z) ~ [x.(y))C.E cos (k.Ez+~.E), (2.8) 
Z--~'OO 

where 

k.E = [ 2 ~ ( E -  n - �89 (2.9) 

Now we know that the true eigenfunctions of the total hamiltonian (2.1) have 
the asymptotic behaviour 

[C.E(Y, x)) ~_ [X.(y))A.E cos (k.Ex +cp.E), (2.10) 
X--3- O0 

where knE has the same expression as in (2.9) but with m re'placing ~. For 
m ~ l ,  ~ ~ m ,  the two asymptotic expressions (2.8) and (2.10) have approxi- 
mately the same energy, but for a general m there is an energy shift 

3.(E) = m(E-  n - 1) (2.11) 

between the zero-order wavefunctions [CnE ~ defined above, and the true 
eigenfunctions lOnE) of the total hamiltonian. This shift is due to the fact 
that the perturbation ~2/Oy~z does not vanish at infinity and leads to persistent 
effects such as those encountered in quantum field theories [13, 14]. In Appendix 
A we show that the inter-continuum coupling behaves as a principal part 
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4 O. Atabek e t a L  

distribution, irrespective of the particular potential chosen for the AB interac- 
tion. In reference [10] it was argued that such couplings lead to the appearance 
of singular terms in the expression of the resolvent operator. These have to 
be summed-up, leading ultimately to a renormalization of the energy and a 
redefinition of the asymptotic states. This is a very difficult mathematical 
problem in our case. A simplified procedure consists [10] in merely shifting 
the zero-order eigenfunctions (2.8) by the quantity defined by (2.11), and 
proceeding to the usual perturbation methods with these shifted eigenfunctions. 
The effect of this shift is to transform knE into knE, , i.e. to put m in place of 
in (2.9). The shift means that in order to describe a collision with a given initial 
relative kinetic energy for the pair A, BC one must use a different kinetic energy 
for the pair A, B. Such considerations are also present in the semi-classical 
I T F I T S  method [15], for the same reason, that is the use of relative coordinates. 

It was already shown [10] that this renormalization procedure gives good 
results in the first-order Born approximation, for the case of a repulsive ex- 
ponential interaction [10 (a)] and for a Morse potential [10 (b)] when the energy 
is sufficiently low. For higher energies, probabilities are much overestimated 
and can exceed unity. This is due, of course, to the use of the first-order Born 
approximation which does not ensure the unitarity of the $ matrix. 

From the formal theory of scattering [11] we know that the exact probabilities 
are given by 

Pnn,(E)= IS.~,(E)I*---la..,- 2i~T~,(E)I*, (2.12) 

where Tnn,(E) is the matrix element between unperturbed eigenfunctions cor- 
responding to channels n and n' at energy E of the so-called transition operator : 

T =  V +  lim V[E-Ho+iE]- IT .  (2.13) 
~---~0 + 

Pn,~,(E) denotes the probability of finding the system in the channel n at time 
t =  + oo, if at t =  - o o  the system was in channel n', with energy E, and the 
colliding particles were far away from the interaction region. Equation (2.13) 
can be solved by iteration : 

T =  V +  VGo+V + VGo+VGo+V + ... (2.14) 

wkh Go + = [ E - H  0 + iE] -1 and ~-->0% Retaining the first term gives the first- 
order Born approximation : 

Pnn,= 18n,~,-2irrVnE, ~,EI 2 (2.15) 

which has been used in reference [10]. Now writing formally 

T = K - iTrK3(E- H0)T (2.16) 

it follows from (2.14), that 

 217, 
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Atom-diatom collinear collisions 5 

This operator is the so-called 'reaction operator '  and the equation (2.16) is 
often referred to as the ' Heitler relation' [12]. At first sight (2.16) provides 
only an alternative way of writing the same transition operator T. However, 
the importance of the reaction operator K is that any truncation in the develop- 
ment (2.17) always produces an $ matrix which is unitary. This is an important 
condition in order to have probability conservation. To show this let us define 
[12] the N x  N matrices (N being the number of open channels) : 

