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In this paper we present a coherent physical picture of the metal-nonmetal transition in metal-ammonia 
solutions in the intermediate concentration range. We propose that in Li-NH3 and Na-NH3 solutions a t  T 
- T ,  10-20 K the metallic propagation regime (9-16 MPM) is separated from a nonmetallic pseudoin- 
trinsic semiconducting regime (1-2.3 MPM) by a microscopically inhomogeneous regime (2.3-9 MPM) in 
which the concentration fluctuates locally about either of two well-defined values Mo and MI, Mo > MI, 
the local concentration remaining near Mo or M1 over radii approximately equal to the Debye short corre- 
lation length, b,  for concentration fluctuations. The limits of the inhomogeneous regime were determined 
from a combination of concentration fluctuation measurements, electrical conductivity, Hall effect, and 
paramagnetic susceptibility data to be Mo = 9 MPM and M I  = 2.33 MPM, which yield the C scale, C = (M 
- 2.33)/6.66, for both Li-NH3 at 223 K and for Na-NH3 at 240 K. We have also established the consistency 
of our picture with the available magnetic data for Na solutions. An analysis of electronic transport, ther- 
mal transport, optical properties, and sound velocity was carried out in terms of a theory of response func- 
tions for microscopically inhomogeneous materials developed by us. Excellent agreement between theory 
and experiment was obtained throughout the entire inhomogeneous transport regime. 

I. Introductory Remarks 
In this paper we present a physical picture for the metal- 

nonmetal transition (MNMT) in metal-ammonia solutions 
(MAS) in the intermediate concentration range (1-10 
MPM).2-5 The apparently continuous changes of the elec- 
tronic and thermal transport properties as well as the opti- 
cal data and thermochemical properties of MAS in the in- 
termediate concentration range provide an important ex- 
ample of a MNMT in a disordered material. Many exam- 
ples for such MNMT in disordered solids and liquids are 
now well documenteda6 What is a MNMT in a disordered 
material? From the point of view of the experimentalist 
such “transitions” may be roughly classified in terms of the 
variation of the electrical conductivity, u, induced by 
changes in a primary variable of state, such as density in a 
one-component system or composition in a two-component 
system: 

1. “Abrupt” MNMT.  A sharp drop of c is exhibited in a 
narrow range of the primary variable of state. We are aware 
of a single example of such a transition which was ob- 
served7 in amorphous films of Cu-Ar and Pb-Ar at 4 K. u 
decreases gradually over the composition range 100-60 mol 
% metal, exhibiting a “discontinuity” a t  about -55 mol % 
metal. We note in passing that the percolation pictures-13 
which implies that 

b =  0; c < c* 
u a (C - C*)l 6; C* < C < 0.4 

d = ( i c  -i); 0.4 < c < 1 (1.1) 

where C is the metallic volume fraction and C* Y 0.17 is 
the percolation threshold,12J3 also provides a t  least a semi- 
quantitative fit of these experimental data. 

2. “Continuous” MNMT. A gradual variation of u is ob- 
served. Many such cases have been recorded in disordered 
materials. To quote several illustrative examples we men- 
tion the MNMT in expanded liquid m e t a l ~ l ~ - ~ &  and in 
MAS.2-6*26-48 Such MNMT’s were studied at finite temper- 
atures, and one can argue that thermal excitations will 
erode any discontinuity in cr. 

Two basic theoretical models for the MNMT were ad- 
vanced by Mott6:49-67 which rest either on (a) correlation 
effects or (b) band overlap effects. Mott further invokes the 
central role of Anderson localization and of polaron effects 
in determining the features of the MNMT in disordered 
materials. An alternative model ww advanced by the 
present authors (CJ)58-63 who argued that in many disor- 
dered materials the MNMT occurs via an inhomogeneous 
transport regime, where microscopic inhomogeneities, e.g., 
density fluctuations, bonding modifications, or concentra- 
tion fluctuations, determine the electronic structure and 
the transport properties. Thus in the CJ approach mecha- 
nisms a or b operate locally. Mott’s picture implies the oc- 
currence of a discrete MNMT at 0 K, while CJ assert that 
in a disordered material which is characterized by a large 
correlation length for fluctuations, or by large potential 
fluctuations, a continuous MNMT will be exhibited. The 
CJ picture is necessary to overcome serious difficulties en- 
countered in the interpretation of the transport properties 
of many disordered materials undergoing a MNMT in 
terms of conventional descriptions of transport mecha- 
nisms. 
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11. Conventional Descriptions of Disordered Metals 
and Nonmetallic Materials 

We wish to understand the nature of the apparently con- 
tinuous changes of electronic structure and transport prop- 
erties during the course of a transition from metallic to 
nonmetallic behavior in disordered systems and in particu- 
lar in MAS. Let us first characterize the general features of 
disordered metals and disordered nonmetallic materials in 
terms of their transport properties. One can specify the 
transport properties of disordered metals in terms of one of 
the following transport regimes. 

(a) The Metallic Propagation Regime.64 The mean free 
path of the conduction electrons considerably exceeds the 
Fermi wavelength XF = kF--', i.e. 1 >> XF. The conductivity 
u is well represented by the nearly free-electron t h e ~ r y . " ~ , ~ ~  
There is no special relation between the Hall coefficient, R ,  
and the c o n d u ~ t i v i t y . ~ ~ ~ ~ ~  On experimental and theoreti I 
caF7 grounds we assert that the latter quantity is close to 
the free-electron value, RFE, whereupon the Hall mobility 
p = uR is dominated by changes in u. Correspondingly, the 
transport properties satisfy the conditions 

u 2 3000 ( Q  cm)-l - 1000 ( Q  cm)-l (II.la) 

R RFE (1I.lb) 

p = R n  RFEU (II.lc) 

A minimum value of -1000 ( Q  cni)-l for the conductivity 
in the propagation regime is applicable to MAS, where the 
electron density is low. 

(h) The Metallic Diffusion Regime.50s68-71 As disorder 
increases the mean free path decreases to a point where I - 
X p  The concept of a mean free path is no longer applicable. 
However, in the propagation regime 1 characterizes the dis- 
tance over which the electronic wave functions retain phase 
coherence. We can generalize 1 into a phase coherence 
length, which can be arbitrarily small. For I < XF the phase 
of the electronic wave functions becomes effectively ran- 
dom and interference effects are unimportant. The random 
phase approximation is applicable within the framework of 
the Kubo-Greenwood formalism in this problem. Fried- 
man70 has studied transport in a crystal with a tight-bind- 
ing s band. He assumes that the wave function amplitudes 
are everywhere constant but the phases on different sites 
are random. An extension of this treatment has been pro- 
vided by Varea de Alvarez and Keller.72 Friedman's treat- 
ment70 results in 

(11.2) 

where a is the internuclear separation, or the intercavity 
spacing in MAS, z is the number of nearest neighbors, and 
the parameter 

X = J a 3 n ( E ~ )  (II.2a) 

contains J, the nearest neighbor electron transfer integral 
and the density of states, n(EF),  at the Fermi energy E F .  
Two conclusions are immediately apparent. First, the vari- 
ation of the conductivity in the diffusion regime induced by 
changes in a primary variable of state is not only deter- 
mined by the changes of n(EF) but can be also considerably 

affected by the changes of J. Thus the Mott relation51-5,'! n 
= A [ ~ ( E F ) ] ~ ,  where A - 2500 ( Q  cm)-' and ~ ( E F )  is ex- 
tracted from the Knight shift or the paramagnetic suscepti- 
bility for the conductivity in the diffusion regime, is of lim- 
ited applicability. Second, one can derive explicit relations 
between the Hall coefficient and other electrical transport 
properties 

(11.3) 

where the proportionality factors contain parameters 
which depend either explicitly or weakly on the variable of 
state. These relations provide an important diagnostic tool 
for the identification of diffusive or Brownian motion, Le., 
the strong scattering regime. 

Turning to nonmetallic materials we consider the most 
common case, that of disordered semiconductors, where 
there are two transport mechanisms in parallel. 

(c) Pseudointrinsic Semiconductiuity. In the current 
picture of disordered semiconductors the band gap is re- 
placed by a mobility gap69,51752x73 

E,  = E ,  - E ,  (11.4) 

where E ,  and E ,  correspond to the mobility edges in the 
conduction band and in the valence band, respectively. All 
the states within the mobility gap are localized, and u = 0 
a t  T = 0. Conduction at  sufficiently high temperatures pro- 
ceeds by thermal excitation of carriers across the mobility 
gap. The conductivity is69,73 

u N u(E,) exp[-(E, - Ev)/kT] 
(11.5) 

u(E,) = 2n(E, )ep(E, )kT 

where n(Ec)  and y(E,) are the density of states and the 
(mean) mobility near the mobility edge, respectively. To 
derive a relation between the conducitivity and the ther- 
moelectric power, S, Mott and Cutler started from the rela- 
t i o n ~ ~ ~  

u = -Su(E)')(af/aE),dE (11.6) 

where f is the Fermi distribution function. Assuming that 
u(E)  is weakly dependent on E above E,, these formula 
give 

(r E dEAf(Ec) (11.8) 

which is practically identical with eq 1.5, and 
k 
e 

S = - {ln (u(E,)lu) + 
[l + (a(E, ) /dI  In [I I- (u /u(E, ) ) ] )  (11.9) 

when one band dominates. When u/a(E,)  << 1, i.e. E ,  - EF 
> 4kT, eq 1.9 reduces to the conventional form 

k 
e 

(11.10) S = - [In ( (r(E,) /u)  + 11 

The u vs. S relations (11.9) and (11.10) unambiguously spec- 
ify pseudointrinsic semiconductivity, provided that com- 
pensation effects do not affect S. 

