Some anisotropy effects in molecular photoejection

spectroscopy

Shaul Mukamel and Joshua Jortner

Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

Applied Optics Department, Soreq Nuclear Research Center, Yavne, Israel

(Received 13 June 1974)

In this paper we present a theoretical study of the angular distribution of the fragments in the
predissociation of diatomics. We have utilized scattering theory and the effective Hamiltonian
approach to derive general expressions for the differential cross section and for the angular anistotropy

under different excitation conditions.

I. INTRODUCTORY COMMENTS

Interest in the basic mechanisms of molecular photo-
dissociation and predissociation has recently been re-
vived by a number of new experimental observations
such as (a) molecular alignment by selective photodis-
sociation,! (b) spectroscopic studies by vibrational and
rotational distribution of a diatomic fragment which re-
sults from a direct or indirect photodissociation of a
triatomic molecule,? (c) laser action accomplished by
preparing a vibrationally inverted molecule via photo-
dissociation of a polyatomic,® and (d) studies of the angu-
lar distribution and the velocity distribution of the pho-
tofragments.®® Photodissociation and predissociation
of diatomic (or quasidiatomic) molecules provide one
of the simplest examples of a nonradiative decomposi-
tion (or decay) process of an excited molecular state
which is amenable to a detailed theoretical study.":%°
The problem of the angular distribution of molecular
photodissociation products achieved by the action of
plane polarized light has recently been elucidated by the
beautiful experimental work of Jonah, Chandra, and
Bersohn* and of Busch and Wilson.> The theoretical
foundations for the understanding of photodissociation
dynamics have been provided by Zare” and by Bersohn
and Lin.® In these studies of direct photodissociation,
an instantaneous dissociation process was correctly
assumed. It was pointed out by Busch and Wilson® and
by Jonah® that the anisotropy in the spatial distribution
of products would be eroded were the molecule to rotate
before dissociation. A semiclassical picture for a pho-
todissociation process characterized by a finite delay
time was provided by Jonah.® The nature of anisotropic
direct and “delayed” photodissociation bears a close
analogy to the problem of angular correlation in nuclear
physics® and to atomic angular correlation spectros-
copy_lob

The problem of angular distribution in a delayed pho-
todissociation process requires the explicit introduction
of rotational effects for the description of a nonradiative
molecular decay process. In the most recent literature
on the theory of intramolecular coupling and nonradia-
tive processes such as the theory of radiative decay of
small molecules and electronic relaxation in large
molecules,! the role of rotational effects was usually
ignored. This is justified, as the intramolecular cou-
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pling between different electronic or vibrational states
conserves the angular momentum and consequently also
the rotational quantum numbers, provided that vibra-
tional~rotational coupling in polyatomics can be disre-
garded. From the experimental point of view, the

work of Parmenter and Schuh!? on resonance fluorescence
from the first singlet state of benzene has demonstrated
that internal conversion in this “large” molecule is not
sensitive to rotational effects. Concerning small mole-
cules, we would like to mention the large variation of
the interstate coupling between discrete levels in some
diatomics with the rotational level.'® This effect can

be easily understood in terms of the modification of the
energy gap between rotational states which are charac-
terized by the same rotational quantum numbers and
which correspond to different electronic configurations.
This effect originates just from the change in the rota-
tional constants between the two electronic states. More
interesting are predissociating states of some diatomics
(i.e., the A%Z* of OD) which exhibit a marked depen-
dence of the predissociation width on the rotational
state.'®® Finally, in the study of photoejection dynamics,
the role of rotational effects is, of course, crucial, as
has already been demonstrated in Zare’s quantum me-
chanical treatment of direct photodissociation” and in
Jonah’s semiclassical treatment of delayed photodisso-
ciation.®

While the direct photodissociation problem is well
understood, further studies of the delayed photodisso-
ciation are of interest. In this paper, we utilize theore-
tical techniques developed by us for nonradiative molecu
lar decay processes,!* to provide a complete quantum
mechanical treatment of the anisotropy of products in
the predissociation of diatomic molecules.

We were able to obtain explicit results both for “short
time” excitation mode, where the exciting photon field
spans a broad energy range, and for “long time” excita-
tion characterized by high energy resolution. Selection
of specific rotational states is possible, of course, only
in the latter case. The predissociation lifetime enters
into the theory in a self-consistent, natural way and de-
termines the angular distribution of the products. The
direct photodissociation problem treated by Zare’ is ob-
tained as a limiting case of our results. Jonah’s results®
hold in the case of predissociation in the “short excita-
tion” limit.
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1i. A FORMAL TREATMENT OF PREDISSOCIATION

We shall now provide some general expressions for
the directional predissociation process. The most con-
venient approach involves the calculation of the cross
section for scattering from the one photon ground molecu-
lar state to the dissociative continuum. This energy de-
pendent cross section can subsequently be integrated over
the photon wavepacket, resulting in the angular distri-
bution under different excitation conditions.

