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1. PROLOGUE

In this review we shall be concerned with nonreactive electronic relaxation phe-
nomena in electronically excited states of polyatomic molecules. In general, the
level structure of such states is complex and may include discrete levels, dense mani-
folds of discrete states and dissociative continua. A coherent picture of the dynamic
processes in excited states of large molecules requires the elucidation of the time evolu-
tion of the meolecular system interacting with the electromagnetic field. It should be
borne in mind that the radiative decay channel provides just one route for the decay
of electronically excited states and the goal of the theory is to extract the physical
information concerning the various decay channels which involve radiative decay,
electronic (nonreactive) relaxation and direct and indirect photodecomposition
processes.

From the experimentalist’s point of view, there are currently powerful tools
available to monitor the various decay channels of electronically excited molecular
states. The available spectroscopic and chemical information can be classified as
follows:

1. Decay characteristics of electronically excited states. The following decay modes
may be exhibited:

1a. A single lifetime (pure exponential decay);
1b. Superposition of exponentials;
Lc. Oscillatory “quantum beats” originating from interference between closely

spaced levels.
2. Time evolution of the population of excited states other than those accessible

by optical excitation.
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3. Cross sections for elastic and inelastic “Raman-type” photon scattering (which
will be referred to as “resonance fluorescence™).

4. Photon absorption cross sections.

5. Cross sections for the population of intramolecular and dissociative decay
channels.

6. Quantum yields for “resonance fluorescence.”

7. Quantum yields for the population of the intramolecular decay channels.

These experimental observables fall into two different limiting categories, which
pertain to time-resolved “short excitation™ and energy-resolved “long excitation”
experiments. The information which stems from both types of experiments is comple-
mentary but not identical. When the pulse duration is short relative to the relevant
reciprocal widths of the molecular resonances (i.e., the molecular “lifetimes™). the
excitation and the subsequent decay can be separated and one considers the problem
of the decay of a metastable state. Thus for the limiting situation of “short excitation”
experiments, we encounter a “memory erosion” effect of the excited molecule with
respect to the details of its excitation process. In this case, energy resolution is sac-
rificed for the sake of time resolution. On the other hand, when the exciting photon
field is characterized by high energy resolution, information concerning the time
resolution is eroded. In such “long excitation” experiments, the excitation and the
decay process cannot be separated and have to be handled within the framework
of a single quantum-mechanical process.

In general, observables 1 and 2 correspond to “short excitation™ conditions,
observables 3-5 are conventionally obtained from “long excitation™ experiments,
while quantum yields (observables 6 and 7) can be derived both from “short™ and
“long” excitation experiments. It should be borne in mind that this segregation of
excitation modes reflects only on limiting cases, and intermediate excitation con-
ditions (Williams et al., 1974) followed by time-resolved experimental detection are
expected -to provide useful additional information concerning the nature of the
molecular level structure, and in addition can also utilize the molecule to probe
some of the characteristics of the exciting light pulse.

Early treatments of “short time” excitation experiments (Bixon and Jortner,
1968; Jortner and Berry, 1968: Rhodes, 1969) studied the decay of an “initially
prepared” metastable state, while subsequent studies (Freed, 1970: Rhodes, 1971)
focused attention on the time-evolution of the molecular system after the sudden
termination of a light pulse. In this context many variations on the theme of time
dependent quantum mechanics were utilized, the most general method involving
the Green’s function technique (Goldberger and Watson, 1964: Cohen Tannoudji,
1966, 1967; Mower, 1966; Harris, 1963; Chock et al., 1968; Freed and Jortner,
1969; Jortner and Mukamel, 1974). On the other hand, “long excitation™ experimental
observables were treated by studies of photon scattering from molecules utilizing
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the Lippman-Schwinger formalism (Shore. 1967: Nitzan and Jortner, 1972; Jortner
and Mukamel, 1974). A general formalism bridging the “short” and “long” excita-
tion approach was provided {Cohen Tannoudji. 1966, 1967; Jortner and Mukamel,
1974) by the study of the time evolution of a molecular system interacting with a
photon wavepacket, starting at the distant past and considering the state of the
total system (i.e.. the molecule plus the radiation field) at the distant future. Inter-
mediate type excitation conditions are amenable to a detailed study by this formalism
(Mukamel and Jortner, 19754, b; Mukamel et al.. 1975). We shall now proceed to
advance this formalism of time-resolved photon scattering from large molecules
and subsequently apply these results for the description of non-reactive scattering
phenomena in excited states of large molecules.

2. METHODOLOGY

Consider the general problem of the rise and fall of excited molecular states of large
molecules in the presence of the radiation field. The system is specified in terms of

the time independent Hamiltonian
H = Hm + Hrad -+ Hinl
H, =H,, + H, (2.1)

which is decomposed into the following contributions: H,,, the molecular Hamil-
tonian; Hgq. the zero-order molecular Hamiltonian; H,. the intramolecular, non-
adiabatic coupling; H,,4, the Hamiltonian for the free electromagnetic field: H,,,.
the radiation—matter interaction term.

There are variety of possibilities for the specification of the zero-order molecular
Hamiltonian H,,,. These involve the adiabatic Hamiltonian (Born and Huang,
1956), the crude adiabatic Hamiltonian (Longuet Higgins, 1961), the diabatic
Hamiltonian (Smith, 1969), etc. We shall not dwell on this problem here. It is how-
ever worthwhile to point out that current studies of excited state dynamics of poly-
atomics are still restricted to simple model systems, characterized by a small number
of electronic configurations. Such truncated basis sets can be adequately handled
by the utilization of the Born-Oppenheimer adiabatic basis as eigenstates of H,,q.
which minimizes off-resonance interactions, whereupon H, corresponds to nuclear
kinetic energy and spin-orbit coupling terms.

The eigenstates of the subparts of the Hamiltonian (2.1) are summarized in the

following list:
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Hamiltonian Eigenstates
Hen ig> = ground state
Hyy lg = ground state

|s> = discrete excited state
1N} = manifold of excited states quasi-degenerate wizh s>

H.ua k> = onc photon states
ivac™ = zero photon state
Ho = Hpo — Ho.o isovacy, [lovacd )
' gk

The total Hamiltonian is
H = HO + V
V=H,+ Hy, (2.1a)

The ground molecular state jg)> (for the sake of simplicity we shali disregard its
vibrational structure. a kind of omission which can be easily amended) is considered
to be well-separated. from the excited manifold, so that the off-resonance molecular
coupling terms ¢s|H.ig, and {I|H,|g) can be safely disregarded, whereupon [g)
can be considered as an eigenstate of both H,, and H,,,. The density of states in the
background manifold {'/>} can be varied at will for different systems. In Fig. 1 we
display the statistical limit, characterized by a large density p, of background states
{]1> }, the small molecule case specified by a coarse density of states. and the interesting
case of intermediate level structure in large molecules characterized by a small
electronic energy gap. Concerning the eigenstates of H,,, we specialize in weak light
pulses (see Sec. 3) considering only the zero-photon state [vac) and the one photon
states |k », characterized by the photon wavevector k. Furthermore, we shall invoke
the rotating wave approximation (Cohen Tannoudji, 1966). neglecting the contribu-
tion of the off-resonance eigenstates |s,k), {|/, k) } and g, vac) to H,.

