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A theoretical study is presented of the effects of collisional perturbations on the time-resolved resonant and
near-resonant photon scattering from a molecular system. The photon counting rate is formulated in terms of
tetradic Green’s functions in Liouville space. The collisional and radiative damping effects are handled by an
effective-Liouvillian formalism. The formal expressions are disentangled by invoking a series of successive
approximations, assuming short correlation times of the thermal bath, neglecting relaxation processes in the
ground electronic state, considering rotational relaxation as providing the dominant damping mechanism in
the excited electronic manifold, specializing to weak electromagnetic fields, neglecting some off-resonance
processes and disregarding collision-induced radiative processes. The photon counting rate is expressed as a
triple convolution of the photon counting rate for the free molecule with the Doppler Gaussian profile and
with a Lorentz profile. The latter incorporates purely collisional effects due to intrastate cross relaxations and
proper T, processes. The theory accounts well for the recent experimental data of Williams, Rousseau, and

Dworetsky on collisionally perturbed I, molecules.

I. INTRODUCTION

Recent experiments by Williams, Rousseau, and
Dworetsky' (WRD) have monitored the transition
from resonance fluorescence to near-resonance
Raman scattering in time-resolved photon-count-
ing experiments from a single rotational-vibra-
tional level of the B*II state of the I, molecule. A
subsequent theoretical study® pointed out that the
experimental time-resolved decay pattern of an
“isolated,” collision-free, molecular level is char-
acterized just by two types of lifetimes, that spec-
ifying the width of the molecular resonance, and
those characterizing the light pulse. No new ob-
servable decay modes are exhibited when the ex-
citation energy is tuned away from the molecular
resonance. The off-resonance energy parameter
affects the total intensity of the scattered photons and
the relative intensities of the different decay compon-
ents. Thedetails of the latter effect are determined
by the specific energetic spread of the exciting photon
wave packet. This treatment® pertained to the de-
cay characteristics of a single molecule and should
be extended to handle the interesting effects of col-
lisional damping on the time-resolved decay pat-
tern. From the experimental work of WRD' some
interesting information concerning this problem
emerges. When the off-resonance energy incre-
ment A (i.e., the separation between the energies
of the centers of the molecular resonance and the
photon wave packet) is large (in comparison to the
Doppler width, the energetic spread of the photon
wave packet, and the radiative width of the molecu-
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lar resonance), the following features are exhibited:

(a) At moderately low pressures (~0.03 Torr),
the relative contribution of the long-lived decay
component to the total intensity off resonance is
slowly decreasing with A, becoming constant at
large values of A,

(o) Increasing the total I, pressure results in a
dramatic enhancement of the long-lived molecular
component.

These interesting experimental results cannot
be elucidated by a naive extension of the theory
advanced for the “isolated” molecule,''? simply
modifying the molecular radiative-decay width
by the addition of a pressure-dependent term.?
The calculation of the photon-counting rate, which
(to lowest order in the radiation field) depends on
a second-order radiative perturbation, involves
both T, (level-relaxation) and T, (line-broadening)
processes. The latter include interference effects
between the lower and the upper molecular states
due to phase shifts, which cannot be expressed as
additive contributions of the levels.

In view of the current interest in collisional
quenching effects on radiative and nonradiative
decay characteristics of electronically excited
molecular states,? this problem merits a theo-
retical study. In the present work we consider
the effects of collisional perturbations on the
transition between time-resolved resonance flu-
orescence and near-resonance Raman scattering
from a molecular system. Section II is devoted
to the general formulation of the collisional and
the radiative damping effects in terms of tetradic
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Green’s functions. A solution is obtained (see
Appendix) to second order in the applied field
which, under appropriate conditions, is a gener-
alization of the equivalent solution of the Bloch-
Redfield equation, incorporating radiative as well
as collisional damping effects. A specific model
of the damping matrices is presented in Sec. III.
In Sec. IV the model is applied to the experimen-
tal data.! Numerical results are presented and
their physical interpretation is described. We
conclude that, under realistic conditions pertain-
ing to the excitation of an isolated molecule, the
ratio of the intensity of the long-lived component
to the total intensity is asymptotically proportion-
al to A™ at large A, while collisional-damping ef-
fects will result in a negligible variation of this
ratio with A in the off-resonance situation. We
were thus able to elucidate the quantitative fea-
tures of the effect of collisional perturbations on
the transition from resonance fluorescence to
near-resonance Raman scattering.

I1. TIME EVOLUTION OF A COLLISIONALLY
PERTURBED MOLECULE

We shall now consider the time evolution of the
density matrix of a molecular ensemble interact-
ing witha light pulseata moderately low pressure,
incorporating both the electromagnetic interactions
and the molecule-molecule collisional effects. It
is assumed that the molecules are embedded in a
sufficiently large bath and that the interactions
are sufficiently weak to prevent departures of the
bath from thermal equilibrium at any time. One
can thus consider the subpart of the system con-
sisting of the molecule and the radiation field (the
mv system) by averaging the density matrix of the
total system over the states of the “bath”.°~" The
resulting reduced density matrix will be utilized
to describe the photon-emission rate from the col-
lisionally perturbed molecule.