(d)  Pseudoextrinsic Semicon,ductiuity. In general, the 
Fermi energy is located within the mobility gap and n(EF) 
is finite. Consequently, electrons near the Fermi energy 
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contribute to the transport via variable range h ~ p p i n g . ~ ~ , ~ ~  
A t  sufficiently low temperatures this Mott hopping will 
dominate the conductivity. The t h e r m ~ p o w e r ~ ~  is expected 
to be small and not related to u. This mechanism is impor- 
tant only at low temperatures, and we shall not be con- 
cerned with it here. 

In MAS an additional transport regime is exhibited. 
(e) Electrolytic transport regime where conventional 

electrolytic transport4 prevails. According to Mott’s picture 
the MNMT in a disordered system will be manifested by 
an “abrupt” switching of the transport mechanisms from 
regime b (or regime a) to semiconducting transport (mech- 
anisms c and d) in materials undergoing a metal-semicon- 
ductor transition such as expanded liquid Hg. In MAS a 
switch from regime b to regime e may be exhibited, or al- 
ternatively the transition from regime b to regime c will 
occur. As several of these conventional transport regimes 
have already been identified55*56$59t70 in expanded liquid Hg 
we proceed to the analysis of the experimental evidence for 
this relatively simple one-component system. 

111. Transport in Expanded Liquid Mercury 
For expanded liquid Hg the extensive experimental 

data14-24 for u, R ,  and S over the density range 13.6-5 g 
cm-3 can be partially understood in terms of the following 
distinct transport regimes: (a) propagation regime, 11 g 

< p < 13.6 g cm-3 where eq 11.1 applies, as is evident 
from the data of Even and Jortner reproduced in Figures 1 
and 2; (b) diffusion regime, 9.2 g cm-3 < p < 11.0 g cm-3 
where Friedman’s relations, eq 11.3, apply (Figures 1 and. 
2); and (c) pseudointrinsic semiconducting regime, p < 7.8 
g cm-3 where the In u vs. S relation, eq 11.10, holds. In the 
intermediate density range p = 9.2-7.8 g cm-3 the electrical 
c o n d u ~ t i v i t y ~ ~ - ~ ~  at  155OOC varies in the range 500-20 (Q 
cm)-l, the Hall mobility p (which was measured down to 
8.6 g ~ m - ~ )  is practically constant,20 p = 0.07 cm2 V-l 
sec-l, the thermoelectric powerla exhibits a weak variation 
with p ,  S = -70 (pV/OC) at p = 9.2 g cm-3 and S = -150 
(pV/OC) at 7.8 g ~ m - ~ ,  while the volume and temperature 
dependence of u reveal a fast increase with decreasing den- 

0.05- 
0. I 0.3 0.5 

( R F E / R  1 
Flgure 2. The dependence of the Hall mobility on (&/R)* for ex- 
panded liquid Hg, after Even and Jortner (ref 20). In the diffusion re- 
gime 9.3 g cm-3 < p < 11.0 g ~ r n - ~ ,  p a ( R ~ ~ / R )  in agreement 
with eq 11.3. 

sity.16J8 None of the conventional transport regimes ap- 
pears to be consistent with the transport data in this inter- 
mediate density range, in our opinion. However, Mott’s 
p i c t ~ r e ~ ~ , ~ ~  for the metal-nonmetal transition in Hg asserts 
that the material remains microscopically homogeneous 
with regard to electronic structure and transport. When the 
density of states ratio g falls below a critical value g* N %, 
Mott supposes the states to be localized. Accordingly, he 
proposes that a mobility gap opens at  p = 9.2 g ~ m - ~ ,  and 
that for lower densities the transport properties are deter- 
mined by excitation to the mobility edge, the conductivity 
being given by eq 1.5. Mott’s model encounters three seri- 
ous difficulties. First, it was argued by M ~ t t ~ ~  that in this 
model p is given by the Hall mobility of electrons a t  the 
mobility edge and is thus expected to be practically inde- 
pendent of density, in agreement with experiment. How- 
ever, it should be noted that according to the Friedman 
theory70 for the Hall mobility in an amorphous semicon- 
ductor p a Jn(E,) where n(E,) is the density of states at  
the mobility edge. Thus both in the metallic diffusion re- 
gime (see, e.g., (11.2)) and in the semiconducting regime the 
variation of the conductivity and of the Hall mobility with 
decreasing density will be strongly affected by the decrease 
of the transfer integral J with decreasing p. Thus the Hall 
mobility is not expected to remain constant throughout the 
semiconducting regime in expanded Hg. Second, Mott’s 
approach leads to a substantial disagreement between the 
density variation of the electrical conductivity and the 
thermoelectric power in the intermediate density range. A 
recent analysis of the thermoelectric power data of 
Schmutzler and Hensell8 demonstrates that eq 1.9 and 1.10 
are not obeyed for Hg in the intermediate density range. If 
we assume that the mobility gap opens up (i.e., E ,  - E F  = 
0) at 9.2 g cm-3 and reaches 4kT at 7.8 g cmw3, the highest 
density for which eq 11.10 is obeyed, we have to take UM = u 
(9.2 g cmT3) = 550 (Q cm)-’. As is evident from Figure 3, eq 
11.9 results in a much weaker decrease of U/OM with increas- 
ing I SI than is experimentally observed in the intermediate 
density range. Any other choice of UM will not reproduce 
the experimental u vs. S relation for 7.8 g cm-3 < p < 9.2 g 
~ m - ~ .  Thus the discrepancy is a serious one. To overcome 
this difficulty Mott has recently suggested56 an additional 
contribution to the thermoelectric power in the semicon- 
ducting range for E ,  - EF > kT which originates from a 
negative heat of transport. We note in passing that in order 
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Figure 3. The dependence of In u on S for expanded liquid Hg, after 
Schmutzler and Hensel (ref 18). The solid line represent Mott’s anal- 
ysis (eq 11.9). The dashed line corresponds to a slope of (We). Ac- 
cording to eq II. 10 the pseudointrinsic semiconducting regime holds 
for p < 7.8 g ~ m - ~ .  

to provide a quantitative fit of the experimental data Mott 
had to invoke66 a change of the negative heat of transport, 
AH, from zero a t  9.2 g cm-3 to -0.25 eV a t  7.8 g ~ m - ~ ,  
which is half the energy gap. It is rather difficult to com- 
prehend how the polaron effects proposed by Mott can be 
operative in a small-gap semiconductor a t  high tempera- 
tures where 4kT > I q. Third, we have pointed that 
the density dependence of E, - EF which can be extracted 
from Mott’s picture, together with basic thermodynamic 
considerations concerning the amplitude of the density 
fluctuations, inevitably leads to the conclusion that the 
conductivity is nonuniform over distances L which consid- 
erably exceed the phase coherence length 1 for the conduc- 
tion electrons. For the average density p = 8.5 g cm-3 we 
find Aufu,,d, = 2.7 for L = 15 A and Aafu,,d, = 0.5 for L 
= 40 A, where Omode and Au are the most probable conduc- 
tivity and the spread of the distribution, Thus if we start 
with a homogeneous material we inescapably wind up with 
nonuniformity. We thus conclude that Mott’s mode155*56 
does not provide a self-consistent picture for the variation 
of the electrical and thermal transport properties in the in- 
termediate density range. In other words, the conventional 
transport regimes, which assume microscopic homogeneity 
of the material, appear to be inconsistent with the data in 
this density range. 

We have proposed59 that the electronic structure and 
transport properties of expanded liquid Hg in the density 
range 9.2-8.0 g cmF3 are intermediated by density fluctua- 
tions. Invoking a unimodal distribution for the density 
fluctuations, as appropriate for a density range where the 
Ornstein-Zernicke decay length is of the order the intera- 
tomic spacing, we were able to provide a coherent physical 
picture for the continuous metal-nonmetal transition in 
this system. In that process we have e ~ t a b l i s h e d ~ ~  the vol-. 
ume fraction, C, of the metallic regions (where the s-p 
band gap did not open locally). This C scale should be re- 
garded as a theoretical prediction of the Knight shift and 
paramagnetic susceptibility throughout the inhomogeneous 
transport regime. The recent Knight shift data of El-Ha- 
mary and Warren7’ in the density range 9.2-8.0 g cm-3 are 
in excellent agreement with our predictions. 

IV. Transport in MAS 
We now turn to the central issue of the present paper 

and consider the identification of conventional transport 
regimes in MAS. In concentrated MAS (20-10 MPM), Lep- 
outre7s and Thompson79 find that 1 = 70 A and kF = 0.49 

A-1 a t  20 MPM decreasing to 1 = 12 A and k F  = 0.40 A-‘ 
at 10 MPM, so that the basic condition for the propagation 
of conduction electrons between scattering events, k F 1  2 3, 
is satisfied down to about 10 MPM. For expanded liquid 
Hg the propagation regime terminates a t  kF1 = 2.3. Thus 
for concentrated (10-20 MPM) MAS solutions, the propa- 
gation regime applies. The decrease of u with dilution in 
the propagation regime can be well accounted for in terms 
of the NFE model and is primarily a consequence of the 
concentration dependence of the structure factors and the 
increase of the fraction of unbound ammonia mole- 
cules.8°*81 The Hall coefficient32-s5 is R = RFE,  and the 
variation of is dominated by the changes in u as expected 
for the propagation regime. 