3"-={Tn,v(E)}; ~-{Kn,~, (E)}  ; oq~ 1--{8,~n,} (2.18) 

Now, from (2.12) and (2.16) : 

5r ; 9"=or ", (2.19) 
thus 

y -  = [1  - ( 2 . 2 0 )  

and 
,.~ = [1 -- i ' / r , l f ] - - l [1  + i'g,/4{'] -1.  ( 2 . 2 1 )  

Now, it is very easy to show, using (2.21), that ,9' is unitary for any hermitian 
matrix .Y', and in particular if we take the first approximation of (2.17) : 

I (= V. (2.22) 

In this case the Heitler equation (2.16) becomes : 

V = V -  irr V8(E-  H0)T (2.23) 

An explicit solution of this equation can be given for V coupling only adjacent 
continua. This is done in w 5, and Appendix B. 

3. COMPARISON BETWEEN THE ROSEN PARTITION AND AN ADIABATIC APPROACH 

We would like to point out that.an approach based on the Rosen partition 
is closely related to a treatment of the collision which starts from an adiabatic 
formulation, where the ' s l ow '  motion is that of the oscillator and the ' f a s t '  
motion that of the incident atom. Thus this adiabatic description is the reverse 
of that considered by Thiele and Katz [9], where one has to consider first of 
all the motion of the oscillator for a fixed position of the external atom. Our 
comparison will be based on the derivation for both approaches of secular 
equations describing configuration interaction. 

3.1. The Rosen equations 
We write the solution of the wave equation in the form 

[~bE(y, z) )= ~ j dE' A,vE,(E)]~b,vE,~ z)) (3.1) 
n" 

with [~bnE~ , z) )  defined by (2.6). Introduction of (3.1) into the wave equation 
resultsin the secular equations 

[E'- E]A,,,E,(E ) 

=-~dE"A':w'(E)( bXn"~Sy/u (','w [ 8"~'''\dz /. (3.2) 
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6 O. Atabek et al. 

3.2. Adiabatic description 
The hamiltonian is written in the x and y coordinates (cf. (2.11)). Neglect- 

ing the kinetic energy of the oscillator we solve the y-dependent wave equation 
for the external particle : 

2m Ox 2 + U(x-y)+�89 [gk(X,y))= W(y)lq~k(X,y )) (3.3) 

with 
k 2 

W 1 2 (3.4) ( Y ) = ~ + ~ Y  �9 

We assume that the solutions of (3.3) are k-normalized, i.e. 

<w~(x, y)l~,(x, y ) ) ,  = 8(k - k' ). (3.5) 

The solution of the complete wave equation is now written 

]~bE(y, x ) ) =  Y~ S dk' Bn,k,(E)[x.,(y))[~ok,(x, y)), (3.6) 
n' 

where X,c(Y) is the free oscillator wave function ; this leads to the secular equa- 
tions 

~m+n +�89 B,;k,(E)= ~S dk"B,,,~,,(E) X, I ~Y /u 

Since U of equation (3.3) is a function of (x-y),  we have 

[gk(x, Y)) --- Iq,k(x-y)) 
and therefore 

(~ok,--~y~/,b2q~k"\ =(q~k, I o2~r'\--~-~x~ / �9 (3.8, 

According to (3.3) we have 

e29k\ - [ k  2-2mU(x I'Pk> (3.9) 

and thus 

(q~k' [ O~q~k"\ = __ k,23(k, _ k") + 2m@k, [ U(x-y)lq~k,,),. (3.10) 

(3.11) 

This relation indicates that there 
corporated into the left-hand side. 