It is later intended to treat the interaction with
the external field by perturbation methods. In or-
der to include spontaneous-emission effects to
arbitrary orders, we resolve the radiation-matter
interaction H,,, into two parts—one pertaining to
the set of modes contributing to the applied pulse
(V) and the other pertaining to the rest (H,,,).
Since the pulse is usually confined to a very small
part of the photon phase space (e.g., by a very nar-
row angular distribution), there is only a small
error in omitting these modes from the total con-
tributions to radiative damping.®

The Hamiltonian of the system consisting of a
single molecule embedded in a gas of (optically
inactive) atoms in the presence of the radiation
field is

H=H'+H +V=H,+V, (1)
where
H'=H,+H,+H,
and (2)
H =H, +H_, .

Here H, is the molecular Hamiltonian, H, is the
Hamiltonian of the free electromagnetic field, H,
is the Hamiltonian of the perturbing atoms, (i.e.,
the “bath”), and H,, the molecule-bath interac-
tion. The eigenstates of the zero-order Hamilton-
ian H’ will be labeled |m7b), where |m)=]|g), |s1),
|s2),...,|sn) corresponds to the molecular lev-
els. |7)=|vac) and [k) correspond to the vacuum
and one-photon states, respectively, while |b)
labels the states of the perturbing atoms. Con-
cerning the molecular levels, we shall consider
only a single initial state (the ground state) | g)
and a manifold of bound excited states |s1),
|s2),...,|si), etc. Each of the excited levels is
characterized by a radiative width I'y;, and we as-
sume that the separation of the levels exceeds
their radiative width, i.e., |E ;= Ey;| > T7, +T7;
for all |si) and | sj), so that no radiative interfer-
ence effects are exhibited. The joint states of
(H,+H,) are supposed to be the continuum of the
one~photon states Ig,E) and the zero-photon states
| si, vac). We shall neglect off-resonance high-
order electromagnetic interactions and disregard
excited one-photon states | si, k), etc. For the
sake of convenience, let us now introduce the ab-
breviated notation |k)=|g, k) and |)=|si, vac).
The response of the macroscopic system to the
applied field can be formulated in terms of tetradic
Green’s functions in Liouville space.®”7*? The time
evolution of the total density matrix is given by

p(t) =exp[~iL(t-1t")]p ('), ®3)

where L is the Liouville operator, or Liouvillian,
of the total system, defined as

LA=[H,A] , (4)

given any ordinary (dyadic)operator A. We can
now impose initial conditions on the solution, re-
cuiring p(¢’) to be independent of V for sufficiently
early times, ' ==, i.e.,

p(")=p (') =exp(—iLyt )p o(0) , (5)

where p, is independent of the interaction V. We
have partitioned the Liouvillian into

L=Ly+W, (6)

L, and W being the Liouville operators correspond-
ing to Hy and V, respectively. Owing to the pres-
ence of the nonstationary pulse,
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Lypo=L,py#0, (M

where L, corresponds to H, [(L - L,)p,=0 since
the gas is in thermal equilibrium].

Neglecting statistical correlations between the
mv system and the bath, we can write

06(0) =Py ()0 - (®)

We now assume, for the sake of simplicity, that
all the radiative widths of all the |i) states are
identical, i.e., I'y, =T%,=---=T7%. Then, the
photon-counting rate is given by

F(A, T, 0)=T7P,(), (9)
where
P,(t)=tr,tr (i, vac, blp ,,, ()| i, vac, b) (10)

is the total population of the excited molecular
manifold {l i)} . The experimental photon-counting
rate may be obtained from Eq. (9) by integrating
over the distribution of Doppler-shifted molecular
frequencies. The m7 subsystem at {=0 is assumed
to be given (up to a trivial normalization constant)
byJ.O

pur(0)= [ [ drar AL kYK, (11)

where the amplitude-modulation parameters {Ak}'
of one-photon states are normalized so that their
Fourier transform assumes the maximum value

of unity. Assuming that the pulse modes are uni-

directional, we can decompose the field amplitude
by the one-dimensional Fourier transform.

9(t)= [drexpli(E- R4, , (12)

where & is the mean photon energy in the pulse.
The reduced density matrix for the m7» system
can be expanded in the double-bracket notation
of Liouville space.? Let us reduce the relevant
mv space into four subspaces spanned by the re-
spective projection operators,

131=Z Ly il (13a)
P():ffdkdk’lkk’» «rE |, (13b)
p,= f dr'|ik'y) ((ik'| (13¢)
ﬁ;:fdklki»((kil , (13d)

where |ij)) is the Liouville-space vector repre-
senting the operator |i){j|, etc. In the case of

a sharp resonant transition | k)—|j), which is
well isolated from other resonances, and with %
lying close to E;; — E,, we may ignore the inter-
action of the light pulse with all states |i) (i #j),
and after some manipulation (see Appendix) we
finally arrive, to second order in the applied field,
at the following expression for P,(¢):

P,(t)=-2R, Z [nglszdrd'r’ ot = 1ot —t") @(1)*(7' X(#i| G, (¢ = T)| ji ) GF] G,(T = T')| jR)) . (14)

Here V;,=(k| V|j) is the electromagnetic interac-
tion matrix element (assumed to be practically in-
dependent of £ around E). O is the Heavyside step
function, and ¢ is defined by Eq. (12). G,(f) and
G,(t) are retarded propagators of linear-response
theory, given by

Gl(t)=(21r)'1fdEe'iE'[E—ﬁleﬁl—Rl] -

Gz(t)=(271)"fdEe‘““[E-f’z(Lm+L,)132—R2]'1.