In the intermediate concentration regime (2-10 MPM), 
the Friedman relations (11.3) do not hold. (RFEIR) changes 
only from 1.0 to 0.5. However, u decreases by three orders 
of magnitude and p by two orders of magnitude, so that 
( R F E ~ R )  should decrease from 1.0 to 0.03 in that concentra- 
tion range according to the Friedman relations.70 One could 
instead attempt to establish whether the conductivity rela- 
tion (11.2) does hold. From an analysis of the experimental 
conductivity and volume susceptibility xp in this concen- 
tration range we have established that u =  AX^^,^. This 
power is not so different from the value of 2.0, expected by 
Mott, however, in the concentration range 10-2 MPM the 
transfer integral J a exp[-pu], where82 /3 - 0.55 A-l, de- 
creases by one order of magnitude due to the decrease of u 
by a factor of -2. Thus the correct version of the conduc- 
tivity relation in the diffusion regime u 0: xp2 exp[-2@] 
does not hold. We thus conclude that the physical proper- 
ties of MAS in the intermediate region cannot be account- 
ed for in terms of a diffusion type of metallic transport, and 
that the MNMT in this system is not preceded by a homo- 
geneous diffusion regime as does happen in expanded liq- 
uid Hg. The conductivity in the intermediate regime u = 
lo3 - 1 (Q cm)-l is so high that it cannot be assigned to 
semiconducting transport (mechanism c, section 11). Fur- 
thermore, relations (11.9) and (11.10) do not hold in this 
range. Obviously, the electrolytic transport regime ((e), sec- 
tion 11) also does not apply. Thus none of the conventional 
transport regimes is applicable in the concentration range 
from -2 to -10 MPM. 

We now turn to a brief summary of the transport proper- 
ties a t  lower  concentration^.^ At M = 10-1 MPM the 
equivalent conductance, A,, goes through a minimum. It  
has been suggested that the increase of A, with increasing 
M is associated with the onset of electronic conduction. For 
this to occur, spin depairing must be observed. The spin 
susceptibility reaches a low value xp N 0 a t  1 MPM and in- 
creases slowly in the range 1-2.3 MPM. We thus prefer a 
physical picture where dissociation of neutral quartets (i.e., 
2M+ 2e-) into negative spin paired triplets (M+ 2e-) and 
positive ions prevails .in the concentration range from 10-1 
to 1 MPM resulting in an increase of Ae, so that the con- 
ventional electrolytic transport regime prevails up to at 
least 0.5 MPM. One can roughly estimate an upper limit to 
A, expected when dissociation is complete. Coulomb ef- 
fects, as in the Onsager-Fuoss theory, act so as to reduce 
the equivalent conductance below its limiting value 760 (n 
mol)-l. The latter is, therefore, an upper limit. The equiva- 
lent conductance a t  0.5 MPM is4 550 (a  mol)-’ indicating 
that dissociation is substantial, if not complete, at  that con- 
centration. At 1 MPM A, = 770 (a mol)-’ and electrolytic 
transport cannot account for the conductivity above that 
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TABLE I : Assignments of Conventional Transport 
Regimes in MASO 
M ,  MPM Transport regimes Experimental evidence 
16-9 Metallic 

propagation 

9-2.3 ? 

2.3-1 Disordered 
semiconductor 

<0.5 Electrolytic 

o = 5 x l o 3  - l o 3  ( a  cm)-' 
R = R F E  
1 70-12 A 
Applicability of (RMP) 
Thermal transport and op- 

o = l o 3  - 1 (52  cm)-' 

Inapplicability of (FR) 
u = 0.16 - 1 (52 cm)-' 
x p  = 0 at 1 MPM to -8 x 

cgs at 2.3 MPM 
A, < 550 (52  mol)-' 

tical properties 

RIRFE = 1-2 

- a M-NH, liquid; T - T, - 10-20 K; for Li, Na-NH,. 
RMP = relations for metallic propagation regime, eq 11.1. 
FR = Freedman re!ations for metallic diffusion regime, eq 
11.3. 

concentration. We suggest that in the concentration range 
from -1 to -2 MPM an electronic transport mechanism 
sets in. As at  -1 MPM complete spin pairing occurs, we 
suggest a pseudointrinsic semiconducting transport (mech- 
anism c, section 11) to be operative in MAS in the range 
-1-2 MPM. The full valence band corresponds to doubly 
occupied up-type orbitals of electron cavity pairs within 
triplets. The conduction band consists of a superposition of 
u,-type orbitals. The low density band gap corresponding 
to the ug-uu excitation within a single cavity pair is 0.6-0.7 
eV. Thus electronic structure and transport in MAS in the 
latter region are analogous to those exhibited in semicon- 
ducting expanded Hg for p < 7.8 g ~ m - ~ .  

The present status of our efforts to identify the conven- 
tional transport regimes in MAS undergoing a "continu- 
ous" MNMT is summarized in Table I. None of the con- 
ventional transport regimes is applicable in the intermedi- 
ate (2.3-9 MPM) concentration range. We have proposed 
that in Li-NH3 and Na-NH3 solutions the metallic propa- 
gation regime is separated from a nonmetallic (semicon- 
ducting) regime by a microscopically inhomogeneous re- 
gime in which concentration fluctuations determine elec- 
tronic structure and transport properties in this two-com- 
ponent system. We now proceed to a semiquantitative ex- 
ploration of the effects of microscopic density fluctuations 
on the electronic properties of MAS. 

V. Microscopic Inhomogeneities in MAS 
We propose that the metal-nonmetal transition in MAS 

is intermediated by concentration fluctuations. In the 
present context the three major questions concerning the 
fluctuations are: (a) the spatial extent of fluctuations; (b) 
whether they are of large amplitude; and (c) whether they 
are unimodally or multimodally distributed. Let us consid- 
er the local value m ( r )  of a configurational parameter 
which could refer to the local density in a one-component 
system or to the local concentration in a multicomponent 
system. The mean value of the configurational parameter is 
( m ( i ) )  = M while the autocorrelation function, A @ ) ,  is 

(V.2) 

Condensed systems are stiff, tending to resist rapid change 
in local configuration so that, roughly speaking, m(F) varies 
significantly over distances greater than b ,  the short corre- 

(m(?  + B ) m ( i ) )  - M2 

M2 
A ( R )  = 

lation length. For liquids we know from the Ornstein-Zer- 
nike theory for fluctuations that the asymptotic decay of 
A ( R )  is exponential. We can set 

A ( R )  = constant R < b 
(V.3) 

A @ )  - exp(-RIl)lR 

where { is the fluctuation decay length. Provided that b >> 
a and b > {the values of m(F) at two points separated by 
more than b are statistically independent. We can then ide- 
alize the physical picture, replacing A ( R )  by a simple step 
function 

A ( R )  = constant R C b 

A ( R ) = O  R > b  

b thus specifies the spatial extent of the fluctuations. The 
rms amplitude of the fluctuations is determined by A ( R  < 
b) .  Two examples of the probability distribution P(m(F)), 
of the local values of m(F) are given in Figure 4. 

There are several experimental techniques available to 
probe the nature of microscopic inhomogeneities in disor- 
dered materials. The spatial extent of fluctuations can be 
monitored by small angle x-ray and neutron scattering, or 
by electron microscopy and diffraction. The amplitudes of 
the fluctuations can be inferred from structure factors, ul- 
trasonic attenuation, and determinations of concentration 
fluctuations through chemical potential measurements in a 
multicomponent system. No direct evidence is currently 
available concerning the probability distribution function 
P(m)  for the local concentration in a two-component liq- 
uid. I t  should be emphasized at  this point that the pro- 
posed microscopic inhomogeneities are distinct from criti- 
cal fluctuations; a careful examination of the experimental 
data is required to separate these two physical effects. We 
now proceed to explore the nature of microscopic inhomo- 
geneities and consider the experimental evidence for them 
in MAS. 

There is substantial evidence for large amplitude con- 
centration fluctuations in metal-ammonia solutions. 
Thompson and Ichikawas3 have found direct evidence for 
large concentration fluctuations in lithium and sodium am- 
monia solutions, but not in cesium solutions. They measure 
the dependence of the chemical potential of the metal on 
metal concentration a t  -33 K and from it extract the mean 
square concentration fluctuation in the form ( ( A X M ) ~ )  
where AXM is the fluctuation of the mole fraction. Their 
results are shown in Figures 5-7. Li and Na solutions satu- 
rate at  20 and 16 MPM, re~pectively;~ the Cs solutions do 
not saturate.s4 In Figures 5-7 we compare the observed 
fluctuations with those expected from an ideal mixture of 
NH3 and M(NH3)n, with d = 4 for Li and 6 for Na and CS. 
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M ( M P M )  
Figure 5. Mean square of concentration fluctuations in Li-NHS soh- 
tions: solid lines, experimental data (ref 83); dashed line, ideal mix- 
ture. 

0.10 .;t Exper iment  
- -  - I d e a l  Mix tu re  i 

5 I O  15 
M ( M P M )  

Figure 6. Mean square of concentration fluctuations in Na-HN3 solu- 
tlons: sold line, experimental data (ref 83); dashed line, ideal mix- 
ture. 

( (AXM)2)ideal xM[1 - (n + 1)xM] (v.5) 

where XM is the mole fraction of metal. The following fea- 
tures of the data are noteworthy. (1) There are large peaks 
in the Li and Na data centered about 3.6 MPM for Li and a 
similar value for Na. (2) These peaks are superimposed on 
a background similar to what is expected from (V.5). (3) 
The background differs from (V.5) in two respects, being 
higher a t  low concentrations and lower at high concentra- 
tions. (4) Cs shows no peak and its value of ( (AXM)~) is 
similar to the backgrounds for Li and Na for M < 16 MPM. 
(5) ( (AXM)~)  for Cs above 20 MPM resembles what is ex- 
pected from (V.5) for an ideal mixture of Cs(NH3)s and Cs. 