Turning now to the radiative coupling term H,,,, we have to distinguish between
two cases. When the incident |g, k) channel is directly coupled to the final intra-
molecular channels, we have a direct scattering process. However, in many cases
of physical interest,-only the discrete |s) state is directly radiatively coupled to the
ground state. In such cases, the scattering process is indirect and the state |s) serves
as a doorway state (see Sec. 5) which is formed by the excitation and subsequently
decays into one of the open final channels. The level schemes of Fig. | can be now
utilized to provide a complete description of both the decay of metastable molecular
states ‘and of photon scattering by an “isolated”, collision-free, molecule. The nature
of the specific experiment depends on the characteristics of the light pulse, which

has now to be specified.
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FIGURE 1. Typical radiative and interstate coupling schemes in molecules: (a) A statistical
large molecule; (b) A small molecule; (c) Intermediate level structure in a large molecule.

3. PHOTON WAVEPACKETS

We are using a quantum-mechanical description of the radiation field which has some
advantages over the classical description. First, spontaneous emission is inherently
incorporated into this formalism, without any additional semiempirical assump-
tions. Second, such an approach can be extended to account for the detailed features
of the photon statistics (Glauber, 1964) in the incident and for the emitted photon
fields. We shall confine ourselves to weak fields which are characterized by a small
number (one or zero) of photons in each field mode and can be represented as a
wavepacket of one-photon states (Kroll, 1964; Cohen Tannoudji, 1966, 1967).

The‘(u_nperturbed) state of the radiation field at t = O is then
¥,0) = fdkAk k> (3.1)

where [k is an eigenstate of H;.d,
Hewlk) = kK> (32)
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being characterized by one photon with momentum k and energy k = |k! twe are
using the units # = ¢ = 1). The one-photon states are normalized

(k|k'; = 5(k - k) (3.3)

and the wavepacket amplitudes A, satisfy the normalization condition
Jﬂ5‘4k|2 =l (34)
The time evolution of the free one-photon wavepacket (3.1) is given by
WD)y = exp (—iH 4t) Y,(0)) = JdkA. exp(—ikn) k), —x <1< = (3.5

The spatial and temporal evolution of the pulse is thus completely specified in
terms of the amplitudes A,. Note, however. that the experimental spectrum of the
pulse results in |4, |* and the exact determination of the phases of the field amplitudes

A, is not an easy task.
We consider now the special case, which is of interest to us, that of a light pulse

traveling in the x direction, whereupon k = (k. 0,0). The photon wavepacket (3.5)
now takes the form

W, (0 = | dkAyexp(—ikn |k (3.6)

We can now express the photon density I(7) at x = 0 and time ¢ in the transparent
form
I(t) = 2n)™* |o(n)|? G.7)

where

~

o) = J dkA,exp(—ikt) (3.8)

It is thus appropriate to refer to ¢(r). Eq. (3.8), as the field amplitude.

This formalism provides us with an adequate theoretical framework for describing
a minimum-uncertainty wavepacket of one-photon states, which satisfies the relation
AEAt ~ |, with AE and At being the pulse energy spread and time duration, re-
spectively. A more general treatment of weak fields can be conducted by treating
the pulse in terms of a density matrix of one-photon states, given at zero ume by

p,(0) = ‘. ("0 Pk (K| dk dk’ - (3.9)

.~



184  Molecular Energy Transfer

The matrix elements p,,. may take a variety of different forms. Only mode-locked
laser pulses (under appropriate experimental conditions) are of the minimum-un-
certainty type. In view of our current ignorance of the detailed features of light
sources, i.c., the form of the pulse density matrix used in actual experiments, we shall
continue using the minimum uncertainty wavepackets, Eq. (3.6) (i.e. substituting
P = A A¥ in (3.9)). We bear in mind, however, that whenever we encounter a
product of the form ¢*(7) ¢(7'). it has to be replaced by the approprxate correlation

function (Glauber, 1964)
D(1,7') = (@™ () (7)) (3.10)

for the light pulse.

4. INTERACTION OF AN ISOLATED MOLECULE
WITH A PHOTON WAVEPACKET

Consider now excitation and decay processes in a system consisting of a sample of
“isolated” molecules and the radiation field. We assume that the molecules (all
being in the ground state |g)) are located at the origin of a cartesian coordinate
system. The photon wavepacket (3.6) is traveling along the x axis and, in the absence
of interaction with the molecular sample, it arrives at the origin at ¢ ~ 0. Physically,
we expect that at sufficiently early times ¢ (t » — oc), the molecular system does
not interact with the pulse (as the photon wavepacket is far from the origin) and the
asymptotic behavior of the system (molecules + the radiation field) is represented by

Wir)> =22 |yo(0)) = exp (—iHot) [o(0) 4.1)

where ¥, (0) is the wavefunction the system would have at 1 = 0 in the absence of
H,.ie,

Wo(0)> = f dk Aglg, k> (4.2)

and
' Ho=H - H,, (4.3)

-Eq. (4.1) thus contains the boundary conditions for our photon-scattering problem.
Turning now to the experimental observables, we can write for the probability
of finding the system in any excited state |m, vac) e s, vac). {|I vac)} at time ¢

P(t) =Y |<m,vac|y(t)>]? ‘ (4.4)
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while the probability for finding the system in any one-photon ground electronic
state |g. k' is
Pty =Y [<g. K> (4.3)
i

(Y in (4.5) denotes integration over all photon directions and energies followed

k
by a summation over photon polarizations). Conservation of probability expressed

in terms of the normalization condition for y(z), implies that
P.1) = Py =1 (46

for all:.
The experimentalist engaged in photon-counting experiments is not interested

in the total number of photons, dP, dr. emitted from the system per unit time. as
these include also the photons corresponding to the exciting light pulse. and the
experimentalist takes great pains to eliminate this background radiation. The ex-
perimentally relevant photon counting rate. I(r), for all the outcoming photons.
excluding those corresponding to the original exciting pulse may be easily accom-
plished by excluding from the summation in (4.5) all the photons |k ) having the
same propagation and polarization directions as the exciting pulse. Thus

d
1) =< 5 ¥ KgXy@> .7

dr i

where the brackets < ---> denote averaging over molecular orientations with respect

1o the incident-photon polarization direction.
To proceed, we require manageable mathematical expressions for the projections
of ¥ (1) appearing in Egs. (4.4), (4.5) and (4.7). Making use of our boundary conditions