(15)

R, and R, are non-Hermitian matrices defined as
the appropriate projections of a general level-shift
operator R, defined in the Appendix

R1=P1Rf’1, Rz=sz132- (16)

r

The Hermitian parts of R, and R, are the shift ma-
trices, while their antiHermitian parts corre-
spond to relaxation matrices. In many cases the
shift can be neglected, compared to the relaxation
coefficients, whereupon the matrices R, and R,
will be written as

R,=-il, (a=1, 2). 1)

Each of the elements of I', contains both radiative
and collisional contributions. A diagonal element
of R, in this manifold is the level-decay rate, and
the element combining |i)) with |jj)) (i#j) is a
cross-relaxation coefficient. I'; is conventionally
referred to as the T, relaxation matrix.'''* Note
thatthe matrix P, L P, vanishes under the present
conditions. G, involves the manifold {| %)}, which
corresponds to thelinear-response polarization in
the exciting field. This propagator is encountered
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in calculations of resonance absorption. I, is con-
ventionally referred to as the T, relaxation ma-
trix.'**2 The operators G,(f) and G,(¢) are thus the
Fourier transforms of the resolvents for T, and T,
processes, respectively. Whenever the correlation
time for the molecular interactions is short com-
pared to the relaxation times (as is the case in
dilute gases) the E dependence of R, and R, can be
disregarded.® Under the conditions leading to (17)
with R, and R, practically independent of E, we get

Gy(t)==10(t) exp(-iQut - L) (a=1,2), (18)

where ©, =0, and Q, = P,(L,+L,)P, is the (diagonal)
matrix of resonance frequencies for the T, pro-
cesses.

III. SPECIFIC MODEL FOR COLLISIONAL BROADENING

Equation (14) provides an approximate solution
to the problem of the effect of collisional perturba-
tions on the time-resolved decay rate of an excited
molecular state, which is valid to second order in
the interaction with the applied field. This result
is similar to a second-order-perturbation solution
of the Bloch-Redfield master equation.’* However,
the systematic derivation presented in the Appendix
has the advantage of treating collisional and radia-
tive damping in a combined manner. To apply our
theory to real-life situations, we have to assume
a specific model for the damping matrices I';, and
T, and for the light pulse ¢(¢).

Let us take I'; to be an # X% matrix of the form

(i ILilé)y=T18,; = T7(1=0;;) (5,5=1,...,n).
(19)

We thus assume that all the # levels of the excited
manifold have the same damping rates I';, and that
the cross-relaxation rates I} between all pairs of
levels are identical. The negative sign of I'} re-
sults from general unitarity properties.” This
model treats all levels on the same footing and

introduces the notion of “level democracy.” It
incorporates minimum physical information con-
cerning the excited band and is adequate in view
of our current ignorance regarding the details of
the individual relaxation terms in the band. In the
absence of collisions we expect that I'Y =0 and
T' =TI';,. When radiative damping can be neglected
with respect to collisional broadening at high
pressures, and all relaxation processes occur
within the {| %))} manifold, we have I,
=(n-1)TI7.

An important property of the ', matrix, as given
by Eq. (19), is that is has an eigenvector ((a|
=33, ((éi| with the eigenvalue

I, =T, -@m-1)r". (20)

But this eigenvector is just the dyadic bra vector
closing on G, on its left side in Eq. (14). G, is
thus diagonalized, with the eigenvalue (E +:T"))™!
replacing the matrix G,. In the case where there
is no collisional relaxation from the band, T, is
then practically the radiative width of the band
ry.

We shall now consider the T, propagator G,. In
the case of a sharp resonance, we have to consid-
er in G, only the single diagonal term ({j& I, [j&)) =T,.
This term includes T, processes, in addition to
“proper” T, processes which result from inter-
ference effects (phase shifts). Generally, we can
write®

T, =3(T;;+T35)+ T, (21)

where T';; and I';z are the damping rates of the
levels |j) and | %), respectively, and I', stands
for the “proper” T, processes. In our model we
assume I';7 =0, and I';; =T';. In the limit of zero
pressure,

Fz""la'rg ’ (22)

since I'; does not have radiative terms.
Equation (14) can now be expressed in the form

t ot
P,(t)=]| Vgl 2.[.«; f_w drdt o(T)e*(7')exp[ - 3T5(2t = 7= 7')] exp[(ia=T)(7'= 7)] , (23)

where
0=r,-4T, . (24)

Equations (23) and (24) are independent of the de-
tails of the model for the relaxation of the elec-
tronically excited manifold. It is important to
notice that T’ incorporates only relaxation pro-

cesses within the excited manifold together with
proper T, processes, and does not involve relaxa-
tion coefficients which lead to the depletion of the
excited electronic manifold. In our special model,

F=3(rn-1)I7+T,, (25)

which incorporates purely collisional effects and
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does not include radiative damping.