Regarding the distance scale for concentration fluctua- 
tions it was pointed out by Thompson and Lelieurs5 that 
one can infer from the concentration fluctuation data for 
Li-NH3 and Na-NH3 by a simple argument of Turner86 
the existence of large, high concentration clusters in these 
materials. Additional evidence for a large distance scale for 
concentration fluctuations stems from x-ray (X)87 and neu- 
tron (nIa8 small-angle scattering studies. Recent experi- 
ments of Chieuxs8 on small-ahgle neutron scattering on 4 
MPM Li-ND3 solutions were analyzed in terms of the Om- 
stein-Zernike picture of concentration fluctuations. The 
resulting decay length was 4.7[TC/(T - Tc)I1l2 8, at a tem- 
perature T above the consolute temperature T,, which is 
-58OC for Li-ND3. This decay length is unusually large, 

N A 0.1ot - 
C s - N H ,  
- ExDer iment  I 

X a I d e a l  M i x t u r e  

v zl 0.05/./ , _ _ _  :;;*,# J j  
0 5 I O  15 20 25 30 

M ( M P M )  
Figure 7. Mean square of concentration fluctuations in Cs-NH3 soh- 
tions: solid line, experimental data (ref 83); dashed line, ideal mix- 
ture. 
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Flgure 8. Ultrasonic attenuation in MAS solution after Bowen (ref 
89a). 

-70 8, a t  1 K above T, and -10 8, (>a )  at T - T ,  = 40 K. 
Are these fluctuations distinct from critical fluctuations? 

Ultrasonic attenuation measurements by BowenB9 (Figure 
8) indicate not only that the fluctuations exist in the 2.3-9 
MPM range but that they are distinct from critical fluctua- 
tions. The latter are manifested in the ultrasonic attenua- 
tion a over a narrow concentration and temperature range 
about the consolute point as a peak superimposed upon a 
broad, weakly temperature-dependent maximum. The' 
broad background attenuation we attribute to fluctuations 
which are, indeed, distinct from critical fluctuations. 

Thus, there is strong experimental evidence favoring 
large amplitude microscopic inhomogeneity at T - T ,  6 20 
K on a scale of tens of Bngstroms in NH3 solutions of Li 
and Na, but not of Cs. None of the available experiments 
proves whether these fluctuations in Li and Na solutions 
are unimodal or bimodal. Only unimodal concentration 
fluctuations can occur far away (Le., when l5 a )  from T,, 
and these are well accounted for in terms of conventional 
fluctuation theory. Cases of bimodal distribution of local 
concentration (or density) are, however, also known to 
occur. The highly developed droplet model of condensation 
rests on bimodally distributed density fluctuations near the 
liquid-gas critical point. Many examples of clustering are 
known both near and unrelated to critical points. Indeed, 
clustering effects provide the extreme case of a bimodal 
distribution of concentration fluctuations. 

We have proposed for Li and Na solutions at T - T ,  cz! 
10-20 K a microscopically inhomogeneous region of the 
phase diagram of MAS in which (1) the concentration fluc- 
tuations are bimodal, varying locally about either of two 
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well-defined values Mo and M I ,  Mo > M I ;  (2) the concen- 
tration remains near Mo or M1 over radii approximately 
equal to the short correlation length b for concentration 
fluctuations; and (3) Mo is the upper and M I  the lower 
bound of the microscopically inhomogeneous region. The 
concentration fluctuations associated with clusters increase 
monotonically with cluster size. If the Ornstein-Zernike 
fluctuation decay length [is smaller than b ,  the concentra- 
tion would appear to fluctuate abruptly and randomly from 
Mo to M1 or vice versa. We have inferred from Figures 5 
and 6 that M O  N 9 MPM and M I  N 2.5 MPM. 

Weak experimental evidence for a bimodal distribution 
of density fluctuations originates from the Thompson-Lel- 
ieur analysiss6 of the concentration fluctuation data in 
terms of the Turner model. Furthermore, the ultrasonic re- 
laxation timeaga found by Bowen is 5 x sec (20 MHz) 
which is surprisingly long. We propose that it is associated 
with the time variation of the locally inhomogeneous con- 
centration. Comparable ultrasonic relaxation times (in the 
range 5-10 MHz) were reportedagb in aqueous solution of 
mixed micelles containing two surfactants. There is a close 
analogy between clustering of solvated electrons and sol- 
vated cations in MAS (Le., bimodal distribution of concen- 
tration fluctuations) and micelle formation. These experi- 
mental data are indicative but by no means conclusive re- 
garding our proposal of a bimodal distribution of fluctua- 
tion. 

We now proceed to explore the consequences of the inho- 
mogeneous model regarding electronic structure and trans- 
port in MAS. 

VI. Allowed Volume Concept 
In the microscopically inhomogeneous regime in MAS we 

propose that the concentration fluctuates locally about ei- 
ther of two well-defined values Mo and M I ,  Mo > M I ,  the 
local concentration remaining near Mo or M1 over radii ap- 
proximately equal to the Debye short correlation length, b ,  
for concentration fluctuations. Provided that b constitutes 
the largest distance scale parameter involved in the prob- 
lem, and considerably exceeds XF (or 1 whichever is longer) 
for the conductive electrons as well as the interionic dis- 
tance a, the concept of local electronic structure and local 
response functions can be i n t r o d ~ c e d . ~ ~ - ~ ~  We then can de- 
fine an allowed volume fraction C ( E )  as that fraction of the 
total volume of the material actually allowed to electrons of 
energy E. Now, the Weyl theoremg0 tells us that as long as 
the de Broglie wavelength, or the phase coherence length, is 
sufficiently small compared to the dimensions of the al- 
lowed regions, the density of states will be independent of 
the geometry of the allowed regions and of the boundary 
conditions presented by the forbidden regions and propor- 
tional to the allowed volume. Thus we may take58-62*91 as a 
definition of C ( E )  

where no(E) is the density of states per unit volume of a 
metallic region of macroscopic extent and n ( E )  is the actu- 
al density of states of the microscopically inhomogeneous 
material. Defined in this way C ( E )  allows properly for pen- 
etration into the excluded regions. However, for it to be a 
useful concept, tunneling across the excluded regions must 
be quantitatively unimportant for the physical properties. 
We have demonstrated elsewhere61@ that for such large 
values of the correlation length b as we are concerned with 

0 . 0 . 0  
. 0 0 0 .  
0 o . a o  
0 . 0 0 0  

( a ) S i t e  

c<c*  

c>c*  
(c)Continuous 

perco la  t ion perco la t ion  percolat ion 
Figure 9. Sketch of different models for classical percolation: (a) site 
percolation in a two-component system: (b) bond percolation for two 
types of bonds; (c) continuous percolation for C < C" and for C > 
C". 

here or for large fluctuations in the potential, tunneling ef- 
fects are negligible. 

There are some interesting immediate consequences of 
this physical picture. The allowed volume concept allows us 
to establish direct contact with classical percolation theo- 
ry.8-13 We are dealing with a continuous site-percolation 
problem, where any portion of the material can be random- 
ly metallic or nonmetallic. The continuous percolation pic- 
ture is distinct from the discrete models for site percolation 
and for bond percolation,s as is evident from Figure 9. If 
C ( E )  falls below the critical value C* for classical continu- 
ous percolation, percolation theory tells us that a continu- 
ous extended path through metallic regions does not exist. 
The metallic wave functions are therefore localized at that 
energy. We note in passing that the continuous percolation 
concept is strictly applicable provided that the conductivi- 
ty of the nonmetallic regions is vanishingly small. If this is 
not the case, the concept of a percolation threshold does 
not strictly apply, but instead we encounter a continuous 
change of u, which is finite for all values of C. 

The above definition of C ( E )  should make clear that 

C(EF) = c (VI.2) 

is just the metallic volume fraction, that fraction of the vol- 
ume of the material in which it is locally metallic. Provided 
the Fermi level E F  lies close to the middle of the fluctuat- 
ing semiconducting gaps, the condition for a metal-semi- 
conductor transition in the inhomogeneous transport re- 
gime is obtained from eq IV.l and IV.2 

C = C ( E F )  = ~ ( E F ) / ~ o ( E F )  = C* (VI.3) 

The continuous site-percolation problem has not yet 
been solved. Existing numerical studies8 for three-dimen- 
sional lattices give values of C* ranging from C* = 0.195 for 
fccub to 0.30 for the single crystal. Zallen and Scherg 
suggest that for percolation in a continuous potential C* = 
0.15. Skal, Shklovskii, and Efros12 find C* = 0.17 for the 
percolation probability in a particular random potential. 
Webman, Cohen, and Jortner13 obtained C* = 0.15 f 0.02 
from numerical simulations of the conductivity of cubic re- 
sistor networks with correlated bonds. 

We are dealing with an inhomogeneous transport regime 
in a disordered system, 0 < C < 1, C = ~ ( E F ) .  The inhomo- 
geneous regime can be subdivided into two parts. (a) Pseu- 
dometallic regime: 1 > C > C*. Above the percolation limit 
the major contribution to transport originates from the 
continuous extended metallic paths. The transport proper- 
ties will exhibit a gradual change from those corresponding 
to the loCer limit of the homogeneous metallic regime. (b) 
Pseudononmetallic regime: 0 < C < C*. Here extended 
states do not exist and tunneling between isolated metallic 
regions can be ignored. 