We consider electronic dissociation of a diatomic
molecule, which is characterized by three electronic
states: the bound ground state |g,), an excited bound
state |s,), and a dissociative state |d,). The discrete
singlet molecular states that correspond to |g,) and
Is,) are

1 [2J+1
|ngM>: ;dlé"(% T)X ,(,'.r)("') ar D{{A’((p; 0, 0):

(I1.1)
[ 1 IZJ'+1 ’
|S1J J'M)= " e(aS)(q: r)X :;s')l'(y) ar D 'As((P’ 6,0),

where g are the electronic coordinates, while », 4, and
@ represent the polar coordinates of the internuclear
axis with respect to the laboratory-fixed frame. 3
and ¥ (a =g, s) correspond to the electronic and the
vibrational wavefunctions, respectively, while

DI, (¢, 6,0) is the Wigner rotation matrix.”® A=0and 1
for T and Il states, respectively.

The dissociative state wavefunctions can be repre-
sented in terms of a complete set of states

27" +1 .

—4; Du~ale, 6,0),
(I1.2)

each characterized by the relative kinetic energy ¢

= #%K?%/2p and a definite angular momentum (J "M ").

The continuum nuclear wavefunctions y 4’ behave asymp-

totically as

2 " 1 1
|ded"M" ) = o ¥ (@, 7)x 7 (Kr)

xé‘fr’(Kr)=sin(Kr—-gJ+5:) . (1. 3)

P is the electronic wavefunction, y % is the solution
of the radial (nuclear) equation, and §, is the phase shift.
For the present study, it is more convenient to take a
linear combination of the (degenerate) states (II. 2), sat-
isfying the appropriate boundary conditions for our ex-
periment (i.e., an incoming spherical wave plus a plane
wave in an arbitrary K direction). K represents the
propagation vector pointing along the final recoil direc-
tion of the fragments. The polar angles of K with re-
spect to the space fixed coordinate system (xyz) are de-
noted by & and ®. The wavefunction corresponding to
(K| is

(K= =970, 7) ; (27" +1)G )" exp(- id,.)

ex W (K7D, ([K-%). (1L 4)

Here, A corresponds to the electronic angular momen-
tum of |d,), and K and r are the unit vectors along the
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propagation and the position directions, respectively,
Making use of some standard relations for the Wigner
rotation matrices, ® Bq. (II,4) takes the form

(K|= 20" @ 1) 2 7 41 explei8,)

o X 2. (Kr)Dy: 4 (9, 6, 0)D5: 4 (2,0, 0) . (I1. 5)
The molecular states (II. 1) and (II. 5) correspond to the
eigenstates of the zero order molecular Hamiltonian HY.
The total Hamiltonian is H=HY + Hy + Hyq+Hyp . We
shall separate the Hamiltonian into two parts H=Hy+ V,
where Hy=HY +H,,qyand V=H, +Hy,. Hy is the intra-
molecular coupling term, H_,,the free radiation field
Hamiltonian, and H,; is the radiation-matter interaction
term. To specify the eigenstates of H,, we now consider
the free radiation field. For weak photon fields, the
eigenstates of H,,, are the zero photon state |vac) and
the one photon states |k, e), where k is the photon wave-
vector and e its polarization vector. Since we are in-
terested in predissociation induced by a plane polarized
light, we shall choose a single polarization direction e
along the laboratory z axis and from now on the one pho-
ton states will be labeled by |k). The relevant eigen-
states of H, are one photon states {i )= |gvJM, k).and
two types of zero photon states 15)= | svJM, vac) and

| )= |K,vac). We note in passing that off-resonance
contributions will be neglected. The states |:) are cou-
pled by H,,, to |5?, which in turn is coupled by H, to

the continuum states | f). Inthe present treatment, the
coupling between the radiative continuum !i) and the
molecular dissociative continuum | f) is not considered,
which is justified for many cases of physical interest, !

Application of scattering theory'® results in a general
expression for the scattering cross section from the
continuum state |{ )= |gvJM, k), characterized by the
energy E;=E_;,+E, with E=7%kc, to the continuum state
| f)=1K,vac) characterized by the energy E,. The dif-
ferential scattering cross section ¢(®, &, E) depends ex~
plicitly on the photon energy E = #zc and on the polar
angles &,0 and is expressed in the form

c(®,@,E)=%f2I<fIT(E)!i>Izo(E,-—E,), (1. 6)

where T(E) is the reaction matrix
TE)=V+VGHE)V,
G*(E)=(E-H+in)™",

(I1.7)
n—-07,

G*(E) is the Green’s function, H the total Hamiltonian,
and V=H,,.+Hy.