I N + T +  n + . ; -  E I  OY /u 

• ~k"\Ox /.+ml dk" B"'~"(E)<~'lSl~">*" 

is a diagonal correction which can be in- 
The secular equations have now the form 
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Atom-diatom collinear collisions 7 
We remark that the diagonal correction has changed the zeroth-order energy 
into k'2/2~+n'+!2, which is the energy E' of the Rosen formulation. The 
first term of the right-hand side is in close correspondence with the r ight-hand 
side of (3.2), since 

@, / 
. IW /==V  < 

The second term is equivalent to an intracontinuum coupling. In the limit of 
small m the two systems of secular equations will coincide, and since in this case 
I ~ )  and I~0k) become identical, apart from a normalization factor, A,~,E,(E ) is 
proportional to B,~,k,(E). 

The analogy between the two treatments is not to be taken to mean that we 
consider the collision to be adiabatic with the oscillator having the slower 
motion, since the excitation probabilities are assigned to deviations from this 
adiabatic treatment. 

4. T H E  CONTINUUM-CONTINUUM COUPLING AND THE RELATION WITH THE 

LINEARIZEO VERSION OF FODWA 

The inter-continuum coupling is 

VnE, n'E'=(~InEO(y,z)]~Z[ ~b~'~'O(Y,Z)) 

=(X~(Y) I ~ 1  Xn'(Y))u(r ]~z[ r ' (4.1) 

where use has been made of the definitions (2.5) and (2.6). It is very easy to 
see now that this perturbation only couples adjacent continua. From the 
definition of creation and annihilation operators for a harmonic oscillator, we 
have 

b Oy= 2-1t2[a-a +1 (4.2 / 

thus 

IXn ]'~y [ Xn,lv=(n'/2)l128n, n,_l-[(n' + l)/211128n, n,+l. (4.3) 

The last factor in (4.1) can be transformed using the general identity 

We have to specify now the potential U(z) in order to calculate these matrix 
elements. But first we are going to show that a close relation exists between 
these matrix elements and the couplings calculated in the linearized version of 
the distorted-wave treatment. In the general distorted wave approach [16] 
the wavefunction ]~bE(x,y)) defined by the Schr6dinger equation (2.1) is 
expanded in terms of the unperturbed oscillator wave-functions ]X~(Y)) 

ICEDW(x'Y)) = E [r (4.5) 
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8 O. Atabek et al. 

which gives, after substitution in equation (2.1), the coupled equations 

[ 1 ~2 k ~ ]  
2m 8x 2 ~- Unn(x)+ [r - E  Un~'(x)l~'E(x)>' (4.6) n'~n 

where k~E2=2m(E-n-�89 and Unn,(x)=<X~(y)[U(x-y)[x,c(y)>u. We can 
now write formally H =.Ho Dw + V Dw, with 

HoDW = 1 8~ ~2 2m ~x 2 �89 +! 22y + Vo(x), (4.7) 

where Vo(x) is the diagonal part of Un~,(x ) and V Dw is the non-diagonal part. 
In the linearized version of this approximation U(x-y) is expanded around the 
equilibrium position y = 0, and only the linear term is retained : 

U(x-y) = U(x)+ ~U] y. (4.8) 
y=0 

The harmonic oscillator selection rules gives for the zero-order hamiltonian 

HoDW = 1 8'_�89 ~* �89 U(x) (4.9) 
2m ~x ~ ~ + + 

and the perturbation is 

VDW = ~ I y=O Y" (4.10) 

Now 
y = 2-* m[a + a +] (4.11) 

and, due to the fact that U is only a function of the difference (x-y), 
~U/~y= - ~U/~x. Thus : 

VDW,E, ,~'E '=  {(n'/2)*/28n, n'--* + [(n' + 1)/211m8,~, n'+*) 

x <$nEDW I ~  I $,~,~,DW> . (4.12) 

Comparing this expression with the matrix elements in the relative coordinates 
treatment, given by the product of expressions (4.3) and (4.4), we see that a 
close relation exists. This is very useful to calculate the couplings (4.1) by 
adapting the expressions calculated in the distorted-wave approximation for an 
exponential interaction [6 (a)] or a Morse potential [7 (a)]. This calculation 
gives [10] 

(i) for a purely repulsive exponential potential of the form 

U(z) = A exp (-c~z):  

