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In this paper we present a quantum mechanical treatment of time resolved resonant and near
resonant light scattering from a molecular system. The time resolved decay pattern is characterized
by just two types of lifetimes, those specifying the molecular system and those characterizing the
light pulse, while the off resonance energy parameter affects the total intensity and, in some cases,
the relative intensities of the different decay components. The theoretical results for the “isolated”
molecule are confronted with the recent experimental data of Williams, Rousseau, and Dworetzky

[Phys. Rev. Lett. 32, 196 (1974)] for resonance and near resonance photon scattering from L,
Finally, we present a general scheme for handling photon scattering from a multilevel molecular

system.

I. INTRODUCTION

In conventional resonance fluorescence studies, when
the energy of the incoming photon coincides with an
atomic or a molecular transition energy, the observed
radiative decay pattern is determined by the total homo-
geneous width of the excited state, '™ When the excita-
tion energy is moved away from the molecular reso-
nance, the time resolved decay pattern contains an addi-
tional very short component, which was assigned to a
“Raman-like” process. The transition from resonance,
fluorescence (RF) to near resonance Raman scattering
(NRRS)® while changing the mean frequency of the pulse,
raises some interesting questions regarding the proper
interpretation of such time resolved photon scattering
experiments, which were reported just very recently.?’
In the present paper, we provide a quantum-mechanical
treatment of this problem. We conclude that the time
resolved decay pattern for scattering of a photon wave
packet from an atomic or a molecular system is charac-
terized by just two types of lifetimes (or rather energy
parameters): those specifying the energy levels of the
molecular system and those associated with the light
pulse. No new lifetimes enter into the decay pattern
while the (mean) pulse frequency is tuned away from a
molecular resonance. The transition from RF to NRRS
is manifested only by changes in the total intensity and in
the relative intensities of the above-mentioned different
components. Finally, we would like to emphasize that
energy~time uncertainty type arguments can be recast in
terms of the time delay matrix for photon scattering,”
which is expressed in terms of a weighted average over
the two types of the characteristic lifetimes, and does
not result in any new observable decay times.

Section II is devoted to the study of the simplest possi-
ble system, that of a time resolved decay of a single
molecular resonance which corresponds to a bound mo-
lecular state. 1In Sec. IIl we present several explicit re-
sults for the transition from RF to NRRS using different
shapes for the light pulse. In Sec. IV we provide a brief
discussion of the lifetime matrix and its relevance to
photon scattering experiments. Finally, in Sec. V we
extend the theory to handle photon scattering for any
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general molecular level structure of bound molecular
states.

ll. TIME RESOLVED PHOTON SCATTERING

In order to consider a typical scattering experiment of
a light pulse from a molecular system we shall consider
separately the description of the time profile of the pho-
ton wave packet and the relevant molecular decay func-
tion.

Weak light pulses can be described in terms of a wave
packet of one photon states?™*

d*k
b= alw- [ Eal, ar.1)

where k is the photon wave vector, k corresponds to the
photon energy, ® and |k) labels the one photon state sub-
jected to the normalization condition (kik’)= 6k - X’).
For the sake of convenience we shall omit the label for
the photon polarization in |k},

The photon density per unit volume at the time ¢ is
given by’

p(x, ¥, &, t) :(_22—)3 I a(Q) ‘ 2 5 (II. 2)
where
¢(@Q) =Jd3kexp(— ik« QA (1. 3)

and K= (%, &, k,, k,), Q=/(ct, x, y, z) represent the ener-
gy-momentum and the time-space four vectors, re-
spectively. For a light pulse travelling along the x axis,
Egs. (. 1)-(II. 3} take the simple form

wP:;Ak|k>:j%Ak‘k> ) (I1. 1a)
plx, t)=2i1T [@(e+ ct)]?, (I1. 2a)
?Q)=@(x+ct) =JdkAk expl- ik(x + ct)] . (11. 3a)

Thus the four vector Q=%+ ¢t reduces to a scalar while
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(1/27)1@(x+ cf)1? corresponds to the time dependent spa-
tial profile of the pulse. Let us now define the Fourier
transform of the wave packet amplitudes

@) = JdkAk exp(- ikt) ,

(11. 4)
A, :% Jdta(t) exp(ikt) .