We now segregate the Hilbert space into two parts,

fJ=ZZ | svTM, vac) (svdM, véc| s

v JM

é=222 | gvaM, k) gvIM, k| +Z |K, vac } (X, vac|,
K

v JM X

B+d=1, (11.8)

where the subspace P contains discrete states, while
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spans all the continuum states of our system. We now
note that the coupling terms H, and H, , couple only
states in different subspaces, i.e., PVP=QVQ@=0 so

that
V=Hy+Hp=PVQ+QVP. (I1. 9)

In order to express the matrix element on the rhs of
Eq. (II.6), we make use of the operator 7 (E)@, which
is now given in the form

QT(E)Q=QVPG(E)PVQ . (II. 10)

Finally, the operator ﬁG(E)IS in Eq. (1I.10) can be ex~
pressed in terms of the effective Hamiltonian formal-
isml7:14

PG(E)P=(E - PH,,P)'P,
PH,B=P(H~- V)P+PR(E)P
R(E)=V+VQ(E~-Hy~ QVQ)1QV .

(11.11)

H,,, is the effective Hamiltonian, while R(E) corresponds
to the level shift operator. Thus, Eqgs. (H.6), (II.10),
and (I 11) provide us with the final formal expression
for the differential scattering cross sections into the
dissociative continuum. These cross sections are ob-
tained for a well defined photon energy E. In an actual
experiment, the exciting light source is not necessarily
monochromatic. Excitation of the system by a photon
wavepacket J,A,l%), where A,=A(E) correspond to the
amplitudes of the one photon states (all characterized
by the same polarization and propagation direction) will
result in an angular distribution W(®, ®)dQ which can
be expressed in terms of the integral of o over the pow-
er spectrum of the pulse

W(®, &) =de|A(E) %(0, &, E) . (L. 12)

We note in passing that for a monochromatic excitation
(i.e., long time excitation), |A(E")|12=8(E-E’) and
w(e,®)=0(0, &, E), while for a broad pulse, we have
w(e,®)= [ dEol®, &, E).

j
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We shall now proceed to the calculation of the predisso-
ciation cross section for our molecular model,

I1l. DIRECTIONAL PREDISSOCIATION OF A SINGLE
VIBRONIC LEVEL

‘We shall now derive explicit expressions for photon
scattering from the ground vibronic one photon state
| g0JM, k) to the dissociative continuum, considering
a single vibronic level |sv) which belongs to the elec-
tronic configuration |s,). This is justified provided
the spacings between the origins of adjacent vibronic
levels considerably exceed all the relevant radiative
and nonradiative widths of the |svJM, vac) states.
This is the general rule, although exceptions may be
encountered, such as in some vibrational levels of the
BO; state of Se,.!® From now on, we consider a single
vibronic level and take a diagonal matrix for the level
shift operator [Eq. (II.11)]. When the widths of the
vibronic levels exceed their spacings, the level shift
matrix should contain all the relevant coupled vibronic
levels as it should be prediagonalized in order to ob-
tain the independently decaying levels!®!? of the sys-
tem. For the evaluation of the reaction operator (I1.10)
using (II. 11), we recall that PGP can be written in
terms of the spectral resolution of the states which
diagonalize the effective Hamiltonian

Hy =Hy+8 3T, (1. 1)

where A is the level shift and I' corresponds to the
level width matrix. H,,, will be represented in terms
of the eigenstates |svJM) of H,, which are character-

ized by a well defined angular momentum,

In subsequent manipulations, we shall ignore the
level shift matrix A. Since we actually consider an
almost diagonal level shift matrix (see below), A just
modifies the energy levels and we have to replace the
energy Eg,;u by Egyry+0(svdJM, svJM). We can thus
treat E,,;, as the modified energy, and from.now on
we shall not explicitly write the level shift terms.

The level width matrix I'(;,7) =T, is

T (svdM, svd'M') =27 svJM,vac|H;|deJM, vac) p;{deJM, vac | Hy |svd 'M")

w21 2 (svdM,vac||Hylgv,d"M" k) p, (gv,d"M" K| Hyy, | svd'M!, vac),

TEHT VoK

where p, and p, correspond to the densities of states in
the dissociative continuum and in the radiation field,
respectively, at the energy E above the ground state
|g0JM) level. The intermediate states (deJM, vac) and
|gvgJ''M"', k) are taken on the energy shell. We are now
in need of the matrix elements in Eq. (. 2).