( r l ~ I qbn'E" )z = 2" fflot [sinh (2-~: knE ) Sinh (2-~: l~n'l~" ) ] *12 

x[cosh(2__~fknE)_Cosh(2rrk ~l-' \'-~- ,,'E']_] �9 (4.13) 
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Atom-diatom collinear collisions 9 

(ii) for a Morse interaction potential of the form 

U(z)=D {exp [-2~(z-z0) ] - 2  exp [-~(z-z0)]} : 

<erie ~Z [ r =-a [sinh ( ~  knE ) sinh (~-k.,~,)J\q'2 

x [cosh ( ~  knE)-cosh ( ~  kn,E,)] -1 [A---~.E.~2A~"r+A~"'~' (4.14) 

with the definitions 

A~.E= Iv(�89 g=(2~D)lt2/a. (4.15) 

These expressions are valid if k.~# k,,,~, and it can be demonstrated that for 
hnE=h.,w the couplings are strictly zero. Taking account of this circum- 
stance, it is easy to show from (4.13) and (4.14), that for k.Ezhn,t:, : 

for the two potentials considered here. In Appendix A we show that this type 
of coupling which produces persistent effects only depends on the asymptotic 
wave functions. 

"In order to solve the perturbation problem in the K matrix formalism with 
the renormalization procedure discussed in w 2, we only need the couplings 
between states with the same asymptotic energy (see discussion of the shift 
given by (2.11) and also reference [10]). This gives for the cases of interest : 

(i) Exponential interaction : 

\7x12 

• [cosh ( ~  k,~) - cosh ( ~  k,,+x)] -t . (4.17) 

(ii) Morse interaction potential : 

Vn "*+-t= [n+�89189 kn) a 

-t "x/~" + 2/k"+ ' (4.18) •176176 [~k .mk.+,]l,2 

with the definitions 

2/k.= ]F(�89 k.=[2m(E-n-�89 ~12. (4.19) 

5. TRANSITION PROBABILITIES 

We now proceed to derive an explicit form for the transition operator (2.23) 
for the case of inter-continuum coupling between adjacent continua, so that 
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10 O. Atabek et al. 

cont inuum-cont inuum coupling terms are given by equation (4.17) or (4.18). 
Let us define an on-the-energy-shell F matrix : 

F=(I +i=V)-I (5.1) 

which can be utilized to express the T and the S matrices in the following form �9 

T=FV, (5.2) 

$ = 1 - 2=iFV. (5.3) 

Equation (5.1) can be written in the alternative form : 

F =  1 - i = V F  = 1 - i = P V .  ( 5 . 4 )  

Substitution of (5.2) into (5.4) results in 

T = (i~-)-x(1 - F), (5.5) 

which together with (2.12) yields 

p n . . =  13.,~,- 2Fnn,I z. (5.6) 

We have thus expressed the transition probabilities in terms of the T matrix. 
Turning now to the specific coupling scheme presented in w 4 we shall express 
the inter-continuum coupling terms (4.17) and (4.18) in the form 

V~., = g.,(E)3,~, .,+1 + g . (E)3. ,  ~,'--1, (5.7) 

where gn(E)-Vn,  .+1= Vn+l, n. The  matrix equation (5.4) with the special 
form of the coupling (5.7) is solved in Appendix B where we show that the F 
matrix can be expressed in the explicit form : 

Q~Q~ 
~fi' (- iTrgj);  n#n'  Fn, n"~" 9N j== 

QnO,~ . n=n' (5.8) 
Q~v ' 

where ~ = m i n  (n, n') and /3=max (n, n'). Q~ and Qp are polynomials defined 
by the recurrence relations 

Q0 = 91 = 1, / (5.9) 

Qj+I = Qj + ~j-xQj-1 ; j = 1, 2 . . .  J 
and 

(5. 1 0 ) 
f 

0 -1 = + J 

where {Nj} is a set of (dimensionless) interference parameters:  

Rj_- -.lg,12. (5.11) 