In the absence of collisions, I', =I'7 and =0,
Thus Eq. (23) can be written as an absolute square
of an amplitude,

t
P,(t) = , Viz f_ dT(7) exp[-—%l“l(t - T) = iAT]

=F(a, T, t)/T,, (26)
1 1

where now I'; =T';, and F is the previously de-
rived photon-counting rate for the isolated mole-
cule.? Note, however, that when I'#0, Eq. (23)
cannot be written as the absolute square of an
amplitude.

The effect of the collision-broadening factor in
Eq. (23) can be elucidated if we note that the re-
tarded propagators obey the identity

270 (7) exp[(= iA = T)7]

= f ) dN exp(—iN T)[=i(A = X)+ ],
27

Inserting in Eq. (23), we get for the photon-count-
ing rate F in the presence of collisional perturba-
tions

F(A, T, t):f dN' £(A - AYF(N, T, t)

L*F (28)
where
L(a)=(F/m)@az+T2)™ (29)

is a Lorentz profile for the purely collisional in-
traband relaxation and the proper T, processes.
Collisions thus affect the counting rate by a homo-
geneous “smearing” of the A dependence.

Finally, we have to incorporate the effect of the
inhomogeneous Doppler broadening. First, let us
consider the idealized situation® in which the two
broadening effects are totally indepdent of each
other. This, is the case, e.g., when the radiating
molecule is much heavier than the molecules of a
foreign gas with which it collides.”® The radiat-
ing molecule will then be scattered mostly in the
forward direction, thus affecting only slightly the
velocity distribution. The collision-damping rates
will depend essentially only on the perturber vel-
ocity, and will thus be independent of the velocity
of the radiator. Doppler broadening will then ex-

press itself by convoluting (28) with the Doppler
profile

F(A) = (n8*) "% exp(- 2% /() (30)

resulting in the final form for the photon-counting
rate under conditions of pressure broadening:

{Fa, T, t)}:ff F(A = A )L(A = A7)
X F(A', T\, t)dN da
=F«L«F . (31)

The generalization to the case when the two
broadening mechanisms do affect each other can
now be easily envisioned. All we have to do to in-
clude such effects as Dicke narrowing, etc.,'® is
to replace F + L in (31) by the line-shape profile
(from which interband processes have been decon-
voluted). F x L is thus the collision-broadened
line-shape function, which can be obtained from
absorption spectroscopy.

Equation (31) will be used to describe the photon-
counting rate, incorporating both collisional and
Doppler broadening. It has the form of a triple
convolution of the photon-counting rate for the
isolated molecule (F') with the Gaussian (inhomo-
geneous) distribution (F) of Doppler-shifted molec-
ular frequencies and with a Lorentz (homogeneous)
profile L. Equation (31) will be utilized in the dis-
cussion of the experiment' in Sec. IV.

IV. COMPARISON WITH EXPERIMENT

We are now in a position to compare our result,
Eq. (31), with the experimental work of Williams
et al.* In accordance with Fig. 1 of Ref. 1, we as-
sume the following model shape for the pulse am-
plitude?:

S exp(z7,t)  (£<0)
pt)=<1 (0<i<T) (32)
zexp[— -7 @>7T) .

We thus consider here a photon wave packet speci-
fied by the following parameters: (1) the pulse
rise time y[', (2) the pulse duration 7, and (3) the
fall time of the pulse v;*.

The photon-counting rate in the case of an iso-
lated molecule (F'=0), given the pulse shape (32),
has been investigated recently in detail.? For
t>T, it is given by

F(A, T, ) =T | Vol | Al exp[- T3t = T)] + 4, | exp[ - v,(t - T))

~ 2R, A}A, explia(t = T)] exp[—z(v, + T 5)(¢ - nl}, (33)
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where

Ay =[A+3i(TT=7,)] " (33a)
and

Ag=[A+5i(TT=7,)] ™ = [A+26T7) ™ +exp(= 3T T +iATH[A +2607] ™ = [A +5i(0C 5 +7,)] 7 . (33b)

The first term in (33) is characterized by the
molecular decay time, the second term is char-
acterized by the pulse decay time, while the third
term involves an interference contribution. For
the physically relevant case, y,>I'%, the latter
term is dominated by the pulse decay time. The
relative contribution of the long-lived molecular
component to the total photon-counting rate at
t=T in (33) is given by the ratio

R=1,8)/1;(8), (34)
where
IM(A)=IASIZ ’ (343.)

I(a)=|A 2+ A |2 - 2R, AXA, .