{4.1), we obtain
Caly () = JdkC,‘gk(r — ') Ayexp (—ikt'),t' - — =

[x) = |g. k'), |m vac) (4.8

The time-dependent amplitudes
C,p(1) = (xiexp(—iHD|BD 4.9)

with |a), > = |g, k) or |m. vac) are just the matrix elements of the time-cvolution
operator between the eigenstates of the zero-order hamiltonian H,. We shall refer
to these amplitudes as the decay amplitudes of the molecular system. as they in-
corporate all the information concerning the molecular (radiative and nonradiative)

decay channels.
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A convenient way to evaluate the decay amplitudes rests on the Green’s function
method (Goldberger and Watson, 1964; Cohen Tannoudji, 1966, 1967; Mower
1966; Freed and Jortner, 1969; Jortner and Mukamel, 1974). Defining the retarded

Green’s operator
G(E)y=(E—-H + ip)~". n-0* (4.10)

and utilizing the conventional methods of residue integration, one can formally
recast the time-evolution operator in terms of the Fourier transform of the retarded

Green'’s operator
—6(t)exp (—iHt) = 2mi)™! f dE exp (—iEt) G(E) (4.11)

i 4

where 6(¢) is the Heavyside step-function.
Thus the decay amplitudes (4.9) can be finaily expressed in terms of the Fourier

transform

e v}

0(t) C.p(t) = —(2nmi) " j dE exp (—iEt) G (E)

Guy(E) = < G(E)| B> (4.12)

of the appropriate matrix elements of the Green’s function. Utilizing Eqgs. (4.1) and
(4.10)—(4.012), we can rewrite Eq. (4.8) in a form independent of ¢':

Cal () = Calyolt)y + Zdeexp(—iEn Gus(E) A(E){B|Hin |9, E (4.13)
B

where |g, E) is equivalent to |g, k) (E = khC).
Assuming that the matrix element of H,,, in (4.13) is weakly dependent on E in
the energy range of the wavepacket (Ak around k), we can rewrite (4.13) in the form

A0 = Yo + 15 BlHAlgR [ deCult- D00 414
B -

The first term in (4.13) and (4.14) does not contribute to our desired projections
14.4). (4.5), (4.7), as it corresponds to one-photon states belonging to the exciting
pulse. Substitution of (4.14) (or (4.13)) in (4.4), (4.5) and (4.7) thus results in

2

‘ !
Po(t) = 2| X Am' | Hinig. k> J dtCopp (t — T)fp(f)l (4.15)

m

2

(4.16)

P, =Z

k-

5 g B> [ it D0
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From the physical point of view, this general formal approach is attractive as we
are dealing with a large number of levels, a problem which calls for the utilization
of many-body techniques. To establish the relation between this formal treatment
and the simple well-known concepts of stationary and metastable states formulated
in terms of conventional time-dependent perturbation theory. let us first utilize the
(unknown) eigenstates |y >, with energies E,, of the total Hamiltonian H for the sys-
tem. The Green’s function is diagonal in this representation. i.e.,

Gy =(E—-E, + in)~! Oyy - n—0* (4.18)

and its poles are located on the real axis. Thus the system in an eigenstate |y is
characterized by a real energy and does not exhibit any decay process. On the other
hand, the matrix element of G(E) beiween (zero-order) states of H, will be charac-
terized by complex poles of the form E; — $il;. The imaginary components T
will determine the decay rate of the metastable states. From the mathematical
point, the matrix elements G,,(E) are quite easy to evaluate by the utilization of the
Dyson equation (Goldberger and Watson, 1964) and by the application of projec-
tion operators in the Hilbert space (Mower, 1966; Cohen Tannoudji, 1966, 1967). We
shall not dwell on these methods here, but rather proceed to expose some physical

results.

5. DOORWAY STATES

It has been often inquired: “What is the nature of the state accessible by optical
excitation?” There is no unique answer to this question for a given molecular sys-
tem, as in time-resolved experiments, the molecular decav mode is influenced
by the nature of the exciting light pulse. In this section we shall treat time-resolved
photon scattering experiments from molecules characterized by an arbitrarily com-
plex level-structure. (The molecular level-scheme may include discrete states, intra-
molecular quasicontinua and true (dissociative) continua). The photon-counting
rate will be expressed in terms of a “doorway state™ which appears naturally in the
treatment of preparation and decay problems.

Doorway states have long been used in nuclear phyvsics for the interpretation of
scattering cross sections (energy-resolved observables) (Feshbach et al., 1967). Only
recently the notion of “doorway states” was utilized to handle molecular problems
(Nitzan and Jortner, 1972; Jortner and Mukamel, 1974. 1975; Mukamel and Jortner,
1957b). The doorway state |N, vac) is the superposition of excited molecular states,
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each weighted by its radiative coupling with the ground state,

IN.vacy = 53!y |m.vac) (m, vac|H,, |9, k> (3.1)

n

3 = <. K| HinJm. vacy (52)

where 7y is the appropriate normalization constant and ), stands for summation
over the discrete excited states and an integration over the continuous part of the
spectrum. It should be noted that the definition of the doorway state is independent
of the choice of the particular one-photon state [k) in Egs. (5.1) and (5.2) provided
all the states {|m) } have transition moments parallel to |g> (Mukamel and Jortner,
1975b). We shall hereafter assume in (5.1) and (5.2) a photon |k} polarized along

this common transition moment.
The experimental counting rate from the molecule (4.7) is then

1(t) = TyPy(1) (5.3)
where Iy is the radiative width of the doorway state (Mukamel and Jortner, 1975b),
Iy = $yak? (5.4)
and Py(t) is the probability of finding the system in the doorway state at time ¢,
Pyt1) = |{N,vacly (1)) |? (5.5)
Utilizing (5.1) with (5.2), (5.5) and (4.14) we may write
t 2

Py(t) = 473 f dr(7) Can(t — 1) (5.6)

where
-H(t) Can() = 2mi)™! J dE exp(—iEt) Gyy(E) (5.7

and

Guan(E) = (N, vac|G(E)|N, vac) (5.8)

The following comments are now in order:
1. The photon counting rate from a general molecular level structure is expressed

in terms of a convolution of the pulse field amplitude ¢(r) and the molecular decay
amplitude Cyy (7).
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2. All the molecular information is incorporated in Cyy(1).

3. The optical excitation mode is determined by ¢(1).

4. Changing the optical excitation conditions, i.e., utilizing different forms of the
field amplitude, will lead to different decay patterns in the photon counting experi~
ment. However, the basic molecular information is always incorporated in the
molecular decay amplitude. One can use different pulse shapes to extract Cyy(.
or alternatively use the molecule for probing the pulse.

5. The porbability (5.6) and consequently the photon counting rate I(r) = Pyl(r:
can be recast in an alternative form, in terms of the field amplitudes. Utilizinz

Eq.(4.13)

1

Py(n) = 474 J dEA(E) Gyn(E) exp(—IEQ) ) (5.9

b~ &

where we have specified the photon wavepacket amplitudes A(E) = A4, in terms of

their energies.
6. For the limiting case of a coherent excitation by an ultrashort light pulse.