Finally, we have to establish the relation between the 
values of C and the mean value 
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Flgure 10. Volume spin susceptibility data for Na-NH3 solutions (ref 
87, 103-106) in the Intermediate concentration range. A fit to a two- 
line-segment function, eq VII. 1 and V11.6, Is shown. 

M = J m  m P ( m )  dm (VI.4) 

of the mean concentration in MAS. Such a relation we term 
a C scale. For the special case of a bimodal distribution as 
we are concerned with here we set approximately 

P(m)  = [ ( M  - M d / ( M o  - Md16(m - M o )  X 

where M I  and Mo are the local value of M corresponding to 
nonmetallic and the metallic regions, respectively. The C 
scale is 

C = ( M  - M i ) / ( M o  - M i )  (VI.6) 

a linear relation between C and M .  
We establish the C scale in microscopically inhomo- 

geneous materials in two steps. First, we determine the lim- 
its of the inhomogeneous regime from the available struc- 
tural, thermodynamic, transport, and magnetic data. For a 
bimodal distribution we take C = 1 for M = MO and C = 0 
at  M = M I .  Second, we utilize volume susceptibility data 
x p ( M ) ,  when available, to establish the C vs. M relation in 
the inhomogeneous regime. Because for the materials 
under consideration local field corrections are negligible in 
x p ,  the volume spin susceptibility can be written as a su- 
perposition 

x p  = cxo + (1 - C)Xl (VI.7) 

where xo and x1 define metallic and nonmetallic suscepti- 
bilities at  C = 1 and at  C = 0, respectively. Complementary 
information concerning the C scale originates from Knight 
shift data. 

VII. The  C Scale and Analysis of Magnetic Data in 
MAS 

We now establish the relation between the metal concen- 
tration M and the metallic volume fraction for metal- 
ammonia solutions. Regarding the upper limit, C = 1, we 
have already noted that the’ anomalously large concentra- 
tion fluctuationss3 disappear into the background a t  M N 9 
ppm in the Li and Na solutions, Figures 5 and 6. It is inter- 
esting that the Hall c o n ~ t a n t , 3 ~ - ~ ~  R ,  for Li begins to exceed 
the free electron value Rf, for M < 9 MPM, and that the 
c o n d ~ c t i v i t ~ ~ , ~ ~ ~ ~  there becomes of order IO3 Q-l cm-l 

[ (Mo - M ) W O  - M1)16(m - M I )  (VI.5) 

for Li and Na solutions while kF1 - 3. We recall that for ex- 
panded Hg7 the propagation regime terminates at  k F 1  N 

2.3. These three facts together indicate the termination of 
the homogeneous propagation regime a t  9 MPM. Coupling 
these facts about the transport properties with the evi- 
dence for inhomogeneity exposed in section IV leads us to 
identify the upper limit of the inhomogeneous transport re- 
gime as C = 1 at 9 MPM in Li and Na solutions. Turning 
now to the lower limit, C = 0, the concentration fluctua- 
tionss3 in Li solutions, Figure 5, suggest that the material 
becomes homogeneous again at  M N 2.5 MPM. According- 
ly, we set M N 2.5 MPM as the lowest limit, C = 0, of the 
inhomogeneous regime, and refine this value of M for C = 0 
to 2.3 MPM by analysis of the magnetic data. 

The best available data for the spin s ~ s c e p t i b i l i t y 3 ” ~ ~ ~ ~ ~  
are shown in Figure 10. For Na solutions x p  becomes ap- 
preciable above 1 MPM, increasing monotonically with M. 
It is linear with M in the range 3 < M < 9 MPM, where it 
follows 

(VII.1) M - 2  
x p  = 7 xo 

where xo = xp(9)  is the volume susceptibility in the metal- 
lic regions. The bimodal distribution immediately implies 
that 

M = 9C + Ml(1 - C) (VII. 2 )  

which gives us the linear relation 

C = ( M  - M1)/(9 - M I )  (VII.3) 

for the C scale in analogy with eq VI.6. Next, we utilize eq 
VII.3 for xp. Inserting (VII.l) in (VI.7) and defining 

(VII.4) 

where x1 is the susceptibility of the nonmetallic regions, 
yields the relation 

M I  = 2 + l r  (VII.5) 

between the two parameters M1 and r. 
Since x p  is linear in M at least down to 3 MPM and C is 

linear in M according to (V11.3), (VI.7) plus (VII.5) imply 
that 2 < M1 < 3 MPM. Accordingly we have to introduce a 
fitting function for xP  in that range. We have chosen a fit to 
two linear segments, eq V.12 for M > 2.33 MPM and for 

r = xdxo 

M - 1  
X P  = 28 xo (VII.6) 

for M < 2.33 MPM. Inserting M I  into (VII.6) give x1 and r 
gives M I  = 2.33. Accordingly we choose our C scale as 

C = ( M  - 2.3)/(9 - 2.3) (VII.7) 

and show in Figure 10 the corresponding fit  of the x p  data. 

VIII. Response Functions of Microscopically 
Inhomogeneous Materials 

We now address ourselves to the calculation of transport 
properties of microscopically inhomogeneous materials. We 
shall refrain from providing detailed derivations and re- 
strict ourselves to quoting mostly new results from our yet 
unpublished work. 

A. Electrical Transport.  We now address the problem of 
calculating the macroscopic transport properties of a mate- 
rial which is locally nonuniform. Consider first the electri- 
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cal conductivity. In simulating electrical transport proper- 
ties of a microscopically inhomogeneous material we are 
dealing with a continuous site-percolation problem in 
which any portion of the material can be randomly metallic 
or nonmetallic. To mimic the features of the continuous 
conduction problem, one can impose correlations on neigh- 
boring bonds, so that if a bond is of one type all its neigh- 
bors out to the correlation distance b must be of the same 
type. Together with Webman13 we have carried out a nu- 
merical study of the conductivity of simple cubic resistor 
networks with correlated bonds. For x = 0, the conductivi- 
ty must vanish for C below the percolation threshold. The 
major effect of correlations is to shift the percolation 
threshold from C* = 0.25 for the uncorrelated networklOJ1 
to C* = 0.15 f 0.02, in accord with numerical simulation of 
the percolation probability9J2 in the continuous percola- 
tion problem. In the particular case of a bimodal distribu- 
tion of local conductivities, the macroscopic conductivity, 
u, was expressed in the form 

u = uo f(x, C) 
(VIII.1) 

x = Ul/CTO 

where uo and u1 correspond to the conductivities a t  C = 1 
and a t  C = 0, respectively. The effective medium theory 
(EMT) for the conductivity10J1~5s~g2-g5 

f(x, C) = a + (a2 + x/2)1/' 

u=; [ ( ; c - ; ) ( l -x )+-  "1 2 

x = u1/uo (VIII.2) 

was found accurate for 0.4 < C < 1.0 for all values of the 
conductivity ratio x ,  in agreement with Kirkpatrick's origi- 
nal work.1° Serious deviations from the EMT occur for C < 
0.4 for small values of x (<0.03). This is not surprising, as 
the EMT, which rests on a mean field approximation for 
the local conductivity, overestimates the percolation 
threshold for x = 0, CEMT* = $$, and can in general be ex- 
pected to result in too low values of u for C < 0.4 and 0 < x 
< 3 x 10-2. 

The above theory of the conductivity of an inhomo- 
geneous system is applicable in the inhomogeneous trans- 
port regime provided that the phase coherence length for 
the conduction electrons within the metallic regions is con- 
siderably shorter than the correlation length b.  When the 
transport within extended metallic clusters corresponds to 
the propagation case, as is the case for metal-ammonia so- 
lutions, the mean free path is comparable to the sampling 
length L = 2b. In that case, scattering off metallic cluster 
boundaries reduces the conductivity below the value a0 at 
C = 1. The reduction of the metallic conductivity below uo 
is concentration dependent because the mean cluster size 
decreases with decreasing concentration. We have account- 
ed for the consequent dependence of the conductivity of 
the metallic region on C by a modification of Eggarter's 
theory for scattering from the boundaries of the allowed re- 
g i o n ~ . ~ ~  The two conductivities are related by 

ao(C)/uo = X(C)/l (VIII.3) 

where 1 is the mean free path a t  C = 1, while X(C) is the 
mean free path in the allowed volume fraction C. The latter 
quantity is given by Eggarter in the formg6 

A (  C) = 1 As/( 1 + is) (VIII.4) 

where in our case the mean free path X, associated with 
scattering by prohibited regions a t  the boundaries of the al- 
lowed regions is 

Xa 2nbCn-'(l - C) = 2b[l - C1-l (VIII.5) 
n = l  

Thus from eq VIII.3-VIII.6 we obtain 

(VII1.6) 
z D(C) = - uo(C) - - 

a0 1 - c + z  
where 

z = 2b/l (VIII.7) 

We impose no corresponding correction to ul from scatter- 
ing from the boundaries of the nonmetallic regions. We 
should note in passing that when the metallic region corre- 
sponds to the diffusion limit z 2 2bla holds, where a is the 
interatomic spacing, so that z >> 1 and D(C) - 1 for all C. 