In order to simulate a real-life situation pertain-
ing to the isolated molecule, we have to perform
integration over the Doppler profile. The relative
contribution of the molecular long-lived component
at {=T is thus

(R)=(Ly /{Ir) , (35a)
where

<1M>=IM * F ’ (35b)

Ip)=IpxF,

and (...) denotes Doppler-integrated quantities.
Finally, in order to discuss the features of the
time-resolved decay pattern, including combined
Doppler and pressure broadening, we define the
relative contribution of the long-lived component
(with respect to the total intensity) at /=T as

Ry ={1,}/{15} (36a)
where
Iy =1, % FxL=(I,)+ L, (36b)

{Ipb=Ip«Fx L= )+ L .

Photon-counting rates for collisionally perturbed
molecules have been calculated using Eq. (31) for
the pulse shape given by Eq. (32). In order to
simulate the experimental situation,’ the following
parameters (in units of I';) were used: y, =7,
=100, T~ =2. The Doppler width is taken as
B=500 in the same units. In our model I', =T'%;
the value of I', estimated from the long-decay

component in Ref. 1, is approximately 10° sec™,
and is pressure independent.

In Fig. 1, we portray numerical results of the
calculation of the isolated-molecule photon-count-
ing rate (F(A,T'7, ).

Since B>T'} the decay pattern corresponds
to the resonance situation as long as Asf
and, under these circumstances, only the molecu-
lar long-lived component is exhibited. When A ex-
ceeds 28, both short and long components are ex-
hibited. We also notice that the oscillating-type
interference contribution is smeared out due to
the Gaussian integration. Figure 2 exhibits the
effects of collisional perturbations at relatively
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Lo | /=0
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FIG. 1. Time resolution of the photon-counting rate
(F) (in arbitrary units) in the absence of collisions for
various values of the off-resonance energy A, the Dop-
pler width (in units of the radiative damping) is g/ I'J
=500; the rise and fall times of the pulse are v/ I'7=",/
I7=100; the inverse duration of the pulse is 77!/ I7=2,
The dotted line is proportional to the pulse time-resolved
intensity.
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low values of A (A=28=1000 and A =33=1500)
[see Fig. 2(a)] and at A =48=2000 [see Fig. 2(b)].
The value of the collision-broadening parameter Iy
has been varied from zero to unity (in I'; units).
These results clearly demonstrate that up to
about A =33, the effects of collisions are in-
significant. However, at A =48, we notice a most
dramatic enhancement of the slowly decaying com-
ponent as the pressure is increased. This is ob-
served at values of I' as low as a few hundredths
of T',. Figure 3 portrays the ratio {R}={I,}/{I;},
defined by Eq. (36), between the long-lived inten-
sity and the total intensity, as a function of A, cal-
culated for various values of I'. We note that,
first, at values of A< 38, {R} is practically unity
at all pressures and, second, at A= 48, {R} in-
creases with increasing pressure from a small
value (= 107%), with the most dramatic enhance-
ment occurring with 1'<0.025. For this small I’
value, {R} exhibits a weak variation with A in the

A/B=2

{F} arbitrary units

{F} arbitrary units
)
I

FIG. 2. Effect of collision broadening on the photon-
counting rates (a) at values of the off-resonance param-
eter A/T';=28/T;=1000, and A/ Ty =3B/T=1500; (b) at
A/ Ty =4p/Ty=2000, showing the dramatic effect of pres-
sure broadening (0 < = I) at high A values. Pulse pa-
rameters same as in Fig. 1. Note that I} *I.

range 48-10B8. Also, note that at higher pressures
(I'= 0.25), the value of {R} becomes practically
independent of A at values of A 2 43. In order to
gain a qualitative understanding of these features,
let us study separately {I,} and {I;}, shown in

Fig. 4. At zero pressure (I'=0) the two intensity
components start from the same value at A =0,
both decreasing rapidly with increasing A. At

Az 383 they separate, with {IM} exhibiting a much
steeper drop. Increasing T results in an appreci-
able enhancement in {IM}, while {IT} is only slight-
ly affected by increasing the pressure. The as-
ymptotic behavior of {R} is independent of A (for
r>0).

Consider now the asymptotic A dependence of
the photon-counting rate under the experimental
conditions B> vy, +7,> I'}.

At large values of A, the total intensity of the
isolated-molecule decay rate at ¢ =7 is, as seen
from Eq. (34a), I, <A™ falling off as a tail of a
Lorentzian. Incorporating Doppler broadening
(again in the isolated molecule) results in a con-
volution with the Gaussian distribution (30), which
still retains the A™ asymptotic dependence in (I;).
The asymptotic expression for the long-lived mo-
lecular component in the isolated-molecule case
(in the absence of Doppler broadening) is, as seen
from Eq. (34a), I, <A™ and its convolution with
a Gaussian results in the same asymptotic form
I,y <A™, falling off much more rapidly than a
Lorentzian. This analysis shows that the asymp-
totic behavior of the ratio (at A> B) is

(R) <A™ 37)

as illustrated in Fig. 1.
This result for the isolated molecule is in var-

A
fyr=2

A
fyp=1
fp =05
F,ri =0.25

immmansal

f,_-005
-0

T T

A
fyp=0025

f,
[, 00!