Equations (5.6) and (5.8) provide a general, analytical, quantum mechanical 
expression for the probabilities of vibrational excitation in the collinear collision 
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,4tom-diatom collinear collisions 11 

of an atom with a harmonic diatomic molecule. The advantages of the present 
approach which rests on the K matrix formalism are threefold. First, it is 
gratifying to obtain an analytical solution for a model system which is relevant 
for the study of vibrational excitation and relaxation and of molecular photo- 
fragmentation. Up to date [10] analytical expressions were obtained ordy 
within the framework of the Born approximation. Secondly, the present 
quantum mechanical treatment results automatically in a unitary scattering 
matrix. Third, multiquantum transitions, such as P02 are properly incorporated 
in our theoretical scheme, while first-order transition probabilities completely 
fail in this case. 

Two further observations concerning the general features of our results are 
in order. We notice that the transition amplitudes for the n-+n' transition are 
expressed in terms of products of first-order inter-continuum coupling terms 
I]. ( -  irrgj) multiplied by a retardation factor r = Q~,QSQx. As we have shown 
3 

in Appendix B 0 < r <  1. From the point of view of general methodology it is 
worthwhile to note that the F matrix is related to the M61er wave-operator. 

The above analytical treatment for the T matrix is dependent on the harmonic 
approximation made for the oscillator. If, for instance, the collision is that of 
an atom with a Morse oscillator [4 (b)], all channels are coupled. A first-order K 
matrix treatment in relative coordinates would also be possible with the use, 
however, of a numerical algorithm to determine the T matrix. 

Finally it must be stressed that the I T F I T S  semi-classical method [15] 
can yield excellent results only after a somewhat artificial symmetrization of 
energies in order to satisfy the principle of detailed balance. The fact however 
that it is based on relative coordinates indicates that this choice is a very efficient 
one. That this is also the case for a complete quantum-mechanical treatment 
will be demonstrated in the next section. 

6. NUMERICAL RESULTS 

To provide a detailed comparison between the present treatment, previous 
analytical approaches [10] and exact numerical calculations [4], we have con- 
ducted a series of calculations corresponding to (1) K matrix formalism [(5.6) 
and (5.8)] in relative coordinates without renormalization, with the inter- 
continuum coupling terms being given by (4.17) or (4.18) with k~ and k,~el 
being replaced by h~ and k~+ 1 respectively. (2) K matrix method [(5.6) and 
(5.8)] in relative coordinates with renormalization, so that the intercontinuum 
coupling terms are given by (4.17) or (4.18). (3) K matrix formalism [(5.6) 
and (5.8)] in the linearized version of the distorted wave approximation, the 
couplingterms being given by (4.12) together with (4.13) or (4.14). 

We have made tests for all the parameters for which numerical exact results 
are available [4, 5]. We present in figures 1 to 8 the most significant of these 
tests. 

6.1. Exponential potential U(z) = .4 exp ( - **Z) 

The  two parameters which are involved in any such calculation are m (cf. 
equation (2.1)) and c~ (the constant ,4 does not affect the results). For each of 
the four reported cases, we have represented Pol and Poz as a function of energy 
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in the various approximations mentioned above. The first-order Born ap- 
proximation 4~r21 Vox 12 for P01 and the second-order expression 4rr' I V0112 I V121 ~ 
for P0~ are also shown, as well as the exact numerical results. We observe, as 
expected, that the K matrix treatment affects Pol and P0~ whenever P01 to first 
order is large (say ,-,0'5 or more). This occurs for physically accessible energies 
when ~ is large [17]. Figures 1 and 2 (~ = 0.3) show the drastic effect of making 
use of the reaction operator for all the approximations. This is a very good 
illustration of the use of this formalism since the first-order probabilities become 
very large for energies of 5 hto and upwards, even exceeding unity. It is to be 
noticed that the relative coordinates' approach with renormalization is producing 
satisfactory results, better than the two other approaches, not only at low energy, 
as reported previously [10], but also at the energies when the K matrix formalism 
starts affecting the results. Figures 3 and 4, on the contrary, show that for a 
smaller a (~=0.114),  in the range E< 10 heo, there are only small changes in 
the probabilities, the larger changes occurring for the smaller m. In these 

10 "3 

10 .5 

P c- o~ oo*l~176 
01 . . . . . . . .  