A(E) = constant or ¢(t — 1) = 6(t — t) and we obtain from Eqgs. (5.3) and (5.6
or(5.9)
1) = T3 | Can (D) (5.1G
7. Up to this point we have been concerned with the properties of a minimum-
uncertainty pulse. The extension to more realistic light pulses follows the discussior:
presented in Sec. 3. Eq. (5.6) should simply be replaced by

2

5 e :
Py(t) = 373 j J drdt'D(t,v) Chn(t — 1) Cyn(t — 1) (5.1

8. The results obtained herein are to second order in the applied field and hence
are valid for weak light pulses. Spontaneous emission. however, is properly incor-

porated in a non-perturbative way.

6. TIME-RESOLVED PHOTON SCATTERING
FROM A SINGLE RESONANCE

To provide a simple and physically relevant application for the formalism of the
preceding section, let us consider now photon scattering from a single molecular
resonance (a state of affairs common for the radiative decay of bound and pre-
dissociating states). The energy-level scheme is presented in Fig. 2a, which shows
a single discrete excited state |s) coupled to the radiative continuum characterized
by the density of states p,; |s)> can also be coupled to an intramolecular continuum
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{|e> } characterized by the density of states p, in the vicinity of the energy E = E,.
The intrinsic optical molecular lineshape % (E) (see Sec. 7) is a Lorentzian peaked
at the energy E, = E, + A,, where A, is a (small) level shift, and characterized by

the width

I'y=TI5 +T%
7 =2nV,ul* o, 6.1)
Iy = 2n,
consisting of the sum of a radiative I'; and a nonradiative I contributions.
The decay amplitude of the doorway state |s) is
C.(t) = exp(—iEg)exp (—TI,1/2) 6.2)

while the photon counting rate is now obtained from Egs. (5.3), (5.6) and (6.2):
2

f " @ exp [~ Bt — 0] exp[ Tyt - /2] de| . (63)

)

1) = 4TV, u P

This result can be utilized to analyze the experimental observations of the con-
tinuous transition between time-resolved resonance fluorescence and near-resonance
photon scattering, reported by Williams, Rousseau and Dworetsky (1974). These

authors have performed scattering of a light pulse of a tunable laser from a single
rotovxbratxonal level of the B state of molecular iodine and have recently triggered

a lot of theoretical activity (Mukamel and Jortner, 1975a; Mukamel et al., 1975;
Berg et al., 1974; Metiu et al, 1975). The basic idea of the experiment of Williams
et al. (1974) is presented in Fig. 2b. The time-resolved decay (i.e., time-resolved photon
scattering).is determined as a function of the energy increment

A=I|E - K (6.4)
The exciting light pulise is characterized (Fig. 2c) by the amplitude

() = exp (11/2) exp (—ikt), <0
@) =exp(—ikt), O0<t<T (6.5)
@) = exp [ —y,(t — T)/2]exp(~ike), t> T

where ;7! with i = 1 and 2 correspond to the pulse rise and decay times respectively,

while T denotes the pulse duration. The additional parameter which enters the
game is the Doppler width.

The following experimental observations were reported.

1. For the case of resonance excitation, i.e, when A < §, only a long, molecular,
decay component, exp (—It) is exhibited for ¢t > T.
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FIGURE 2. (a) Energy-level scheme for photon scattering from an isolated resonance.
(b) Energy profile for near resonance photon scattering experiment: solid curve. line-
shape #(E) of the isolated resonance (a Lorentzian around E, with width I',): broken
curve, power spectrum |4 (E){* of the light puise around k which may assume an arbitrary
form. (c) Molecular decay amplitude |C,,(t)] and pulse field amplitude |o(f)] in a time-
resolved photon scattering cxperiment from an isolated resonance: broken curve iCir)|

from Eq. (6.2); solid curve, jo (1)} from Eg. (6.5).
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2. When the off-resonance energy increment is large.ie, A >f >3, > I, ~ T7 1
two decay components with lifetimes y; ! and I'; ! are exhibited. The experimental

photon counting rate F(A, t)fort > T is
FA, 1) = 1,(0)+ 1,() (6.6}

with
1) =13exp[— 7,0t — TV] (6.7a)

I.(t) = IS exp[—T(t — 7] (6.7b)

1,(t) and 1,(r) denote the compohents corresponding to near-resonance Raman
scattering from the molecule and to molecular resonance-fluorescence, respectively.

3. At moderately low pressures of I, (0.03 torr), the intensity ratio
R=1I/U;+ 1)) = IR/FAT) (6.8)

is a slowly decreasing function of A, becoming practically constant for large values
of A.
4. Increasing the pressure to 0.25 torr results in a dramatic enhancement of the
long-lived molecular component relative to the total intensity (i.e., R increases).
Utilizing Eq. (6.3) for the photon counting rate from a single molecule, which
depends on A and will be now denoted by I(A, 1), we now have to account for the
Doppler broadening. The experimentally observable decay pattern of a single
molecule. F(A, 1), is obtained by convoluting (A, t) with the Gaussian distribution

f(A) = (nB?)~ 12 exp (—A?/B?) (6.9)
so that
F(Ar) = r f(A— A (A, )dA (6.10)

In Fig. 3 we present numerical results for F(A, r) using the pulse shape (6.5) and
substituting typical parameters corresponding to the experimental situation (Williams
et al, 1974), ie., y, /Ty = y,/T, = 100, I',T = 0.5 and B/T", = 500 (in the experiment,
I'7! = 107¢ sec). Our calculations reveal the following features:

1. For the resonance situation, i.e., A = B. only the long molecular decay com-

ponent is exhibited.
2. Moving away from resonance, when A > 28, both short and long decay com-

ponents appear.
3. Increasing A results in a decrease of the total intensity. For the extreme off-

resonance situation we have.
' F(A, T)x A~2 (6.11)
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FIGURE 3. Time resolution of the photon counting rate F(A. 1) (Eq. (6.10)) (in arbitrary

units) for the pulse (6.5) for various values of the off-resonance energy A. The Doppler width

(in units of the resonance radiative width) is /T, = 500; the rise and fall times of the pulse
are y,/T, = y,/T, = 100: the inverse duration of the pulse is T~ 'Iy = 2. The dotted

line is proportional to the time-resolved pulse intensity.