T

T T T T

9,n=o
1o | | ! I ]

o 2 4 6 8 10
arg

FIG. 3. Intensity ratio {R} between the slowly decaying
component and the total photon-counting rate, evaluated
att =T, as a function of the off-resonance parameter A,
at different values of the collision-broadening rate i
Other parameters same as in Fig. 1.
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A/B

FIG. 4. Total intensity and the slow-component inten-
sity (evaluated as ¢ = T') as a function of A, at (a) )
(zero pressure), and (b) I/Ty=1 (i.e., I'~T7). Other
parameters same as in Fig. 1.

iance with the “low” pressure experimental data
of WRD.! We conclude that even under such low
pressures (0.03 Torr L,), collisional effects are
already of considerable importance, and we pro-
ceed to discuss the finite-pressure results re-
quired for the understanding of time-resolved
photon scattering by a collisionally perturbed
molecule. Pressure broadening amounts to con-
volution with the Lorentzian (29) which, although
being extremely narrow, will make the long-lived
component drop off aysmptotically as {I,} <A™
whereas the asymptotic form of the total intensity
{I;} <A™ is unaffected by pressure.

In summary, we note that for the case of a pulse
characterized by short exponential rise and fall
times (compared to the radiative time), the follow-
ing asymptotic forms are obtained:

{Ip)f~Ipa))yca, (38a)
{18}~ (F/n82) j AN (1,(&)) . (38b)

Notice the following three characteristics: Firstly,
the total intensity is not changed by collision
broadening. Secondly, the intensity of the long-
lived molecular component is proportional to I’
and thus to the pressure. Thirdly, {R} is A inde-
pendent at large A. The last two conclusions hold
regardless of the details of the pulse shape, while
the first is specific to exponential rise and decay
of the pulse.

We can extend this discussion to other pulse shapes.
For example, when thepulseriseanddecay are fast-
er than exponential, we expect that both I,(A) and
I.(A) will decrease faster than A at large A, In
this case Eq. (38b) still holds, while the total in-
tensity at £ =T is now

{Ip(a)} = (/22 j 4'XI7(&)) (39)

and, again, cancellation of the A dependence oc-
curs in {R}. Notice that when collision-broadening
effects persist, then (even with small T values)
{R} is asymptotically pressure independent for
this pulse shape.

A qualitative physical distinction between the
short- and the long-lived components of the pho-
ton-counting rate can be made in stating that the
latter involves a scattering process, which has to
be handled as a single quantum-mechanical pro-
cess, while the long-lived component constitutes
a decay of a metastable state, wheré excitation
and decay processes can be segregated. Different
Fourier components of the exciting pulse contri-
bute to the resonant-scattering and to the direct-
scattering processes.? At zero pressure, those
Fourier components of the pulse which are close
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to resonance excite the long-lived component,
while other Fourier components are directly
scattered. In the extreme off-resonance situa-
tion, pressure broadening results in a dominating
contribution to {I,(A)} from {I,(0)}, i.e., from
near resonance. The collisionally broadened line
spans a larger fraction of the Fourier components
of the pulse than does the isolated molecule,
whereupon the decay of metastable states is en-
hanced, becoming comparable to the contribution
of direct scattering. Thus, the collisional per-
turbation can be considered as exerting a “mem-
ory-erosion” effect on the molecule, increasing
the role of excited molecules which have lost their
memory concerning the time evolution of the light
pulse.

The theory developed in this paper provides an
adequate interpretation of the experimental data
of WRD.! The dramatic effect of low values of
I'/T, as small as 0.025 on the decay features
makes it exceedingly difficult to perform such
experiments on an “isolated” (collision-free)
molecule. The “low” pressure experiments of
WRD! performed with 0.03 Torr of I, result in an
asymptotic value of { R}~ 0.1 off-resonance. This
value, with the help of the data in Fig. 4, implies
that I'/T", ~# 0.15 and, taking I', =10° sec™, we es-
timate T' # 10° sec™ for this pressure. This im-
plies an average cross section of ~50 A2 for the
relaxation processes embedded in f‘, which is
close to a gas-collisional cross section. The in-
crease of {R} with pressure is adequately account-
ed for. In the experimental work, a dramatic
enhancement was reported by increasing the pres-
sure from 0.03 to 0.25 Torr. Taking I'/T", =0.15
at 0.03 Torr and assuming T to vary linearly with
pressure, we expect that /T, =1.2 at 0.3 Torr,
whereupon from Fig. 4 we see that this enhance-
ment should amount to an increase of {R} from
0.1 at 0.03 Torr to the value of 0.5 at 0.25 Torr.