From Eqs. (II. 4) and (TI. 3a) we conclude that ¢ ()= @(x
=0, #} whereupon (27)"11 %{#)  provides us with the photon
density at x=0. It is proper to refer to @(t) as the field
amplitude. Thus from Eq. (II. 4) we conclude that the
light pulse can be characterized by its amplitudes {4,}
or alternatively by the field amplitude function. The
general features of the light pulse can be further de-
scribed by two types of parameters: (1) an energy pa~
rameter 2 defining the mean energy; (2) characteristic
times which specify the pulse duration and its charac-
teristic rise and fall times. To introduce the energetic
parameter it is convenient to recast Eq. (II. 4) in the
form

o()= j dk expli(% - R))A, = 3(2) exp(iFd) , (1. 5)
s0 that ¢(f) is determined by the pulse characteristic
times. For our discussion we shall specify two such
parameters: (1) The pulse duration T; (2) the charac-
teristic rise and fall time of the pulse 7,. The latter is
typically appreciably shorter than T. The definition of
T, implies an exponential decay (and buildup) of the
pulse. Other decay modes could be used, however, this
is not essential.

We shall now consider the simplest molecular system
which consists of two discrete levels, a ground state ig)
and an excited state |s). The eigenstates of the zero
order Hamiltonian (consisting of the molecular and the
radiation field Hamiltonians) are |g, k) and |s, vac). The
I's) level is characterized by a total radiative width T'
which corresponds to a lifetime 7,=TI""!, Denoting the
ground state energy by E, =0 the single molecular reso-
nance is characterized by the energy £ = E .+ D, where
the level shift D, is usually negligibly small. The off
resonance energy parameter is

A=k-E, (I1. 6)
To explore the consequences of the interaction of the
molecular system with the radiation field, we define the
probability P.(#) for finding the system at time ¢ in the
zero photon state |s, vac), which is expressed in terms
of a convolution of the field amplitude and a molecular

decay amplitude®

Ps(t)zlvstlz (I1.7)

t 2
J dr ¢(t-1)Cs(M)} ,
0

where V,, is the electromagnetic coupling matrix ele-
ment between |g, k) and [s, vac), so that I'=27|V,,|%p, (%),
where p, (k) denotes the density of the states in the radi-
ation field at the vicinity of the energy 2. C,/{?) is the
decay amplitude which corresponds to the Fourier trans-
form of the matrix element of the Green’s function. For
the present case we have
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© . -1
C. (= (2m')'1f dE exp(- iEt)(E -E,- Ds+—’2— r)

=exp(~iEt) exp(— I'/2t) . (I1. 8)

Making use of Egs. (II. 5)-(II. 8) the probability function
(1. 7) takes the form

P0)=| Ve |®le.0]*,

where

(1. 9)

¢s(t)=£tdr @(7)exp[- (T/2)(t - 7)]exp(~iat) . (II. 9a)

The experimental photon counting rate has now to be
carefully defined. In general, the experimentalist is in-
terested in monitoring all the outcoming photons except
those corresponding to the original light pulse (II.1a)
{(i.e., except those photons having the same spatial di-
rection and polarization as the original pulse). The
photon counting rate F(f) is expressed in terms of the
time derivative of the probability function for finding the
system in any state |g, k'), where k’#k in Eq. (II. 1a).

A straightforward extension of our previous study4 re-
sults in

F()=TPt)=T|v,,[2|0,(1)]?, (IL. 10)

where we have utilized Eq. (I. 9). The integral ¢ ()
which determines the experimental photon counting rate
is determined by the four parameters: the molecular
decay width T, the off resonance energy 4, and the
characteristic times specifying the light pulse 7, =,
and 7.

It is important to notice that Eq. (IL. 10) is valid within
the framework of two assumptions, concerning a weak
electromagnetic field and the usual conditions for expo-
nential decay?® which is usually the case provided that
I' <E,. We shall now proceed to explore the time re-
solved decay pattern for some typical pulse profiles.