Q,jo o4a' ~ 6  
j~a~ ~lm=e ~ ,o ~ ~ 

68 *'e ~ e ~  

.*' j S  
~176176 ~176176 S,J 

io* ,~ ~ S S  

.." t p 

~176 / : j 

,~ ~ 
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/ 

10 -7 

E �9 
I I 

/-, 6 8 

Figure 5. Single quantum jump probabilities as a function of energy for m=0"5 and a 
Morse potential with D = 0 . 1  and ~=0"065. The circles are the exact points of 
reference [5 (c)]. Same conventions for couplings as in figure 1. K matrix and 
first-order results are indistinguishable. 
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Atom-diatom collinear collisions 17 

two examples the relative coordinates with renormalization give extremely good 
results, for probabilities which differ by as much as eight orders of magnitude. 
In figure 4 we observe that for E approaching 9 or 10 hoJ, the distorted wave 
method becomes better. 

6.2. Morse potential 

In making a similar study for the Morse potential we have been limited by 
the available exact results [5] which correspond only t o  P01 and bear on para- 
meters and energies leading to either small first-order probabilities, or very 
similar results for all three methods. Figures 5 and 6 are examples of the first 
kind. The K matrix results differ only very slightly from the first-order ones. 
As noted before [10 (b)] the relative coordinates treatment with renormalization 
is working extremely well when the depth of the Morse potential is in the range 
of that corresponding to many systems of interest [5 (b)]. Figures 7 and 8, 
on the other hand show spectacular K matrix effects, the exact results being well 
accounted for by the three methods, with a slight advantage for the distorted 
wave procedure. 

10 ~I 
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Figure 6. Same as figure 5 with D = I. 
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7. CONCLUSIONS 

We have shown that for weak atom-diatom interaction (i.e. small c~, low E) 
a first-order treatment in relative coordinates with renormalization give very 
good results. On the other hand, for large transition probabilities (i.e. large ~, 
high E), the corrections introduced by the K matrix are important. In general 
the K matrix formalism with renormalization results in a satisfactory physical 
picture. These calculations are based on simple analytical formulae and can be 
readily applied to the problem of molecular photofragmentation. 

APPENDIX A 

The inter-continuum coupling calculated from the asymptotic wave functions 
The channel wavefunctions behave asymptotically as 

2 ~  
[~bnEO(y, Z))~oo'~ [Xn(Y)) ~ c o s  (]r162 (A 1) 

The inter-continuum coupling calculated from these functions contains the 
integral 

oo d 
l= -o ~ dz c o s  (knEZ +~nE) ~ COS (kn,E,Z +~n,E,). (A 2) 

Using 

we obtain for l : 

lim I exp  (ikz) d z = i ~  +rr3(k), (A 3) 
a - - + ~  0 

2 [_ k .~+k. ,E,  --COS(~.E--~n,E,)~ k.~--k. .E: . (A4)  

Changing the lower limit of integration in (A 2) or replacing the asymptotic 
functions by the true functions can only affect that part of (A 4) which remains 
bounded for knE approaching kn,E,. Thus we conclude that for any potential 
the inter-continuum coupling contains the principal part distribution ~(1/  
(k,E- k~,E,)). 