The classical expression for the conductivity, eq VIII.2, 
has now to be modified by accounting for the dependence 
of uo(C) on the fraction of allowed volume so that 

u = m(c)u ,  (VIII.8) 
where 

f = f[C, x(C)] ( VIII. 9) 
ul X x(C) = - - 

UoD(C) -Do (VIII.10) 

and now x(C) ,  eq VIII.10 replaces x in eq VIII.2. Equations 
VIII.8-VIII.10 constitute a modified effective medium 
theory (EMTZ). For materials characterized by x > 3 X 

the EMTZ is applicable throughout the entire range 0 
< C < 1. For materials where x < 3 X the EMTZ is 
valid only for 0.5 < C < 1.0, while for C < 0.5 we have uti- 
lized eq VIII.l where f, eq VIII.9, can be obtained from nu- 
merical simulations of u/uo in a correlated cubic network, 
with x ( C )  given by eq VIII.10. 

We were unable to go beyond the EMT for the galva- 
nomagnetic properties of inhomogeneous materials. The 
EMT yieldsg7 for the Hall coefficient, R ,  and for the Hall 
mobility, fi  

d f i o  = g b ,  y, f )  = [I  - B(1 - xy)]fl (VIII.11) 

R/Ro = h(x, y ,  f )  = [ l  - B ( l  - xy)]f+ (VIII.12) 
(2f + 1 ) 2 ( 1  - C) 

(2f + 1)2(1 - C) + (2f + x)2C B =  Y = f i d f i o  (VIII.13) 

where fi0 and fi1 are the Hall mobilities in the metallic and 
in the semiconducting regions, corresponding to the Hall 
mobilities at C = 1 and a t  C = 0, respectively. When 
boundary scattering effects are incorporated EMTZ yields 
correspondingly 

R=liRo (VIII.14) 

f i  = gD(C)fio (VIII.15) 

(VIII.16) g = g[C, x(C), Y(C), $1 
h = gff 

x ( C )  = x / D ( C )  

y(C) = y/D(C) (VIII. 17) 

On the basis of numerical simulations of c we have con- 
cluded that the EMT or the EMTZ hold in general for C > 
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0.4, while for 0 < C < 0.4 the mean field approximation is 
adequate for materials where x > 3 X We infer that 
the same will apply for R and p. On the other hand, for ma- 
terials where x < 3 X for C < 0.4 the EMT and the 
EMTZ provide only a qualitative interpolation formula. 

B. Thermal Transport. It is straightforward to carry out 
an effective medium theory for any tensorial response func- 
tion, e.g., thermal transport coefficients, optical constants, 
diffusion coefficients, etc. Such an EMT analysis can be 
readily generalized into an accurate numerical calculation 
of a random continuum property for a diagonal response 
function by the method we have used for the electrical con- 
ductivity. 

We have carried out an EMT for a system simultaneous- 
ly subjected to gradients of temperature and electric poten- 
tial, obtaining explicit expressions for the thermal trans- 
port properties of an inhomogeneous material.58 We start 
with the microscopic equations 

(VI11.18) 
3 = k'aT' + PT'ad 
3 = dad + PaT' 

which holds locally within the inhomogeneous material. 
Primed quantities indicate local values. J' and j' are the 
heat and electrical currents, respectively, k' and u' are ther- 
mal and electrical conductivity, respectively. P' is the Pel- 
tier coefficient, while and T' are the electrical. potential 
and the temperature, respectively. The corresponding mae- 
roscopic equations are identical with 1VIII.18) but with un- 
primed quantities. The relation between the macroscopic 
and microscopic fluxee and forces is 

J =  ( S ' ) ; T =  (T') 
(VIII.19) 

j =  (7)&= ( d )  
where the average can be taken equivalently over all space 
oi  over all local configurations a t  a given point. 

To carry out an effective medium theory of the relation 
between the macroscopic transport coefficients K, u, and P 
and the corresponding microscopic quantities, we treat the 
system as though it consisted of a sphere of radius b em- 
bedded within a uniform effective medium characterized 
by the coefficients K, a, and P. We use the conservation 
conditions and Maxwell's equations together with eq 
VIII.18 to determine J', y, T', and d inside the inclusion. 
Application of eq VIII.19 results in a consistency condition, 
the EMT condition, which must be satisfied by K, u, and P, 
determining them implicitly in terms of averages over K', u', 
and P. The result for u is the usual EMT result, eq VIII.2, 
that for K is 

(VII.20) 

while for P we get 

3KU(P'/(K' + 2K)(U' + 2 U ) )  
((Kd + UK' + 2KU - K'd)/(K' + 2K)(d + 2U)) P =  (VIII.21) 

The thermoelectric power, S, can be obtained from eq 
VIII. 2 1 by substituting 

s = Pla (VIII.22) 

for primed and unprimed quantities in (VIII.21). 
The measured thermal conductivity i is given by 

i = K - S2uT (VIII.23) 

For MAS the second term on the right-hand side of eq 
VI11.23 is of order 10-3i;. and can be neglected. 

C. Optical Properties, Finally, we consider the optical 
properties of microscopically inhomogeneous materials. 
Together with Webman we have developedg9 an effective- 
medium theory for the frequency dependent dielectric con- 
stant 

t (w) = q ( w )  + iez(w) (VIII.24) 

The EMT condition for t(w) is 

(VIII.25) 

where & ( w )  is a possible value of the local complex dielec- 
tric function and the average is over all such values. For a 
bimodal distribution of fluctuations &(a) takes on a func- 
tional form e0(w) = qO(w) + i t zo(w)  characteristic of metallic 
regions with probability C or d ( w )  = tll(w) + iezl(w) char- 
acteristic of the nonmetallic regions, with a probability 1 - 
C. Equation VIII.25 may then be readily solved: 

t(w) = cO(w) f(C, x ( w ) )  (VIII. 26) 

f(C, x ( w ) )  = a ( w )  * [ (a (w) )2  + 2 x ( w )  11" (VIII.27) 

1 
a(w)  = ; [ (i C - i) (1 - x ( w ) )  4 *] 2 a(VIII.28) 

x ( w )  = d(W) /€O(W) (VIII.29) 

The sign in (VIII.27) is chosen to give positive 62(w) = 
Iml [e (w) ] .  Equations VIII.26-VIII.29 represent a generaliza- 
tion of the EMT for a,real, diagonal, second-order tensor to 
the complex case. Our experience with the former case 
leads us to expect that the EMT is accurate for all values of 
C if I x (w) l  is within the range 0.03-30. Numerical simula- 
t i o n ~ ~ ~  of c(w) in a simple cubic network bear out this ex: 
pectation. 

D. Sound Velocity. We have recently extended the effec- 
tive-medium theory to the case of wave propagation in a 
microscopically inhomogeneous mediumloo in which the 
propagation velocity takes a random value ci which re- 
mains constant over a correlation radius b. The familiar ef- 
fective-medium condition 

(*) = O  (VI11.30) 

results for the macroscopic propagation velocity E ,  where 
the average is taken over all values of local velocity ci. For a 
bimodal distribution of fluctuations ci takes the values co 
with probability C or ci with probability 1 - C, whereupon 
(VIII.30) results in 

E2 = Co2f(Xs, C) 

x, = c12Ico2 (VIII.31) 

and the function f(Xs, C) is defined in terms of eq VII1.2. 

IX. Analysis of Response Functions for MAS 
We now proceed to the analysis of the transport proper- 

ties of disordered materials undergoing a metal-nonmetal 
transition via the inhomogeneous transport regime. In sec- 
tion V we have established the limits of the inhomogeneous 
transport regime and the C scale. The parameters needed 
as input data for the analysis of the transport properties 
are the transport coefficients at  C = 1 and at  C = 0. These 
are taken from experiments and listed in Table 11. 
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TABLE 11: Values of the Ratios of Electronic and Thermal Transport Coefficients Associated with the Limits of the 
Inhomogeneous Regime in MAS 

Sources of 
c = o  C = l  X Y K ~ / K ~  S,/S, cs1/cs0 experimental data 

Li-NH, (223 K )  M = 2.3 MPM M = 9 MPM 1.2 X lob3 8 x l od3  1.33 2-5, 26-38, 43, 44 
Na-NH, (240 K )  M = 2.3 MPM M = 9 MPM 2.4 X 0.35 20 1.33 101, 102 

C 
0.4 0.6 0.8 I .o 

I 

0- 
5 6 7 8 9  

M (MPM) 
Figure 11. Analysis of the electrical conductivity data of Li-NH3 solu- 
tions, 5.5 MPM < M < 9 MPM, at T = 223 K (ref 30-37), in terms of 
the modified effective medium theory (EMTZ). The best fit is obtained 
for z = 2.5. The curves for z = (EMT) and for z = 1 are shown 
for comparison. 

For small JC and y, i.e., x to and y - to 
as is appropriate to metal-ammonia solutions, the 

transport coefficients in the range 4 < C < 1.0 are indepen- 
dent of x and y. Thus the EMT equations (VIII.2) or the 
EMTZ relations (VIII.8-VIII.10) apply for C > 0.4. Both u 
and p drop rapidly while R varies slowly in this range of C. 
The conductivity assumes the simple form 

u = uo (: C - i) 0.4 < C < 1.0 (IX.l) 

while the galvanomagnetic transport coefficients are 

R 4Ro/(3C + 1) (IX.2) 

6 C - 2  
= (Zi) (IX.3) 

When boundary scattering corrections are required they do 
not affect the value of R ,  eq VIII.14, while (r and p are mod- 
ified to 

(IX.4) 

(1x5) 
in this range of C. For lower values of C (<0.4) we assert on 
the basis of numerical simulations that u continues to de- 
crease. We expect the Hall mobility to exhibit a similar de- 
crease in the range 0 < C < 0.4. 