I1l. DECAY OF A SINGLE MOLECULAR RESONANCE

In order to elucidate the effects of the various pulse
parameters on the decay pattern, let us first consider a
square pulse of the form:

p(tr)=1 0<7<T
= 0 T> T (IH' 1)
whose energy profile is
T —
A= (2#)’1_[ dr o(t)expli(k - )7]
0
1 explite-R)T] ~1
27 i(k~%)
1 [sin(e-B)T 2sin’l}(k- E)T]]
1 _ - .2
271[ k-F ilk—%) (.- 2)
Utilizing Eq. (II. 9a) we obtain
_ . exp(—iat) —exp(~3T7),
¢s(t)—'L A+£%1., 3 tST
: _1
:ie~1/ar(t-r>eXP( iaT) fxp( zFT); (=T
A+izT (11. 3)
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which gives for the decay pattern

1 +exp(- I'f) — 2exp(- 3T #)cosAt

Az+%1"2 3 =T

F(t)=T|v,,|?

1+exp(~ I'T) ~ 2exp(- iT'T)cosAT
A% %l"z

=T| V|2

xexpl-T(-T)]; t>T.
(111. 4)
For the square pulse excitation we thus have the fol-
lowing features:

(1) The only characteristic decay time is I'"!, since
the pulse is turned on and off instantaneously.

(2) A enters as an oscillatory contribution, originating
from an interference type “ringing” effect, character-
istic of a “two level” system. °

(3) When A increases the intensity of the whole decay
pattern decreases, and the total yield exhibits a Lo-
rentzian dependence on A.

As a second characteristic pulse, let us take a Lo-
rentzian time profile

w(1)=0;

=exp(-zy7); 7>0

7<0
(I11. 5)
whose energy spectrum is
A, =G/2mk-F+(i/2)Y) .
In this case ¢,(t), Eq. (II.9a), is given by

o (8= J: ar ‘exp (— %T) exp [—-—12: (t- T)]exp(— iaT)

{(I11. 6)

exp(- 37v¢) — exp(iat)exp(- 3T'7)
a-(i/2)(y-T)

2 €xp(- y1) +exp(- I't) - 2exp[~ (T + y)f]cosAt

A% +5(y-T) '

=jexp(- iAt)

(1. 7)

F(t):r“Vszl

(I11. 8)
From this result we conclude that for a Lorentzian pulse:

(1) the time resolved decay involves two characteristic
lifetimes: »™! and I''!, which characterize the pulse and
the molecular system, respectively.

(2) The common situation in time resolved experi-
ments is ¥ > I' which means that the duration of the light
pulse is short relative to the molecular lifetime. In
such cases, Eq. (IIl. 8) yields a short time component,
FV () following the light pulse and a long time compo-
nent, F® (), where

FY(f)x exp(~ yt) - 2cosatexp[— HT +9)i]; 0<t~y
(I11. 9)

(II1. 10)

(3) the intensity ratio of these two components (II. 9)
and (ITI. 10) is practically independent of A, apart from
an oscillatory contribution, originating from interference
effects.

F®(f)xcexp(-Tt); >y,

(4) The dependence of the total inténsity on A is a Lo-
rentzian whose width is |y - I'|, which under the condi-
tion of “short pulse termination” is equal to v.

Next, let us consider the compound pulse whose time

profile consists of a sharp rise followed by a constant
part and an exponential decay,

@(1)=0;
=1; Q<7< T

7<0

=exp[- s -T)]; 7>T. (I11.11)

The time evolution of the molecule interacting with this
pulse is readily expressed, making use of Egs. (IIL. 3)
and (I11.7),

(D=0 )+¢P - Texp(-iaT),
W

(IT1. 12)

where ¢{" is given by Eq. (III. 3) whereas ¢? is given

by Eq. (III.7). Equation (II1.12) can be now expressed
in the explicit form:

o.()=0; £<0
_.exp(-iat) —exp(- 4T%)

-t A+aT ;

=1 exp[—g (z- T)]
yexpl= §y(t= T)] - exp[(@a - $T)(¢ - D],
a-3ily-T) ’

(If1. 13)

0<t<T

exp(- iaT) — exp(~ sT'T)
A+iT

+iexp(- iat

t>T.