APPENDIX B 

An explicit form o[ the F matrix 
Substituting (5.7) in (5.4) results in 

Fnn"  = an 'n  - izr g n F n + l ,  n' -- i~r g n - l F n - 1 ,  n'" 

Considering a fixed value of n' we get an equation for each value of n. 
can thus obtain the following set of N equations : 

an = ~n~'--i~rgnan+l-- iZrgn-lan-1, n = O, 1, ..,, N -  1, 

(B 1) 

One 

(B 2) 

1132 
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20 O. Atabek et al. 

where we have defined Fn, ~, = an. Let us try a solution of the form 

n--1 

aN-~Q. H (-iTrgj) 
j=0 

a n  = N - 2  

11 (-i gA 
j=0 , n/> n', 1 

n ~< n', ] 
(B 3) 

N - 2  

,,oQ..11 (-i,,gj) 
3=n 

N - 2  

11 (-i~gr 
y=0 

Where Qn, On are some functions of n to be determined by our set of equations. 
Substituting (B 3) in (B 2) for n # n', n'_+ 1 results in the following expressions 
for On, On : 

9o 91 1, 
/ J = l ,  2 , . . .  (B 4) 

Qj+l=Qi+~j-lQi-1,J 
and 

1, ) 
j = N - 2 ,  N - 3 ,  ... (B 5) 

 j-I=Qj+  TjQj+ld 

where {2Vr is a set of (dimensionless)interference parameters: 

~ i  = ~r2g~ 2. (B 6) 

At this stage we are left with three undetermined quantities ao, aN_ ~ and a n, 
which will be determined by three equations for n=n' and n' _+ 1, which we did 
not consider. Utilizing (B 3) we can rewrite these three equations in the follow- 
ing form : 

(a) The equation for n = n' + 1 yields 

a N - i O n '  (B 7) 
a n ' =  N - 2  

.[I (-izrg,) 

(b) The equation for n = n' - 1 gives 

a o  Q n  ' 
a n ' =  n - I  

n (-i~gs) 
j=0 

(B 8) 

(c) The equation for an, results in 

a n , 
= 1 - izr '[- gn "aN--l~n'+l ~'~ { 

[ N - 2  

n (-icrgj) 
_ j = n ' + l  

n" ~ 2 [ "  

Oo ( - i~rgj) I y= 

{B 9) 
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Solving for a 0 we get 

where 

O., H (-i=gA 
j=0  

% =  r ' 

~(n') = Q,.+xQw + Nn,Qn,On,+l. 

(B lO) 

(B 11) 

aN_ 1 is found 
~(n')} equation (B 11), may be further simplified. Making use 
(B 4) and (B 5) we have 

r = (Q,. + ]Vn,-1Qn,-1) )On, + ]Vn'On'+l 

= P.,(O.,  + ~.'On'+D + 0 . ' 9 . ' - ~ . ' - ~  

= 9. '0 . ' - -1  + ]Vn'-lQn'-lOn' -~ ~(nt -- 1). 

by equating the right-hand side of equations (B 7) and (B 8), 
of equations 

(B 12) 

Thus  r is independent of n' and we may write 

~e(n') = ~(0) = ~ ( N -  1) = O_x= ON. (B 13) 

We have thus solved equation (B t) for F. 

F,n.  = J - - ~  i=. (-i*rgj)' 

where 

The  final result is 

n T~ n', I 

n ~ n ' } }  

o~ = min (n, n') 1 

f 
f l=max (n, n ' ) .J  

(B 14) 

(B 15) 

Using the recurrence formulae (B 4) and (B 5) we note that : 

Q,,0~ < Q~+IQp < Qp+lQp + ~pQp= QN (B x6) 

which demonstrates that the polynomial fraction in (B 14) is actually a retarda- 
tion factor : 

0 < Q~(~p < 1 (B 17) 

and only when gi = 0 (i.e. trivial case of uncoupled continua) it is equal to unity. 
Finally we note that 

Fn,~ + ( -  1)n-WFn~,* ; (B 18) 

thus F is separable into a sum of hermitian and anti,hermitian matrices : 

F=F~ + F Ari, (B 19) 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
T
a
n
d
F
 
t
i
t
l
e
s
]
 
A
t
:
 
0
7
:
4
2
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



22 O. Atabek et aL 

{ F.~,  n + n' = 2q, } 
F n n , . =  (B 20 a) 

0 n + n ' = 2 q + l ,  

Fnn,AH= (B 20 b) 
n + n' = 2q, 

where q is an integer. 
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