4. The intensity of the molecular decay component for the off-resonance situation

decreases as
I.(A Ty A™4 _(6.12)

5. The only typical lifetimes (or decay modes) which determine the time-resolved
decay pattern for resonance fluorescence and for near-resonance Raman scattering
are that characterizing the pulse decay and that specifying the molecular lifetime.
The off-resonance energy does not appear as an additional lifetime, rather it Jjust
determines the total emission intensity via Eq. (6.11) and the relative intensity R

of the long component (6.12) at off-resonance.
6. The intensity ratio R for the off-resonance situation in the isolated molecule

assumes the limiting form
(6.13)

Roc A2

The general features 1-5 are compatible with the experimental results of Williams
et al. (1974). It is important to emphasize that the time-resolved decay pattern de-
pends crucially on the pulse shape. Thus, for example, for the case of a pulse charac-
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terized by a rectangular function for (1) (7.7, — oc) only the molecular component
will be exhibited, while for the realistic pulse shape (6.5) both decay components
are revealed. _

It is, however, apparent from our calculations (see Fig. 3) that the theoretical
prediction 6 for the isolated molecule, i.e., R = A~? for the extreme off-resonance
situation is at variance with the “low” pressure data of Williams et al. (1974). Together
with Ben-Reuven (Mukamel, Ben-Reuven and Jortner, 1975), we have concluded
that collisional effects -are of considerable importance under 0.03 torr of I,, and
have advanced a theory of time-resolved photon scattering by collisionally-perturbed
molecules. It has been noted that pressure broadening effects cannot be elucidated
by a naive extension of the results for the isolated molecule by simply modifying the
molecular decay width I', by an addition of a pressure-dependent term. The photon-
counting rate under collisional perturbations involves both T, (level relaxation)
and T, (line broadening) contributions. The latter incorporate interference effects
between the lower and the upper states, due to phase shifts (Ben-Reuven, 1975).
which cannot be expressed in terms of additive contributions of the individual
levels.

The level scheme for collisional and radiative coupling is portrayed in Fig. 4.
We now consider a manifold [si) of excited (presumably rotational) states. The
relaxation processes are specified in terms of the 7T, and T, damping matrices for
which we have considered the following simple model (Mukamel et al,, 1975):

s =T1 (damping)

ry);=-Ty, i=j (cross relaxation) (6.14)

for T, processes, and
(T9); =TIy . (6.15)

for T processes.
The matrices I'; and I', are defined in the Liouville space (Ben-Reuven, 1975)

and the indexes i, j in Egs. (6.14) and (6.15) refer to [si si)> and |si gk», respectively.

— 1S3

?

elir drke

is2>
] L
L ﬂ Isi)

)

FIGURE 4. Lc\{el-schenie and damping matrices for a collisionally perturbed molecule
(Egs. (6.14). (6.15)).
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in the double-bracket notation (Baranger, 1958). The T, matrix, Eq. (6.14), is charac-
;

; . 1 . ;
terized by an eigenvector| . | having the eigenvalue

=TI, -@n-NnI; (6.16)
where n is the number of the relevant excited |si> levels. In the case of no collisional
relaxation from the excited electronic configuration I'; = I',. The T, matrix (6.15)
is characterized by the diagonal elements

=413 + I3 (6.17)

where I"; involves the contribution of the proper T, processes (Ben-Reuven, 1975).

The calculation of the photon counting rate under collisional perturbations
provides an example of the use of tetradic. Green’s functions in Liouville space
(Zwanzig, 1961; Fano, 1963). Under reasonable and realistic assumptions, the
photon counting rate is expressed in terms of a convolution of F(A, t) from (6.10)

with a Lorentzian profile
Cc(A) = (/n)/(a% + T2) (6.18)
F=in-1)I+1% (6.19)
which incorporates purely collisional effects due to interstate cross relaxation (I'y)

and “proper” T, processes (I';) resulting from phase-changing collisions. Thus the
photon counting rate from the collisionally perturbed molecule assumes the final

form

(F(A D)) = fw dA’ J‘w dA"I{(A, 1) (rf?) "2 ®

. _par _ a3 g (' =) _
Bexp [~ ~ AV/P) e = 1+ C (620

The physical features of the photon scattering problem are now clear. The short-
decay component originates from a photon scattering process, which has to be
handled within the framework of a single quantum mechanical process, while the
resonance fluorescence, long lived component originates from the decay of meta-
stable states, where the excitation and the subsequent decay can be segregated. Dif-
ferent Fourier components of the exciting optical pulse contribute to the (separable)
“resonant scattering” and to the (inseparable) direct-scattering processes. At zero
pressure, those Fourier components of the pulse which are close to resonance excite
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the long decay components, while other Fourier components of the pulse are directly
scattered. The mathematical implication of our resuits is made obvious by consid-
ering the asymptotic form of the convolution integral (6.20). In the isolated molecule
1.(T) ~ A™* and convoluting this result with the pressure broadening Lorentzian
term (6.18) we obtain the asymptotic form for the long molecular component from
the collisionally perturbed molecule of the form oc A~2 for finite I. On the other
hand, F(A, T) x A™“ in the isolated molecule and convolution with the Lorentzian
(6.18) does not alter the asymptotic behaviour ( F(A,)> > A™2 R is thus inde-
pendent of A under the conditions of collisional perturbations. These considerations
are fully borne out by the results of the numerical calculations based on Eq. (6.20)
which are portrayed in Fig. 5. We note that a small collisional perturbation, i.e.,
/T, ~ 0.01, goes a far way resulting in the asymptotic form for R which is practically
independent of A. This interesting feature stems from the Lorentzian shape of the
collisional contribution to the line shape and from the basic rule that the asymptotic
behaviour of a convolution is governed by the weaker decreasing function. Thus
under the conditions of off-resonance situation, pressure broadening effects result
in a dominating contribution to I, (A, t) from the vicinity of A = 0, i.e,, from near-
resonance. As the collisionally broadened Lorentzian line spans a larger fraction
of the Fourier components of the pulse, the contribution to two-stage scattering

A
=2
A

P/rf'
f\/r‘=0.5
f/r. 0.25

T

f'/r, =005
f,,-‘ 20.025

| FE B § TITTTy
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f'/r', o0l

T T T TTI

073

50
FY
O =TT TTITm]

| 1 | | J
2 4 6 8 10
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FIGURE 5. The istensity ratio R between the slowly-decaying component and the total
photon-counting rate evaluated at t = T as a function of the off-resonance parameter A,
at different values of the collision-broadening rate I". Other parameters as in Fig. 3.
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due to the decay of metastable states is enhanced. in comparison with the contribu-
tion of direct scattering. Thus, Mukamel et al. (1975) have considered collisional
perturbations as exerting “memory erosion” effect on the molecule, increasing the
contribution to the time-resolved decay from molecules which have lost their memory
with regard to the time-profile of the light puise.

We have dwelt on the subject of time-resolved photon scattering from a single
resonance, which can be coupled by collisional perturbations to other states. well
separated from it. We shall now turn to the general solution of the more interesting
problem of time-resolved photon scattering from a manifold of densely spaced

molecular states.

7. THE EFFECTIVE HAMILTONIAN AND TIME-RESOLVED
PHOTON SCATTERING

In Sec. 5 we have presented general formal expressions for the counting rate in
time-resolved photon scattering experiments from molecules with an arbitrarily
complex level-scheme. We shall now proceed to provide explicit formal expressions
for the photon counting from the quite general level scheme presented in Fig. 6.
This level scheme consists of some bound states which are radiatively coupled to
the ground state and may be also coupled to intramolecular continua. or to other
decay channels which do not carry oscillator strength from the ground state. We
recall that the photon counting rate is determined by the projection of |\ on ¥ (1)
(Egs. (5.5)-(5.8)). Thus even if we had a complete information on (1. a iarge part
of it would be redundant. as we only require the subpart of y (1) given by the pro-
jection
[N, vac) (N, vac| (7.1)

im vac)

3

IC,vac> (E.)

o

FIGURE 6. A general molecular level scheme consisting of a group of closely spaced discrete
levels radiatively coupled to the ground state, which may also be coupled to intramolecular

channels.