For ¢{> T we may rearrange Eq. (I11.13) to give
¢(t)=iexp(- iAt)’

x{4, exp[- 39t - T)] - explia(e- T)]

XA exp[- 3T(t- 1))}, (1IL. 14)
where
A =[a-Zily-T)]? (IT1. 14a)
and v
A% J _ 1“3XP(iAT)fxp(— ir7)
- 3i(y-T) A+iiT (ITL. 14b)

The photon counting rate is obtained from Eqs. (II.10)
and (I1. 14) in the form

F(t)=T| v |%(|A,|2exp[~ ®t - T)1+ |A,|2exp[- (¢ T)]

- 2Re{AJA exp[ia(t - T)] exp[- 3y + T)(t - )} .
(Im. 15)

For the compound pulse (III. 11) we have the following
features:

(1) the first and second time dependent contributions
to the decay pattern are determined by the pulse decay
time and by the molecular decay time, respectively,
while the third contribution involves an interference
term. The decay pattern is determined by the two life-
times ¥ and T'!, in complete analogy with the case of
the Lorentzian pulse [Eq. (III. 8)].

(2) Provided that y>T two decay components are ex-
hibited for ¢> 7. The second term in Eq. (III.15) repre-
sents the long, fluorescence decay contribution, while
the other two terms correspond to the short components,
which are determined by the decay time of the pulse.
The intensity ratio of the long molecular decay compo-
nent to the total emission intensity at ¢= T is
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R=]A]¥]o,(T)|%.

We note that R =1 implies that no short decay compo-
nent is resolved, while for R -0 we expect an intense
short decay component followed by a weak long decay
component.

(I11. 16)

(3) At resonance (A =0) we have
R={1+[T/(y- D)|[1 - exp(~ T 7)]"}" .
If 7 is long enough (i.e,, I'T>0.1) and y> T" we get
R=~1+2T/)1 -exp(-T'T)] (I11. 17b)

which implies that R=1+ O(I'/y) and we actually observe
only the molecular decay time I'?,

(I11. 17a)

(4) For the extreme off resonance situation when A
> y>T Eq. (III.14) results in A, ~exp[(ia - T'/2)T /A
+0(y/28%) + O(T'/A?%), whereas ¢ (T) ~(i/A)exp(-iaT)
—exp(- I'T/2)] so that 1¢(T)|? is approximately equal
to A1 +exp(- I'T) -~ 2 cos(a T exp(- I'T/2)]. It should
be borne in mind that the decay pattern should be aver-
aged over the Doppler width of the line shape. If 7 is
long compared to 8!, where 8 is the Doppler width, the
third oscillatory term in |$(7)1? will average out to
zero. Thus we obtain

R ~exp(-T'T)/[1 +exp(- T T)] (I11. 18)

and the ratio of the two decay components assumes a
constant value independent of 4.

Utilizing the compound pulse (III. 11) two interesting
features of the time resolved photon scattering pattern
emerge, First, two decay components are exhibited and
second, in the extreme limiting case of off resonance
the ratio R is independent of A, A cursory examination
of our results may indicate that the second feature does
provide an adequate physical interpretation for the re-
cent experimental observation of Williams ef al.’ for
photon scattering from the B%ll state of I,. They re-
ported® that when moving away from resonance, the
relative intensity of the “long lived” molecular compo-
nent ceases to decrease relative to that of the short de-
cay component., It is, however, important to realize
that the compound pulse (III. 11) is characterized by
one unphysical feature, which is its infinitely fast rise
time. This will contribute a broad energetic spread of
the pulse amplitudes A,, whereupon the absorption line
in the isolated molecule will span an appreciable frac-
tion of the Fourier components of the pulse even when
A is large. This unphysical feature will be removed
once we allow for a proper rise time of the pulse.

To provide a realistic calculation we consider a pulse
specified by the following parameters: the pulse rise
time yi!, the pulse duration 7, and the pulse fall time
y;!. The pulse time profile is taken in the form

@(1)=exp(y7/2) 7<0
p(r)=1 0<T<T
@) =exp[- vt - T)/2]

The pulse profile presented by Williams e? al.’ is quite
faithf~lly represented by Eq. (IIl. 19) with ¥, =v,. Equa-
tion (C..9a) can be now expressed in the explicit form

T (IIL. 19)

_iexp(-iat)exp(y,/2)
o (t)= A+i(yl+r‘)/21 ) <0,
texp(-T't)

e )/2+i[exp(-iAt)—eXp(—1"t/2)]
+i(T+ 9

A+4T/2

0<1<T,
= jexp(-iat A, exp[— ZZ%_'ZL)]

- A explia(t- T)] exp[; 1“_(/2;1)}%, 1>T,
' (I11. 20)
where we have defined the auxiliary parameters
A =[ar3i(r -],
Ag=[a+3i (D= )] -[a+&ir]?