We now proceed to the analysis of the conductivity data. 
We have compared u/uo with eq IX.l  for Li and Na for 9 
MPM > M > 5.5 MPM and show the results in Figures 11 
and 12. The data fall systematically below the EMT, more 
so for Li than for Na. We therefore fitted the data to the 
EMTZ, adjusting the one parameter z to get a best fit. The 

C 
0.5 0.6 0.7 0.8 0.9 1.0 

bo 
b 
\ 

M (MPM) 
Figure 12. Analysis of the electrical conductivity data of Na-NH3, 
5.5 MPM < M < 9 MPM, at T = 240 K (ref 28 and 29), in terms of 
the EMTZ. The best fit is obtained for z = 5.3 f 0.6. Also shown are 
the curves for z = and z = 1. 

results are also shown in Figures 11 and 12 for the best fit 
with z = 2.5 for Li while a t  least-squares analysis results in 
z = 5.3 f 0.6 for Na. Also shown is EMTZ for z = 1 for 
comparison. From these values of z a rough estimate of b 
can be obtained. Using the weak scattering, nearly free 
electron form for uo, we estimate the mean free path to be 
12 A for Li and Na. The corresponding values of b from eq 
VI11.8 are 

b = 15 8, 

b = 32 A 
Li-"3, T = 223 K 

Na-"3, T = 240 K 
(IX.6) 

The fit to the EMT breaks down seriously at  low concen- 
tration, and the EMTZ is little different there. According- 
ly, we have compared the experimental data with various 
numerical simulations in Figures 13 and 14 for Li and for 
Na. One sees that as the range of correlation is increased so 
that continuum percolation is approached, the fit becomes 
excellent over three orders of magnitude of variation in u. 
It should be recognized that the theoretical curve is fixed to 
the experimental data a t  the C = 0 and C = 1 end points of 
the inhomogeneous range but that otherwise there are no 
adjustable parameters. (We have ignored the EMTZ cor- 
rections in the present context.) The simulations should be 
regarded, therefore, as interpolations between the end 
points and they serve excellently as such. There should be 
little doubt now as to the existence of an inhomogeneous 
transport regime for 2.3 MPM < M < 9 MPM. 

Next, we consider the Hall data for this system. Since we 
have been unable to go beyond the EMT for the galva- 
nomagnetic properties, we have compared the available Li 
Hall data32-35 to the effective medium theory. As we have 
already noted, in this material the boundary scattering cor- 
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C 
I 

10-l 

bo 
b 

- 2  
10 

lo3 Ll- 
2 3 4 5 6 7 0 9  

M (MPM) 

Figure 13. Analysis of the electrical conductivity data of Li-NH3 solu- 
'tions at 223 K (ref 32-37) throughout the entire inhomogeneous re- 
gime C = 1 at 9 MPM and C = 0 at 2.33 MPM: solid curve (C > 
0.5), EMT; dotteddashed curve, numerical simulation with nearest 
neighbor bond correlation ( x  = 1.2 X dashed curve, numeri- 
cal simulation with second nearest neighbor bond correlation ( x  = 
1.2 X Circles represent experimental data. 

C , I 012 I 0.4 , , om 

I I 

t 

I 
Na - NH3 T=240°K1 

X = 2  4 x d  

EMT C > 0 5  

Simulation C < 0 5 

Experimental data 

- 

1 l-.- 
2 3 4 5 6  7 0  9 

M (MPM) 

Figure 14. Analysis of the electrical conductivity data of Na-NH3 so- 
lutions at 240 K (ref 28 and 29) throughout the entire inhomo- 
geneous regime C = 1 at 9 MPM and C = 0 at 2.33 MPM: solM 
curve, EMT for C > 0.5 and numerical simulations with second near- 
est neighbor bond correlation ( x  = 2.4 and loT3) for C < 0.5. Cir- 
cles represent experimental results. 

rections to R are negligible for C > 0.4, while in the low C 
range (0 < C < 0.4) the EMT is inaccurate and there is lit- 
tle point to introduce the modified EMTZ version of the 
theory. In Figure 15 we portray the available Li Hall effect 
data together with the EMT curve using the experimental 
data a t  C = 0 and C = 1 from Table 11. In the pseudometal- 
lic regime down to C = 0.4 the agreement between theory 

3 - EMT 
X :  1.2 IO-3 
y =  8 x 

Figure 15. Analysis of Hail effect data (ref 33 and 34) of LI-NH, so- 
lutions at 223 K in terms of the E M .  

SBEMT- 
0 

Figure 16. Analysis of the Hall mobility data (ref 33 and 34) for Li- 
NH3 solutlons at 223 K in terms of the effective-medium theory 
(dashed line) and the SBEMT (solid Ilne). 

and experiment is good, while for 0 < C < 0.4 the EMT 
curve provides just an approximate interpolation formula. 

In view of the quantitative agreement of u and the rea- 
sonable agreement of R with the predictions of the EMT 
(and EMTZ) in the range 0.4 < C < 1 it is apparent that a 
good fit can be obtained for the concentration dependence 
of the Hall mobility, p, in this range as is evident from Fig- 
ure 16. The small negative deviations of p from the EMT 
curve in the concentration range 5 MPM < M < 9 MPM 
can be readily accounted for in terms of boundary scatter- 
ing effects; however, the experimental Hall mobility data 
are not accurate enough to warrant a detailed analysis in 
terms of the EMTZ. In the lower concentration range C < 
0.4 the experimental data exhibit a marked deviation from 
the EMT curve. This is not surprising as the EMT for u re- 
veals deviations in that range. In the absence of a numeri- 
cal simulation scheme for R and p, we have compromised 
by taking for p the product of R obtained from EMT and p 
as derived from the numerical simulation. The resulting 
curve, labeled as SBEMT in Figure 16, substantially im- 
proves the agreement with experiment. 

We now turn to the analysis of the thermal conductivi- 
t 9 3  and the thermoelectric p o ~ e r ~ ~ . ~ ~  for Li and Na solu- 
tions. The available thermal conductivity data for Na-NHS 
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0 5 IO 
M (MPM) 

Flgure 17. Analysis of the available thermal conductivity data (ref 
43) for Na-NHS solutions in terms of the EMT. 

I 0 No I 

M(MPM) 
Figure 18. Analysis of the thermoelectric power data (ref 44 and 45) 
for Na-NH3 and for Li-NH3 solutions. The solid EMT curve is drawn 
for S,/So = 20, K , / K O  = 0.35, and u,/aO = 1.2 X Increasing 
x by a factor of 2 has small (4%) effect in the range C < 0.4 
where the EMT is inaccurate. 

can be fitted by the EMT equation with K 1 I K O  = 0.35-0.40. 
The available experimental Figure 17, are too 
sparse and inaccurate to attempt a quantitative correction 
for boundary scattering. Finally, it is worthwhile to note 
that for this system the high K 1 I K O  ratio implies that the 
EMT for the thermal conductivity is valid throughout the 
whole C range. 

The thermoelectric power data for Li and Na solu- 
tions,44@ Figure 18, are in reasonable agreement with the 
EMT curve calculated from eq VIII.21 and VIII.22 with the 
parameters shown in Table 11. We note in passing that as 
the general EMT expression, eq VIII.21 and VIII.22 for S, 
involves the local conductivity 61, which exhibits a large 
fluctuation for this system, we do not expect the EMT for 
S to be accurate as for K for C < 0.4. I t  is important to note 
that the very weak variation of S with C in the range 0.4 < 
C < 1 predicted by EMT and found in the data is a feature 
of the bimodal distribution of M values. A unimodal distri- 
bution would give a more nearly linear interpolation be- 
tween C = 0 and C = l. 

3 t  

2 1 
VN 

V- 

Figure 19. €'(a) and €'(a) for Li-NH3 solutions at 213 K. 

We now turn to the optical data of MAS. At concentra- 
tions above 8 MPM q ( w )  and ~ ( w )  differ for Li-NH3 and 
Na-NH3 solutions only in details from the behavior expect- 
ed for a Drude, free-electron system. In the concentration 
range 8-2 MPM, which corresponds approximately to the 
inhomogeneous regime, tl(w) exhibits a continuous varia- 
tion from metallic toward a behavior characteristic of a 
very broad resonance at  -0.6 eV. This is consistent with 
the behavior of Q ( W ) ,  which is Drude-like and shows a slow 
variation with M in the range 4-8 MPM, with an indication 
of a resonance around 0.6 eV at 2-3 MPM. Thompson and 
 colleague^*^^^^ point out that there are signs of persistence 
of the bound-electron absorption to quite high concentra- 
tions, 6 MPM. This mixed behavior of optical properties is 
consistent with our model for microscopic inhomogeneities 
in these solutions in that concentration range and lends 
further point to our attempts to account for the optical 
data in terms of our theory. As in these systems I x ( w ) I ,  eq 
VIII.28, is in the range 0.1-10 the condition for the applica- 
bility of the EMT, eq VIII.26-VIII.29 are well met. We now 
turn to the analysis of Li-NH3 optical data a t  213 K in 
terms of the EMT. We choose a Drude-Lorentz form for 
tO(W)  

with the parameters em = 1.35, hap = 1.8 eV, and h/r  = 0.5 
eV. d ( w )  at 2.3 MPM ( C  = 0) is not available, and we had 
to follow an indirect route in evaluating cl(w). &w) was de- 
termined by inserting (IX.7) and the experimental values 
of e ( @ )  into (VIII.26)-(VIII.29) for M = 3 MPM (i.e., C = 
0.1) and solving for e'(w). The results for c0(w) and d ( w )  are 
shown in Figure 19. Next, calculations for e(w)  were made 
for M = 4 MPM (C = 0.25), M = 5 MPM (C = 0.4), and M 
= 8 MPM (C = 0.85). The comparison between theory and 
experiment (Figures 20 and 21) is as good as can be expect- 
ed, We therefore believe that bound-electron absorption 
persists well into the intermediate range and that this per- 
istence is a strong evidence for compositional inhomogenei- 
ties in this composition range. 