The intramolecular coupling matrix elements can be
written in the form

(K|H,| svsM) = VEr@T +1) R¥S' D}, (8,8, 0)8, .4 »

where (1. 3)

(1. 2)

R = -11{—(1' Y exp(- i()_,)fd'rx DK vas(P)x S () dr
{I1. 4)
and

vaslr) = [ @ a, NHAO (@, ) da . (mz. 5)

In the derivation of (III. 3) we have used the fact that the
intramolecular coupling conserves the angular momen-

tum. The radiative interaction matrix elements may be
written as '

(svJ ‘M, vac|Hy | g0TMk ) =B8{svd ‘M, vac| p- e|g0IM, k)

=£(J 'M'A,JMA,)RSSE) (L. 6)
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where B is a numerical constant, g the transition dipole
moment, and y * e its projection on the z axis. The
auxiliary functions in Eq. (IIL 6) involve the radial part

RS¥) =fx EX e (r)x 5 (v)dr,

(L. 7)
g(r)= [ (q, r)z.: eq ¥ (@, 7)dq,
and the angular contribution
£ M A, TMA,) = (4n) 18V BT + )27 '+1)
® | Djpss (@0 0)Dy (06 0)D}, (060)dR2,  (IIL.8)
where
A=A, =-Ag .

T(svdM, sv(J +2)M) = 2n{svJM, vac| Hy,, | g 0(7 +1)M, k) (g O(J +1)M, k| H . | sv(J +2)M, vac)p,

and

T(svIM, so(J = 2)M) =27 (svJM, vac| Hyyy | g0(J = 1)M, k) gO(T - 1)M, k| H,,, | sv(J - 2)M, vac)p.

Although, strictly speaking, the decay matrix is non-
diagonal and the effective Hamiltonian (I, 1) has to be
diagonalized, this cumbersome procedure is unneces-
sary. The off-diagonal matrix elements [Eq. (III.10)]
of the decay matrix are of the order of the radiative
widths, that is, ~10%cm™. These terms are typically
much smaller than the spacings between the adjacent
diagonal matrix elements of H;, i.e., the separation of
rotational levels, and thus radiative interference effects
can be disregarded. PH,,,P[Eq. (UL 1)] can be con-~
sidered to be diagonal in the |svJM) basis, which pro-
vides an adequate description for the independently de-

caying levels of the system. Under these circumstances,

PGP [Eq. (II.11)], assumes the simple form

- . ISvd' MY {(SvJ M |
PG(E)P',%, E-E; +3il; - 7

(Imm. 11)

where E;. is the energy of the [svJ'M’) state, and I';.is
given by Eq. (I11.9). The width I',. consists of a non-
radiative width and a radiative width. Utilizing Eqs.
(IT. 10) and (IT.11), the matrix elements of the reaction
operator in the |svJM) basis take the form

(K, vécl T(E)|g0JM, k)
_ Z (KIHy, | Svd'M"y SvJ'M'|H\,180JMK)

o E-E; +3iT, !
(. 12)

In order to evaluate this matrix element of T which ap-
pears in Eq. (I.6), we shall utilize the explicit form of
[K,vac) [Eq. (IL 5)] together with the coupling matrix
elements [Eqs. (II. 3)-(I0I.9)] and Eq. (4.62) of Rose,®
Straightforward algebraic manipulations lead to the re-
sult

(K, vac| T(E)| g0JM, k)

Y (2J+1)' /2R . A,. D}, (260)
J! E"E',l +%ir,: ’

(1. 13)

Inthe case of parallel {e.g., ' - ') transitions in diatom-
ics A =0, while for perpendicular transitions (e.g. , 13 -,
A=1, The integral in Eq. (fI.8) yields the conventional
selection rules M=M' and J=J'+1. Making use of
Eqgs. (fI1. 3)-(IT. 8), the decay matrix (1. 2) takes the
form

I, =T(svJM, svIM)
=2n|(svIM| H,|dEIM)|2p,
+27|(svIM, vac|Hy, | g0(7+1)M, k) |2p,
+27|(svJM, vac|H,,| g0 -1)M, k)|%p,  (II.9)

for the diagonal matrix elements, while the only non~
vanishing off-diagonal matrix elements are

(TII. 10a)
(TI1. 10b)
|
where
Ry =V4n BRSO R¥) (11, 14)
and
Ay =C71d"| MO)C(TLT | 0N) . (. 15)