+exp(~ I'T/2)exp(iaT){{Aa + 3D) ~[a+5i(T + )™,
(Imm. 21)
The photon counting rate, in the absence of Doppler
broadening for ¢> T is now

F(t)=T| V%A |2exp[- T(t - T)]
+]a,|2exp[~ vt - T)]

- 2Re{AS A exp[ia(t — T)]}exp[ - 3y, + D)t - 7)] .
(1. 22)
For the realistic pulse shape, Eq. (III. 19), we have
the following features:

(1) Two decay components are exhibited, determined
again by the molecular decay time and by the pulse de-
cay time, respectively. These are given by the first
and the second term of Eq. (III.22).

(2) The third term in Eq. (III.22) provides, as usually,
an interference type contribution. For a realistic situa-

tion when I' <<, this term is dominated by the pulse de-
cay time.

(3) The relative contribution of the long time decay
component, Eq. (III.16) is given by

SENY.
[4,1%+ 14,2 - 2Re(A%4,)

together with Eq. (III.21).

R= (I1. 23)

(4) At resonance A=0 and R =1 whereupon only the
molecular decay appears.

(5) Far off resonance when A>T, ¥, 7,

1
R &m[y§+yfexp(— T'T)-2cos(AT)y v,exp(- T'T/2)]

A~ (111. 24}
which for I'T<1 is of the order
2 2
Rﬁ% i TT<1, A= (TI1. 24a)

Thus in the off resonance limit R~ 0 as A2,

To explore further the general decay features of the
system under off resonance conditions (& > T), we write
an alternative expression for ¢ () [Eq. (I1.9a)] in the
form

()=~ ideA(E)GSS(E) expl- {E~ EJt], (L 25)

where
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G (E)=(E - E,+%il")! (111. 26)

and where we have replaced the pulse amplitudes A, by
A(E). When A is much larger than the characteristic
widths I" and y= 1/7,, the major contribution to the Four-
ier integral (ITI. 25) are obtained at the energies % and
E, and we get the approximate relation

¢ (¢)= 27A(E,) exp(= 1T1) - iG, (k) exp(-iat)o(t) .

(I11. 27)
We thus have two decay components: the first has the
time profile of |s) whereas the second has the time pro-
file of the pulse. The relative contribution of these two
components depends on the asymptotic behavior of G, (E)
and A(E). We can use Eq. (I 27) to regain our pre-
vious results for different pulse profiles in the off reso-
nance limit.

The most important conclusion originating from the
present results is that the only typical lifetimes which
determine the time resolved decay pattern for R¥ and
NRRS involve the pulse and the molecular lifetimes.
The off resonance energy contributes only to an inter-
ference “ringing type” term, in all cases it affects the
total emission intensity while in some cases (e.g., our
compound pulse) it determines the relative ratio be-
tween the short and the long time components.

To compare the theoretical results with a real life
situation the effect of Doppler broadening and other pos-
sible broadening effects, i.e., originating from hyper-
fine interactions have to be included. We shall focus
attention on a low pressure molecular system disregard-

A/T=0

10 '}

I

A/T=1000

! A/T=1250
\
A/T=1500
A/T=1750
A/T=2000

{F (1)) arbitrary units
o)

A/T=5000

A/T=10000

FIG. 1. Model calculations for the time resolved decay pattern
for the composite pulse [Eq. (III, 11)] and including the effects
of Doppler broadening., The photon counting rate (F(f)) is dis-
played for various values of A/T. The following typical param-
eters were employed: v/I'=100, I'T=0,5, and 3/T' =500, The
dashed line represents the time profile | ¢(t) |2 of the pulse,

10

S,

{F (1)) arbitrary units

FIG. 2. Model calculations for the time resolved decay pat-
tern for the realistic pulse shape [Eq. (II1.19)]. The parame-
ters v/T', T'T, and B/T are the same as in Fig, 1. The dashed
line represents the time profile { ¢ ()| 2 of the pulse.

ing for the time being the interesting effects of pressure
broadening, and considering Doppler broadening only.
The experimental decay pattern (F(¢)) is given by aver-
aging F(¢) [Eq. (1I.10)] over the proper Gaussian dis-
tribution.