Finally, we consider the sound velocity data for Bowen et 
a1.101J02 The sound velocity co a t  9 MPM is taken as 1678 
m sec-1 for Li-NH3 at 223 K and 1376.2 m sec-l for Na- 
NH3 a t  240 K, while for c1 we take 1678 m sec-' for Li- 
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Flgure 20. Concentration dependence of Q(b) of Li-NH3 solutions at 
213 K. Points represent experimental data (ref 47 and 48). 

NH3 at 223 K and 1608.4 m sec-l 'for Na-NH3 at 240 K. 
The fit to the EMT, eq VIII.31, is shown in Figure.22. I t  
should, however, be pointed out that for a value of X,,  1.32, 
as large as occurs here, the agreement between theory and 
experiment for the sound velocity data provides no further 
confirmation of our model for MAS. 

X. Concluding Remarks 
We have built up strong evidence for continuous MNMT 

intermediated by microscopic inhodogeneities in the two 
component systems Li and Na ammonia solutions at  I T - 
Td = 10-20 K. These materials were selected for detailed 
study because of the availability of extensive experimental 
data. Our theory provides the first semiquantitative ap- 
proach for the understanding of the variation of the re- 
sponse functions in a class of disordered materials which 
undergo a "continuous" MNMT. Concerning the details of 
the analysis of response functions of inhomogeneous mate- 
rials we stress that the analysis of transport and optical 
data in terms of numerical simulations and the EMT does 
not involve a curve-fitting procedure. Instead, we connect 
the transport and optical properties to magnetic data, 
which are used to derive the C scale. Comparison with ob- 
servations leads to a good fit between theory and experi- 
ment for electrical and thermal transport properties, opti- 
cal data, and sound velocity data and to the determination 
of the short correlation length from the analysis of the con- 
ductivity data. 

The validity of our physical picture has been challenged 
by M ~ t t . ~ '  All of the published objections to our approach 
are explicitly or implicitly refuted.60-62 We note also that 
the continuous metal-nonmetal transitions considered by 
us do not involve a Mott transition, as the electrons are 
confined either to metallic regions or nonmetallic regions. 
The ideas advanced by Mott regarding the Hubbard bands 
in a monovalent metal and the band overlap in a divalent 
metal have to be applied locally. 

The basic physical idea advanced by us concerning the 
MNMT in MAS is that microscopic inhomogeneities deter- 

C 

o LI-NH, 223'K 
0 NO-NH, 240'K 

l.20-- 

1.15 - E M S ,  Xs '0.75 

1.05-- 

5 IO 
M ( M P M )  

Figure 22. Concentration dependence of the sound velocity data 
(Bowen, ref 101 and 102) in Li-NHa and Na-"3. 

mine electronic structure and transport properties within 
the transition region. We have proposed that for Li-NH3 
and Na-NH3 in the low temperature range (T  - T ,  S 20K) 
bimodal concentration fluctuations prevail, constituting es- 
sentially a physical situation where clustering of solvated 
electrons and cations occurs. The following transport data 
are consistent with the assumption of bimodality. First, our 
analysis of the electrical conductivity which varies over a 
range of three orders of magnitude would fail if a unimodal 
distribution were to prevail. Second, the thermoelectric 
power calculated for the bimodal distribution (Figure 18) 
exhibits a weak dependence on C for 0.5 < C < 1, which is 
also the trend observed in the experimental data. A uni- 
modal distribution would result in a faster increase of S 
with decreasing M in that region. Finally, the excellent fit 
of the optical data over a broad energy range supports the 
bimodality hypothesis. Nevertheless, in our opinion the 
question of whether the fluctuations in Li- and Na-NH:j at 
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low T - T ,  are unimodally or bimodally distributed re- 
mains open, providing a challenging theoretical and experi- 
mental problem. 

At higher temperatures for Li and Na solutions as well as 
for Cs solutions over the entire temperature range a nor- 
mal, unimodal distribution of density fluctuations will in- 
termediate the MNMT. The physical situation is analogous 
to the case of the MNMT in expanded liquid Hg, briefly 
considered in section 111. 

The lower limit of the inhomogeneous regime in Li-NH:j 
and Na-NH3 at 2.3 MPM requires a reinterpretation of the 
transport properties in the range between -1 and 2.3 
MPM, which we have already considered in section IV. We 
propose that a pseudointrinsic semiconductivity mecha- 
nism prevails. The valence and the conduction bands corre- 
spond to ug and nu orbitals of electron cavity pairs, respec- 
tively. In view of the low (-0.6-0.7 eV) ug-uu separation 
within a single cavity pair reduction of the band gap due to 
the broadening of the valence and conduction bands will 
occur at much lower number density than in expanded 
semiconducting Hg below 7.8 g ~ m - ~ .  In the intrinsic semi- 
conducting regime in MAS the major contribution to the 
conductivity and the paramagnetic susceptibility will result 
from electrons excited near the mobility edge E,. Thus xp 
is proportional to the conductivity. We expect that in the 
concentration range 1-2.3 MPM, xp = AuJR2, where A is a 
constant and J is the transfer integral in Friedman's theo- 
ry.70 The sparse experimental data available are not yet 
sufficient to test this hypothesis. Regarding the galva- 
nomagnetic properties in that concentration range we ex- 
pect that according to the Friedman relations70 for a disor- 
dered semiconductor p 0: Jn(E,) so that the Hall mobility 
will decrease with decreasing M due to the reduction of the 
transfer integral J .  

From the foregoing discussion a coherent picture 
emerges for the electrical transport properties and the 
MNMT of MAS in the intermediate concentration range 
1-9 MPM. We predict that the Hall coefficient for MAS 
will decrease throughout the entire concentration range 9-1 
MPM which spans the inhomogeneous regime and the sem- 
iconducting regime. Furthermore, the microwave proper- 
ties of MAS would provide extremely useful information on 
the state of these systems in the transition region. We have 
treated the microwave dielectric constant by numerical 
simulations. The results are sensitive to the difference be- 
tween unimodal and bimodal distributions of density fluc- 
tuations. Uncertainty in the available experimental datalo3 
prevents a comparison with theory. Detailed experimental 
evidence on the microwave properties of MAS will be of 
considerable importance. 
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Discussion 
G. LEPOUTRE. What would be the crucial experiment which 

would discriminate between the bimodal and unimodal models? 
J. JORTNER. Structural data such as those of Chieux, but a t  

smaller angles. 
S. 0. NIELSEN. Could you elaborate on the tunneling correction 

to your model and its dependence on b? 
J. JORTNER. The validity of our physical picture of a continuous 

metal-nonmetal transition via the inhomogeneous transport re- 
gime was challenged by Mott, who argued that tunneling effects 
will erode local electronic structure and local transport properties. 
Indeed, if tunneling effects across nonmetallic regions were impor- 
tant, the local nonmetallic conductivity would be shortened by 
tunneling and the quantitative details in our theory would be 
wrong. We have advanced two complementary treatments of the 
tunneling problem. First, we have demonstrated that for a disor- 
dered model system characterized either by large potential fluctu- 
ation or by a large correlation length b,  tunneling effects are negli- 
gible. In this context we have treated an electron in the field of a 
Gaussian distribution of local potentials [M. H. Cohen and J. Jort- 
ner, J. Phys., 35, C4-345 (1974)l. Tunneling corrections are negligi- 
ble provided that 

(b/h(r/eV)'  > 4 (1) 

where p is the rms of the potential fluctuations. Thus for r = 0.1 
eV tunneling effects can be disregarded provided that b > 6 A, 
while for larger potential fluctuations the correlation length which 
satisfies eq 1 is even smaller. Second, we have explicitly considered 
tunneling corrections for the specific systems treated by us in de- 
tail. In that process we have utilized the values of b extracted from 
the analysis of the transport data and found that tunneling effects 
are indeed negligible. We assert that  Mott's objection to our ap- 
proach can be refuted. 
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An outline of our present knowledge of the behavior of the electrical properties of noncrystalline systems is 
given, and an attempt is made to apply it to metal-ammonia solutions. The solubility gap in metal-ammo- 
nia is, we believe, a direct and necessary consequence of any metal-insulator transition of band-crossing or 
Mott type; but above the consolute temperature the transition becomes of the Anderson type. In the range 
of concentration where d log u/dT is large, an extra electron is thought to jump from one diamagnetic pair 
to another. A model is proposed in which the activation energy is partly of polaron type. 

Metal-insulator transitions have now been studied in 
many noncrystalline systems, and it seems to the present 
author that, in spite of some unsolved problems relating for 
instance to the Hall effect, enough theoretical and experi- 
mental information is available to give us a fair idea of how 
such systems behave. Among these noncrystalline systems 
metal-ammonia solutions are perhaps the most complicat- 
ed. The available experimental information is exceptionally 

extensive, but to interpret it the theory of electrons moving 
in a rigid noncrystalline medium may be insufficient, be- 
cause the electrons themselves create their own environ- 
ment. I t  was first shown by Jortnerl that, for low concen- 
trations of metal, each electron is trapped in a cavity of its 
own creation, the surrounding ammonia being polarized. 
For the interpretation of the metal-insulator transition, it 
may be necessary to assume that moving electrons carry 
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