It will be useful to comment on the hidden as-
sumptions involved in the present treatment. Con-
cerning the ground state, we have neglected any
relaxation processes in this manifold. As we have
already pointed out, the extension of the present
formalism to handle these processes is straight-
forward. Regarding the excited electronic mani-
fold, we have adopted a simple model of # levels
characterized by identical relaxation rates. We
have disregarded any T, contributions to the T,
matrix, Eq. (19). This is appropriate for rota-
tional relaxation, which is probably the dominant
damping mechanism, but has to be modified in
order to incorporate vibrational relaxation. The
T', matrix, Eq. (21), was simplified by application
of the rotating wave (or frame) approximation,**
neglecting off-resonance processes, which is a

reasonable assumption. We have specialized to
weak electromagnetic fields, so that field-matter
coupling was handled to second order. Collision-
induced radiation processes were disregarded.
Concerning the general aspects of collisional
perturbations, the pressure was considered to

be sufficiently low so as to make the binary-col-
lision approximation valid, making possible neg-
lection of correlation effects and separating radia-
tive and collisional contributions to I'; and T',. All
these assumptions are reasonably applicable to
the problem at hand. We would also like to point
out that we have disregarded the role of intermo-
lecular resonance electronic energy-transfer pro-
cesses, which may play a role in the system stud-
ied by WRD." Our formalism leads to the conclu-
sion that I" incorporates only relaxation processes
within the excited electronic manifold, and there-
fore the electronic energy transfer process (which
depletes the excited state) does not contribute to
T.

It should be pointed out that the present treat-
ment apparently applies to a system where the
levels of the bath molecules are off-resonance
with respect to the excited state of the molecule
that interacts with the radiation (foreign-gas
broadening). However, it can be shown that
resonance transfer, as occurs in the self-broad-
ening of a pure gas, does not essentially alter
this result. The whole framework of the theory
has to be modified so as to take into account the
indistinguishability of the molecules.'® Thus, in-
stead of speaking about the single-molecule oper-
ators |i)(k| as defining the projection operator
132, Eq. (13), we should consider the symmetrized
form

N
- {laxelta explik-Ry) , (40)
A=1

where the sum is carried over the N identical
molecules. The exponential factor arises from
the space variation of the pulse (which we have
disregarded here), k being the wave vector of the
photon. This symmetrization results only in a
small modification of the expressions for I',

Eq. (19), and for I',, Eq. (21), involving the reso-
nance transfer rate. We note in passing that for
our specific model, involving only a single ground
state | g), T, and T, are independent of this ener-
gy-transfer process. Even when both I'; and T,
are slightly affected by resonance transfer, this
correction is practically the same for both and
will not affect T
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APPENDIX

Equation (3) can be expressed in terms of the
Fourier transform of the retarded Green’s func-
tion as

GE)=(E -L+in™ (n-+0) (A2)

is the retarded Green’s function of the total sys-
tem. Making use of the Dyson equation for G, and
of Eq. (7), we can write

p(t)=(277i)-1 J‘de exp[—iE(t-— t’)]G(E)p(t’) Gpo(tl):(Gr+GWGr)po(tl); (A3)
- where
(>t . (A1) G,=(E-L,+in)™. (A4)
Here Equation (A1) then attains the form
pm=%m+mmrﬂfﬁm*“0mm@mﬁw_LmﬂW-gﬁmrm@)uu_m, (A5)

where we have used Eq. (5). Utilizing the identity

expli(E = L) [(E = L, +in) ™= =i de o(r - t') expli(E — L) 7|22 —21i8(E — L,) =G, - G| (A6)

where © is the Heavyside step function, we can
write (A5) in a form independent of ¢/, i.e.,

plt)= 5= [ aE e[, +GW(G, -G b(O)
(A7)

The time evolution of the m7 system in the pre-
sence of the pulse can then be described by a re-
duced Green’s function

G(E) =Tr,[p,G(E)], (A8)

where the trace is taken over all the states of the
bath. The probability P,(¢) of the system being in
any excited (zero-photon) state at the time ¢ is then
given by

PO =) [ aB e Y G18(E) o, O,
) ‘ (49)
where
S(E)=G(EW(G,-G)). (A10)

The expectation value in Eq. (A9) involves a vacu-
um expectation value in the radiation states.

A typical matrix element on the right-hand side
of Eq. (A9) can be written in double-bracket nota-
tion as 7*°

G 18(E)om )= [ [ ded A,ap i $(E) | R,

(A11)

Equation (9), together with Eqs. (A9) and (A11),
provides us with the necessary formal expression

for the time-resolved radiative decay of a colli-
sionally perturbed molecule. What is now required
is the calculation of the matrix elements of $(E),
which will be accomplished by the Fano-Zwanzig
projection-operator techniques.®™”

To evaluate the Green’s function we shall proceed
in two stages. First, we adopt Fano’s formalism®
to derive an effective Liouvillian in the m# sub-
space, which is recast in terms of a level-shift
operator. Second, we utilize projection operators
in the m7 subspace to derive some formal expres-
sions for the matrix elements of §(E). Systematic
approximations are subsequently introduced to ac-
count (to lowest order) for weak electromagnetic
interactions and for the effects of binary collisions.