f(a"=Q/Vnp?)exp[- (&’ - a)2/82] . (1. 28)
A is the mean off resonance energy so that
(F(z)= f +mf (A"F(t)da' . (1m. 29)

[F(¢#) is a function of the off resonance parameter A’ ]

Results of numerical calculations of (F(¢)) using the
compound pulse [Eq. (III. 11)] and the realistic pulse
shape [Eq. (II1.19)] are presented in Figs. 1 and 2.
These results exhibit the following general features:

(1) The effects of the Doppler broadening have a pro-
nounced influence on the decay pattern. When > T the
decay pattern corresponds to a resonance excitation as
long as A< B. Under these conditions, only the long de-
cay component is observed. When A > 8 both the short
and the long components are exhibited and we obtain the
off resonance situation.

(2) The oscillatory interference contribution is
smeared out due to averaging over A.

(3) The total intensity (F(¢)), for each ¢, decreases
with increasing A.

(4) The contribution of the fast (Raman-like) compo-
nent relative to the long, fluorescent type, component
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increases with increasing A.

The general features (1)-(4) are exhibited for both
the compound pulse (III. 11) and the realistic pulse
(IT1. 19). The compound pulse does, however, exhibit
one unphysical feature, which originates from its in-
finitely fast rise time. When A increases (i.e., A > f)
the intensity ratio (R)=(1A,12)/(F{T) for {Ill.11) as-
sumes the limiting form (III. 18) which is independent of
A, Onthe other hand, for the pulse shape (ITI. 19), the
intensity ratio (R) is found to decrease as A2, for the
off resonance situation, as is evident from Fig. 2. For
the comparison of our resulis with a real life situation
the realistic pulse shape (III. 19), which faithfully re-
produces the experimental pulse employed by Williams
et al.,’ has to be used.

IV. RELATION TO THE LIFETIME MATRIX

We have demonstrated that the off resonance energy
parameter A™! does not enter as an observable lifetime
in the time resolved decay process. For certain pulse
profiles the molecular decay component (I') decreases
relative to the pulse component {y), with increasing A.
However, this is not a fundamental feature originating
from the time-energy uncertainty principle,® as we can
consider certain realistic pulse profiles [e.g., (III. 5)]
for which the ratio of the two components is independent
of A (apart from the interference oscillatory contribu-
tion). We can, however, demonstrate that A™! is asso-
ciated with the lifetime matrix of scattering theory,

The lifetime matrix Q(E)"!! gives the time delay in a
scattering experiment due to the interaction between the
beam and the target. Usually, a particle beam is con-
sidered, but we can also handle the scattering of a pho-
ton wave packet by the same formalism. The @ matrix
refers to a typical “long time” experiment'?* where a
monochromatic beam is scattered at steady state.

(Iv.1)

For a scattering from a

d
Q(E):ﬁﬁn 3

where 7 is the phase shift,
single resonance we have

n=286=26,+2arctan[T'/(E, - E)| 1v.2)
which gives for Q(E)
QE)=2TH/(E - E,F+T?] . (Iv.3)

For a monochromatic photon beam with energy Eg we
get Q(E)=27%/T which is just twice the lifetime of the
resonant molecule state. Appropriate averaging over
energies around the resonances gives™

Q=#T .
Far off resonance, if we assume that the wave packet
width is much smaller than A (the energy difference be-
tween E s and the center of the wave packet k) we have

2K
Q= r+afr *

(Iv.4)

{Iv.5)

We have thus established the relation between A and the
lifetime matrix. In general, the time delay {(f) in the
scattering experiment is obtained by averaging Q(E) over
the (phonon) scattering cross section o(E) and the wave

packet amplitudes A(E),

(t)ocfQ(E)o(E)lA(E)lsz .

However, this delay time does not yield the time re-
solved decay components, but rather results in the dif-
ference between the weighted average of the characteris-
tic decay lifetimes and the pulse time. The averaging
depends explicitly on A.

av.s)

To elucidate the physical features of our results we
note that different Fourier components of the exciting
pulse contribute to resonant scattering, which is char-
acterized by the molecular lifetime, and to direct scat-
tering, which should be considered as a single quantum
mechanical process. Only the Fourier components of
the pulse which are close to resonance, excite the long
molecular decay component, while other Fourier com-
ponents are directly scattered. When a realistic pulse
shape Eq. (III.19), is employed, the population of “meta-
stable states,” excited near resonance decreases as
A™ while their relative contribution decreases as A=
for large A.