9>
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In other words. we can limit ourselves to the time evolution of a (small) subpart of
the Hilbert space spanned by the discrete states |m. vac . This leads us to a formula-
tion of an effective Hamiltonian which specifies the time evolution of the relevant
subsystem in the presence of the radiation field and other intramolecular decay chan-
nels. (Jortner and Mukamel, 1974, 1975; Mukamel and Jortner, 1974b).

Being guided by Eq. (5.1), we partition the total Hilbert space by the use of the

following projection operators:

P=Y

m, vac) {m. vac|

0= Llo.k> <o k| + };;-C) <c|
P+0=1 (7.2)
Following this formal approach, Egs. (5.3) and (5.8) take the form
I(r) = T%|<N, vac|Py(n)>|? (7.3)

and
Gyn(E) = (N, vac|PG(E) P|N, vac) (7.4)

Thus the relevant physical information is embedded in the projection PGP. Alterna-
tively, working in the time rather than in the energy domain we may state that we
require the projection Pexp(—iHr) P of the time-evolution operator to specify
the time evolution in the relevant subpart of the Hilbert space.

It has been shown elsewhere (Mower, 1966; Cohen Tannoudji, 1966, 1967; Jortner
and Mukamel, 1974, 1975) that the Green’s function and the time-evolution operator
in the P subspace can be expressed in terms of an effective Hamiltonian

Hey = P(H, + R) P (1.5)

where H, is the zero order Hamiltonian (2.1a) and R is the level-shift operator
R=V+VQE ~QHO) 'OV (7.6)
The latter consists of two contributions, a direct coupling term and a relaxation

contribution. v
The appropriate projections on the Green's function and the time-evolution
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operator result in the simple-looking expressions
PG(EYP = P(E- H.q)"' P (7.7a)
Pexp(—iHnP = Pexp(—iH.q1) P (7.7b)
Thus all the relevant information is contained in the effective Hamiltonian H 4

which can be recast in matrix form )

Hg=H, + A -}l (7.8)
where H,, is the molecular Hamiltonian, A is a level-shift matrix. and I is the decay
matrix. both matrices originating from the coupling of the discrate states with the

radiative and the nonradiative continua. We have split the two individual contribu-
tions originating from the radiative coupling and from the coupling to the intra-

molecular continuum {|c} ! as follows:
(A)mm = (Ar.)mm' + (Ac)mm'
PY {m.vac|Hin|g. k) (g, K|Hin|m', vac,

r s P
(A") > 2a
(A, =PPY {m,vac|H,|c, va;:) <2, vac|H, |m'. vac) .

where PP stands for a principal part of an integral and
Dhm = T e + T
T )wm = 27 m.vac|H, |9, k) p, (k) (g, k|Hy, jm . vac,
(T)mm = 27~ m, vac|H,|c, vac) p.{c, vac|H,|m’, vac (7.10)

Here p,(k) and p. denote the density of states in the photon field and in the intra-
molecular continuum, respectively.

The level-shift and the damping matrices provide a generalization of these (scalar)
quantities for the case of a single resonance. It is important to notice that, in principle,
both the level-shift and the damping matrix are energy dependent. Concerning the
level-shift matrix, we can quite safely disregard the (divergent) radiative contribu-
tions A;,,. which can be handled by the renormalization theory adopted in the
study of the Lamb shift (Schweber. 1961). The level-shift contributions AS, may
be of importance in modiiving the energy levels.

The properties of the relaxation matrix T are the following:

1. It provides a generalization of Fermi's Golden Rule for @ multilevel system.

2. Itis, in general. non-diagonal.
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3. The off-diagonal terms represent indirect coupling between the discrete states

via the continuum states.
4. The ofi-diagonal contributions are of importance only in the case of near-

degeneracy, i.e.. I ~ |En — Ep |
5.T is Hermitian
6. Usually it is safe to assume that I is a weakly varying function of energy in the

relevant range. (An exception exists when we have a resonance too close to some

threshold (Goldberger.and Watson, 1964).)
We now turn to the features of the effective Hamiltonian which can be >ummarlzed

as follows:
1. H is non-Hermitian.
2. In general, H. 4 is not diagonalized by the eigenstates of H,,,.
3. H, can be diagonalized by the transformation
l)"leﬂ'l)_l = A

4. The transformation matrix D is non-unitary. When the eigenfunctions corre-
sponding to |m, vac) are real, H.q is complex symmetric while D is an orthogonal

matrix.
5. The basis of zero-photon states ; j, vac) diagonalizes H ¢ via the transformation

|i,vac, =3 Djn|m,vac) (7.12

(accidental degeneracies are disregarded in our discussion).
6. The |j, vac) basis is non-orthogonal.
7. One can define a complementary basis |j, vac) via the transformation

jvacy = Y (D7) ] |movacy (7.13)

In the special case 4, the wavefunction corresponding to |j > is the complex conjugate

of the wavefunction corresponding to |j ).
The projection’ operator into the P space may be written as

P =Y |j.vac) J, vac| (7.14)

This relation is a consequence of the orthonormality of |j, vac) and |j, vac).
8. The diagonal sum rule applies to the transformation (7.11), whereupon

Zw +AML—ZE (7.15)

2 T ‘Zr
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9. The Green's function and the time evolution operator in the P space are

_ j.vac . {j. vaq|
GIEVP = 7.16
’ ZE E i (1/2)1— ( ’

and
Pexp(—iH.q) P =Y |j vac, exp [ —iE;t — 1T ;1] {j.vac|. (7.17)
J

A final important conclusion emerging from the last formal resuit is that the
molecular decay amplitudes {see section IV: combining any pair of zero-order
. vac/ states can be expressed as a superposition of exponential functions
exp [—iE.: — 3I;t]. It is thus proper to refer 10 the basis set |j.vac) as the inde-
pendeml.r decaying levels of the molecular system.

At this stage we can combine Eqgs. (5.3)—(5.8) together with (7.3), (7.4) and (7.17)
to derive the following expression for the photon counting rate from a manifold of

discrete optically active levels:

1(t) = 931 { S S AYAFX(1) Fyunexp [—ilE; — E,-.)t]} (7.1%)
4 JF

A; = {N,vacl|j, vac) (j. vac|N, vac) (7.19a)

F;u) = f dre(t)exp (iE;ti axp (-3l -1)] (7.19t

Some general conclusions are immediately apparent:
1. The photon counting rate is determined by the cross products of terms consist-

ing of the coefficients 4; and time dependent amplitudes F ;.

2. The coefficients 4; constltute the residues of the Green s function (7.16).

3. The lime-dependent coefficients F;(r) contain information concerning the light
pulse and the decay modes of the independently decaying levels.