Following (1) and (2), we may resolve the Liou-
villian as follows:

L=L,+W,

Ly=L'+L,, 412
LI:Lm+Lr+Lba
Ly=Lp+ Ly,

where L,, etc., are the Liouville operators cor-
responding to H,, etc. Let us introduce the pro-
jection operators®
C=p,T
Py l:b ’ (A13)
b=1-C.
Since V has only matrix elements combining the
lower band {| 2)} with the upper band {|7)}, the
transition from | kk’)) to |ii)) requires at least
two applications of W, with |ki)) or |ik’)) as inter-
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mediate steps. The second-order perturbation
contribution to § can be written as

89 (E)=GWGW(G,-G)), (A14)

where G is the retarded Green’s function for
the free system, and the bar is defined in (A8).
So, to second order in W,

(ii|S(E) | kR"Y) = ((ii| CGWGCEW (G, - G)) | kR"Y)
=-27i(Gi| CGWGEW | kR'))5
X(E~-Ek+E'). (A15)
Since W does not depend on the bath,
EewGC=EGCWCGCE + CGDWDGC . (A16)
Using Zwanzig’s projection-operator methods,
we can write®:®

é6¢=(E -L,-L,-CRC)C, (A17)
where
R=L,+L,D(E-DLD) DL, (A18)

is the non-Hermitian tetradic level-shift (self-en-
ergy) operator. Also,°' !

CRC=CL,C+CRDE - Ly+in)~DL,E.  (A20)

The magnitude of CGC is bounded by the inverse
of the anti-Hermitian part of CRC. Let the lowest
upper bound be denoted I';'. Likewise, CRC can
be written as A%G,, where G, is also a retarded
Green’s function,” with a lowest upper bound I'[%,
and A, is associated with the interaction CL,D. It
follows from (A19) and (A20) that, to order of mag-
nitude,

o(CGD) A, _ [To\Y?

S (1"1> . (A21)
In dilute gases, where I'j is an inverse relaxation
time (of the order of MHz/Torr), and I, is an in-
verse collision time (typically >10 em™), CGD is
negligible compared to CGC, and the bath average
of the product of G’s can be replaced by the pro-
duct of averages,

CewGC~CGCwEGE . ' (A22)

By the exclusion of the external-field photon modes
from L,,, CRC is reduced to the four subspaces

AN An ARt - spanned by the respective projection operators,
CGD=CGCRD(E - Ly+in)~'D. (A19) defined in Eq. (13).

However, We thus arrive at
(53| 8(B)| kR'Yy= — 2mi8(E~ k + ') {{ii| P,GP,W(P,GP, + PLGP,)W| kE')) , (A23)

where P,GP, and P!GP} are related, since
(k| G(B)jR) == (k| G(-E) RiD) * . (A24)

Equation (A23) essentially involves two types of
reduced Green’s functions

G,=PGP,, G,=PGP,, (A25)
with the appropriate level-shift operators

R, =PRP, R,=P,RP,, (A26)
respectively.

The contributions to G, involve states in the ex-
cited electronic manifold (i.e., |i)), |ji)), etc.).
In general, this manifold includes also mixed
terms such as |ij)). However, in many cases,
symmetry can considerably simplify matters,
particularly dropping out all |#j)) terms if |4)
and |j) involve different rotational states.'® This

is the relevant case for our problem in view of the
predominant role of rotational relaxation within
the excited electronic band. The reason is that in
the calculation of populations, we implicitly intro-
duce an averaging over the rotational-degeneracy
M numbers, thus retaining only.the monopole ir-
reducible representation of the rotation symmetry
group in the manifold {l z’j))}, which can have con-
tributions only from J; =J; where J; and J; corre-
spond to the initial and findl rotational quantum
numbers. Under these conditions, G, involves
only matrix elements in the manifold {|))}.

The expression for the photon-counting rate, as
can be seen from Egs. (9) and (A9), is a Fourier
transform of the E-dependent tetradic Green’s
function. Following (A9), (A11l) and (A23), and
introducing the assumptions made above, we can
write

P)=- Y ffdedkdk’e“E‘ ALA%D(E - b + B X(id| GE) 7))

X[| Vi | KGR | GE) G + | Vi (K3 | G (B)| K3 ))) (a27)
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Making use of (A24) and the integrations over %
and &', it follows that the two contributions (with
P, and P}, respectively) to P,(¢) are complex-
conjugate, so that

P,(t)=2Rel(t) , (A28)
where
10==3 [Vsl® [ aE [ ar(G 16,15y e
x exp[i(E - k)T ~iEt]
x f k' A% (¥ | Gylik)yexplik' 7). (A29)
In the derivation of (A29) we neglected the weak
k dependence of the electromagnetic coupling V;
over the pulse modes, and carried out the inte-

gration over k2. Consider now the integration over
k'. Assuming (as is appropriate for this problem)

that L,|jk)) and R,|jk)) vary insignificantly with
k' around k2, one can write

(GF | Go(B)| iRy = (( ik | G,(E — K"+ E)| jR)) .
(A30)

Introducing the inverse Fourier transform G,(7),
we get

[ aw 4,5 ¥ 16,(B)| ) expik )
~i [ ar xR Gy(r'= 1)k

XO(7' = 7) exp[—iE(T~T")] .
(A31)

Using (A31), together with (A28) and (A29), we
get Eq. (14) after performing the integration over
E,
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