This theoretical result for the “isolated” molecule is
in variance with the low pressure (0025 torr) experi-
mental results of Williams ef al.® It thus appears that
under their experimental conditions collisional perturba-
tions have already a dominating role in determining the
decay pattern.

V. INTERACTION OF A LIGHT PULSE WITH A
MANIFOLD OF MOLECULAR RESONANCES

The treatment of the previous sections may be extend-
ed to include an arbitrary number of molecular reso-
nances, The treatment of the radiative decay of a mani-
fold of molecular levels rests on the effective Hamilto-
nian formalism,? %1013 Tet us assume that instead of a
single |s) resonance we have a set of n excited molecu-
lar levels { | )} coupled radiatively to the ground state
lg7 and can be also coupled among themselves. The ef-
fective Hamiltonian, defined within the subspace b
spanned by the {|m )} levels may be diagonalized by a
symmetric (nonunitary) transformation resulting in a
set {17} of independently decaying levels characterized
by the complex energies E, —i3T,.*1%13 1t is also use-
ful at this stage to define the set of the corresponding
complex conjugate states {|j)}. We thus have for the
projection operator of the zero photon states

B=3"|m, vac) (m, vacl=_|j, vac) (7, vac| (v.1)
m i
and the projection of the time evolution operator, U(¢0),
within P is given by

Pu(t,0)P {: ) exp[(— iE; - 1;1 )t]<}| .

We now define the general doorway state |N, vac) carry-
ing all the oscillator strength from the ground state!

(v.2)

1 .

1
leac):—Hlnt|g5k>:'_‘PH1ntlgak>: (v.3)
Yv YN

where |vac) and |k) are zero and the one photon states
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of the electromagnetic field, H,,, is the electromagnetic
interaction and the width yy is given by

‘7’Nl2:<g’k|H1nt'H1nt|g’k>- (v.4)
The radiative width of |N), Ty, is
FNZZ"T")/N|apr ’ (v.5)

where p, is the density of states of the electromagnetic
field at some average 2 value. The photon counting
rate is*

F(r>=r,,§;2 AAL PR, (v.6)
where

A =(N|GFIN (V."7a)
and

%) =f0t dr ot ~7) exp[~ik(t~7)] exp[—(us, +£21)T]

(V. 7b)

=exp(- iE,t)fot dr ¢(t)exp(~ iAjT)exp[—Ezi (t—‘r):' ,

(v.8)
where

A;=k-E; .

Equations (V. 6)-(V. 8) provide us with a general solution
for the radiative decay problem of a molecule charac-
terized by a complex excited state level structure. The
decay pattern is now determined by the set of molecular
lifetimes {T;'}, by the characteristic times specifying
the pulse profile, and by the set of off resonance ener-
gies {4, }. These general results can be utilized for
specific systems interacting with a variety of light
pulses. Without alluding to any specific calculations we
can conclude that as in the case of a single resonance
the only lifetimes which will determine the decay mode
will be (T;)™" and the lifetimes characterizing the pulse
decay, while the off resonance energies will again just
contribute to the relative total yields. We hope that the
results presented herein elucidate the nature of the
“transition” from RF to NRRS.

Note added in proof: There has recently been con-
siderable activity in this interesting field. Friedman
and Hochstrasser [J. M. Friedman and R. M Hoch-
strasser, Chem. Phys. 8, 155 (1974)] have treated one
of our cases and derived Eq. (III. 8) of the present paper
for the Lorentzian time profile of a light pulse. Berg,

Langhoff, and Robinson [J. O. Berg, C. A. Langhoff,
and G. W. Robinson, Chem. Phys. Lett. 28, 305 (1974)]
have treated the problem of time resolved scattering
utilizing a formalism similar to that of Ref. 4 and of the
present paper.

The main conclusion of Berg ef al. that “there is no
exponentially decaying component which depends on the
frequency difference between the exciting pulse and the
resonance” concurs with our analysis. The present
work bears a family resemblance, but is distinct in
some respects from all of these.
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