To provide the background for the discussion of time-resolved experiments under
intermediate excitation conditions, let us consider excitation by a Lorentzian wave-
packet so that ¢(t) = 0(t)exp (—ikr)exp (—; 2 2), where y, corresponds to the
reciprocal decay time of the pulse (Cohen Tannoudji, 1966 Jortner and Mukamel.
1974, 19751. Eq. (7.19) takes the form

cexp[—i(k — Ej) ] expt —iy,1) — exp(—3T0) (7.204
k—E; +G2nl; -1y, -

Fin) =i

As the pulse width y, can be varied at will. we shall now consider two physical situa-
tions pertaining to short-excitation experiments:
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7.1. The case of energy-weighted excitation. Provided that
y, > I; forall j (7.21)

the photon counting rate is

|4;|* exp(—T;1)
— 121" At | e i W
I(r) —E)NFN{Zj:(Ej B + 152

Lip
A*A.
- L . ®
1; (Ej — k + (i/2)7,) (Ej — k — (i/2) )
®exp [i(E; - E)lexp [~ + T)1/2] | (122

In this case, each component is weighted by the attenuation factors in the de-
nominator which account for the different absorption strengths of the exciting pulse
by the independently decaying levels. It is interesting to explore the behavior of
Eq. (7.22) in different time domains. Consider first short times after the excitation,
ie,

S t<I;! (7.23)

whereupon the exponential functions exp (—I';¢) can be set equal to unity and Eq.

(7.22) takes the form of the Fourier sum

Ajexp (—iE;t) 2 (7.24)

U Py Ty

J

The time evolution is determined by the pulse widths y, and by the “spreading width”
I', (i.e., the energy spread of distribution of the |j > states). As an example consider a
Lorentzian distribution 4;, i.e,

A;=(E;— Eo + (/2)T)7’ (1.25)

Such distribution is known in nuclear physics as the “giant resonance” model (Lane
1969) and was recently discussed in connection with molecular problems (Voltz,

1974). A
In this case, the initial time evolution (7.24) for t < p;(where p;is the average density

of the |j ) states) assumes the form

exp (iEqt — $T4t) — exp (ikt — 13,0 | (7.26)

(Eo — K) + 3i(y, — T)

Io(1) x

Consider now another time domain where 1 ~ I';' » 3y, *. The photon counting
rate (7.22) consists of two contributions, a direct decay term and an interference
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radiative decay time. The reciprocal litetime on this short timescale is roughly given
by the average 'y = (2n{ ¥;{p, ;) for a single doorway state ls» coupled to a {|i)}
manifold (Bixon and Jortner. 1968).

In the statistical limit. ', is the only observable decay time. This leads to the well-
known results concerning exponential (to a good approximation) decay mode.
~shortening” of the experimental decay time (i.e, I'; > I';) compared to that estimated
from the Einstein relations for the integrated oscillator strength. decrease of the
emission quantum yield below unity. and insensitivity of the decay time I'; 'to ex-
ternal perturbations by an inert medium. To answer the question under what
conditions no other decay modes exist except the I'; ! exhibited in the decay pattern
of a polyatomic molecule. we have to bear in mind that the widths I'; incorporate
all sequential-decay processes of the states of the {|/>} intermediate manifold.
Such sequential-decay phenomena may involve infrared decay. optical decay in
the case of internal conversion from highly excited levels, and coliisional perturba-
tion. A complete theory of sequential decay (Nitzan ahd Jortner. 1973; Jortner and
Mukamel, 1974; Mukamel and Jortner. 1974a. b) was developed and we shall not
dwell on it here. For the sake of the present discussion it is sufficient to note that the
magnitude of the widths I'; of the independently decaying levels (relative to T,
and to p; ') will determine the long-time behavior of the decay pattern. On the time
scale exceeding the recurrence time. r > p;, the interference terms in Eq. (7.34

vanish, resulting in
Hoyx Y 4P exp (=T ). (7.38)

Usually (Nitzan, Rentzepis and Jortner. 1972; Jortner and Mukamal. 1 974 T; < Iy
and a dilution effect of the lifetimes will be exhibited in the intermediate (or large)
molecule on the time scale ;; ! < I, <t ~ T, provided that this decay mode
is amenbable to experimental observation. Thus the conditions for observing the
asymptotic behavior (7.38) are again given by Egs. (7.29) and (7.301. being identical
for the case of coherent excitation to that of energy-weighted excitation.

We have already argued that coherent excitation conditions prevail only for the
statistical limit and for the intermediate case, so that we do not have to discuss
interstate coupling in small molecules in the present context. In the statistical limit
p; is expected to be overwhelmingly large, whereupon any contribution to I'; from
sequential-decay processes will result in the condition

I;>p;! (7.39)
violating condition (7.29). Thus relation (7.39) provides the basic condition for the
applicability of the statistical limit, when the background dense levels are sufficiently
broadened, relative to their spacing. to provide an intramolecular dissipative

channel.
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We finally turn to the interesting case of intermediate level structure in large
molecules where “coarse graining” procedures regarding the background {[/>}
levels are not applicable. In this case one can observe two decay components, the
short decay exp (—TI ) on the time scale t < p;j',I';! and the long component
which is a sum of exponentials on the time scale t = p; !, I'; ! provided that I'; < pit
and I'; < T,. Such state of affairs can be realized for a large molecule charactenzed
by a small energy gap. whereupon p; ~ 10° cm, while I'; < 107 3cm™!, ie., the back-
ground states correspond to a triplet manifold, or to a single! state whose transitions
to lower-lying levels are symmetry forbidden. For the sake of general methodology,
it is important to emphasize that the observation of two decay components cannot
be described in terms of a reversible kinetic scheme as proposed by Lahmani et al.
(1974), where the initially excited state |s) decays to the {|!7 } manifold. which sub-
sequently undergoes a reversible process back to |s). It is well known that the Pauli
master equation, which provides the ideological basis for kinetic schemes, breaks
down when interference effects are exhibited, as in the situation for the intermediate
level structure, whereupon conventional kinetic picture is inapplicalbe.

8. ENERGY-RESOLVED EXPERIMENTAL OBSERVABLES

We now proceed to discuss “long time” (energy resolved), experiments where no
restrictions are imposed on the energy resolution of the photon field. Scattering
theory provxdes a powerful tool for the understanding of the interaction of molecules
with the Tadiation field which is responsible for the absorption line shape and for
photon scattering processes (elastic, inelastic and reactive). Energy-resolved ex-
perimental observables can be handled by considering a collision process between
a monochromatic wave train and the “isolated” molecule within the framework of
the Lippman—Schwinger equation, expressed in terms of the T matrix (the transition

operator) defined by
T=V'+ VGE)V (8.1)

(Goldberger and Watson, 1964; Shore, 1967).
The definition of ¥ and V’ depends on the boundary conditions for the scattering

process. In our case, where a photon is being scattered from a molecule initially in
the ground state |g> and where |g) is an eigenstate of H,o and of H, (see Sec. 2),
we can take (Mukamel and Jortner, 1974b; Mukamel, 1975)

V=V = Hy + H, @8.1a)

Let us first consider nonreactive photon scattering. At the distant past, the molecule
is in the continuum state |a) = |g0,k) characterized by the energy E,. The final
(continuum) states resulting from photon scattering will be denoted by [b) =
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|gv. K, > characterized by the energy E,. (Here v denotes a coliection of nuclear

quantum numbers).
The cross section a(a — b) for the transition a — b to a group of final states in

the energy interval dE, is obtained by dividing the transition probability by the photon
flux F = c/I3, where c is the velocity of light and I> represents the volume, and we
use box normalization for the radiation field. Thus we have

2L
ala — b) = _;:T IThul? S(E, — Ey) (8.2)

The rate of disappearance W, of the initial state a is given by

W,

a

5
= - fil"'(T““) 13.3)

while the absorption cross section ¢, (at zero temperature) is obtained again by
dividing through by the flux:

B by
O, = — ——'Im(T;a) ‘34)
he

We can immediately apply these results by setting for the initial energy E, =
E(|g0.k>) = E,o + E, where E, is the energy of the ground-state vibrationless
level and E = k#c is the incident-photon energy, the absorption cross section is

then obtained from Eq. (8.4) in the form
~r73

2L
0u(E) = — 2= 1,(g0.k|VG(E) V|g0.k (3.5)

Consider now the cross section for the photon scattering process |g0. k> — |gv, k>,
which takes place between the in_itial state |g0,k)> characterized by the energy
E,o + khc and the final states |gr. k) characterized by the energy E,, + k hc:

2nl3 :
o(g0,k — guv, k) e [<gv.k |VG(E) V|g0,k>|? p, (k) (8.6)

where

L3k2
polks) = (—2;)3% (8.6a)

Our final expression for the photon scattering cross section ¢* (E) into the molec-
ular state |gv) may be recast in the form

o, (E) = < ZJ‘dea(gO,k»gv,kf)) (8.7)

er
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Eq. (8.7) includes integration of (8.6) over the final spatial photon directions ( | dQ;).
summation over the final photon polarization directions (3, ,) and averaging over
the initial molecular orientations with respect to the photon polarization ({---)).
The total cross section for resonance fluorescence is obtained by monitoring all
the emitted photons resulting form scattering into all the final molecular states [gr).

o (E) =Y ol(E) (8.8)
-

In a similar manner we can define a cross section o7%.(E) for effective scattering
into the quasicontinuum {|«/, vac) }. which we consider to be an operational con-
tinuum. (Here « denotes the collection of quantum numbers defining the nonradiative
channel. whereas [ is a continuous intrachannel quantum number.) Thus.

2rl?
hc

on(E) = [<al. vac| T (E)|g0, k> |* pi(E) (89)

The unitarity relations for the scattering matrix result in the optical theorem of
scattering theory (Goldberger and Watson, 1964);

1
— =1, T.= Y |Thal? 8(E, — Ey) (8.10)
n allb
which leads to the conservation law
0(E) =Y oi(E) + Y 0u(E) (8.11)

The (energy-dependent) quantum vield for absorption of a photon of energy
E leading to the molecular state |gr > is given by the ratio of the resonance scattering
cross section (8.7) and the absorption cross section (8.8), Y°(E) = a?(E)/o,(E). If the
ground-state energy levels are well-spaced, the different- channels can be resolved.
Finally, the total quantum yield for photon emission is given by Y,(E) = > Y'(E) =
o,(E)/a,(E). In a similar way, the quantum yield for electronic relaxation in a statis-
tical molecule (or for predissociation) is Y, (E) = Y Y3(E), where YZ(E) = 0% (E)/
aﬂ (E)' .

Eq. (8.11) now implies that Y,(E) + Y, (E) = 1. The general expressions for the
absorption cross sections, for the resonance fluorescence cross sections and for the
emission quantum yields in the “statistical” molecular case will involve as “open
channels” not only the radiation continuum but also the intramolecular quasi-
continua {|a/)} which for all practical purposes can be considered as an “open”
decay channel. In this case the unitarity relations for the scattering matrix do not.
imply that Y,(E) is equal to unity as intramolecular decay channels have to be con-

sidered.



Radiationless Processes 209

We have recently established the relation between the theoretical treatment of
in time evolution of the molecular system resulting from wave packet excitation
in “short time™ excitation experiments and the study of photon scattering cross
sections involved in “long time™ excitation conditions (Jortner and Mukamel,
1974). This was accomplished by pursuing the general relations between the transi-
tion T matrix and the (photon) scattering matrix S. This formalism leads to general
useful results for the quantum yields expressed in terms of the pulse amplitudes
A, = A(E) and the relevant cross sections

JdE[A(E)!: G:(E)
Y = (8.12)

de‘A(E)‘S: 6,(E)

de(A(E)f i, (E)
Ye= (8.13)

J dE|A(E)|* 0,(E)

These results are valid for all excitation conditions. We note that, in general, the
quantum yields are determined by the power spectrum of the source (i.e, |A(E)[?),
and the only relevant information required concerning the excitation source involves
its energetic spread and not the phases of the radiation field. In the “long time”
excitation limit [A(E)|* is sharply peaked around E and the quantum yields are
given in terms of the ratios of the cross sections at this particular energy. In the ex-
treme case of short excitation conditions |A(E)|" is a slowly varying function of the
energy and the quantum yields reduce to the ratio of the integrals over the cross
sections. In these two limits the quantum yields are solely determined by the molec-
ular parameters and not by the characteristics of the source. In general. the quantum
yields are different under different excitation conditions. Only when both cross
sections ¢! (E) and o,(E) exhibit the same energy dependence will ¥* be independent
of the pulse characteristics under all excitation conditions. This situation is en-
countered only in the special, but useful, case of a single molecular resonance, when
both cross sections exhibit a Lorentzian energy dependence.

Finallv. let us consider the general relation between the photon counting rate and
the optical lineshape. Making use of the definition for the lineshape, Eq. (8.8), and
bearing in mind that the basic definition of the doorway state, Eq. (5.1), implies

that |[N.vac» = 75 Hyu|g. k), we get

23 .
0,(E) = — m h‘x%z I,,Gyy(E) (8.14)



210 Molecular Energy Transfer '

Making use of the dispersion relation (Goldberger and Watson, 1964)
1 (< I,Gyw(E
j nGinlE) . (8.15)

Ol == ) E-E—n

implies that the photon counting rate is given by
2

Ay [ he \? ‘ ! ]
I)=+—5| — | d dE'a,(E')exp[—iE'(t — 8.16

® i}'sz-(an:’) . @(t)de B (E'Yexp[—iE'(t — 71)]| (8.16)
This result constitutes a generalization of the well-known theorem that under coherent
excitation conditions the decay mode is given in terms of the Fourier transform of
the lineshape function. Eq. (8.16) is valid for general optical excitation conditions and
for any level structure in the excited state of a polyatomic molecule.
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