Here C(J,J,J3| MyM,) are the Clebsch— Gordan coeffi-
cients.”® We notice that A,, vanishes unless J ' =J or
J'=Jx1,

We now consider a molecule in the [g0JM) state. The
cross section for dissociation in the K direction is!®

(

2 2
01u(®, B)= 2L (x| 7(5) 5071, ) |,

(1. 16)

To obtain a cross section observable in a real life ex-
periment, we have to proceed in three steps. First,

we average 0;, [Eq. (II. 16)] over the (2J+1) M values.
The averaged cross section for photodissociation of a
single ground state J level is given by

J
0,(®, E)= (2J+1)'luzlom(®, E). (Im. 17)
This averaging corresponds classically to averaging
over the initial molecular orientations. Second, we have
to consider the spectral distribution of the exciting light
and utilize Eq. (II.12) to obtain the angular distribution
for dissociation W,(®) from a single J level in the form

W,(®) = f dE| A(E)|%0, (0, E) . (1. 18)

Third, a thermal averaging over the imitial distribution
has to be performed, resulting in the final result

(w(e) = %Z,: (27 +1)w, (@) exp(~ BE,) , (I11. 19)

where Z=7 , (2J+1) exp(~ BE,) is the rotational parti-
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tion function and B=(k;T)™. ky is Boltzmann’s con-
stant and T is the absolute temperature,

We shall now provide a general expression for

0,0, E) [Eq. (I0.17)], utilizing Eqs. (II.13) and (I1.16).
The mathematical details are given in Appendix A. The
final result for the scattering cross section from a
single ground state J level is

(217) R, Ryn
¢,(®, E)= et w
+(0, B)= 50y so s ra (E=Ey +5iT,, 1z = Ea LT, e (m. 20)
where
N e = (= DM Y RITI 2T +1) C(7 1" |00 C 17 " | on)
® 2 wsis" |71)c(11T]00)C( T "T | A = A)DF, . (mm. 21)

7=0,2

W(abedl ef) is the Racah coefficient.'®

Equations (III.20) and (III.21) together with Egs.
(IT1. 18) and (II1. 19) provide us with the general quantum
mechanical expressions for the angular distribution of
the predissociation products, which incorporates both
the effects of the relative kinetic energy of the recoiling
atoms and the effects of rotations. From now on, we
shall be mainly interested in the common situation

(2m)? o By 12 o 3

(E J,)(E E;.)+3T'%

r

where predissociation takes place well above the onset
of the |d,) dissociative state, whereupon ¢ exceeds the
mean rotational energy, i.e., €>» kg7T. Under these
circumstances, we can utilize the common “axial recoil”
approximation "i.e., that the nuclear radial wave func-
tions x &, x&?, and x"” exhibit a weak J dependence and
consequently I',.[Eq.(IN.9)] and R ,.[Eq. (IIl.14)] are
assumed to be independent of J ' for a narrow J' range
(J'=J,J+1). Within the axial recoil approximation,

Eq. (0L 20) takes the form

(II1. 22)

01(®: E) =

It is easy to demonstrate how Eq. (III.22) reduces to
Zare’s result” for direct photodissociation. For this
purpose, we require I'; to be large compared to
|Eje=E;ul, where J',J" =J,J+1, To provide a rea-
sonable estimate of the energy difference |E;. - E,. |,
we recall that thermal averaging over ground state popu-
lation will lead to optically accessible J states in the
range of {J )~ (kyT/B)'/? so that |E;s —Ezu |~2 Bk T .
We thus require that I'y »VBepT. Under these circum-
stances, Eq. (11.22) takes the form

(211) 'RJ!Z 1

9500, E)= = IRy 00 g T3 4 (T8 /)

X D, miA.. (L23)
J T2, T+

Thé sum on the rhs of Eq. (TII. 23) is evaluated in Appen-
dix B, resulting in

0J(®, E)O: lDtlll(é’('D; 0) lz ’

resulting in a 0,(®, E)« cos?® angular distribution for
parallel transitions, and a ¢}(®, E) @sin®® angular dis-
tribution for perpendicular transitions. The same dis~
tribution could have been obtained by neglecting off the
energy shell contributions to 0,(®, E), i.e., taking T,
> |E=-E;. |, |E=E ;| in Eq. (1. 22).

Tic soga s a[E=E, R +IT L (E-E,af +iT%,] 5. .

r
tV. BROAD-BAND OPTICAL EXCITATION

We now consider the applications of our general re-
sults to the extreme broad band excitation limit, where
the molecular ensemble is excited by a light source that
contains all frequencies. The angular distribution for
predissociation from a single vibronic level is now given
by Eq. (III.18) in terms of the integrated cross section:

w,(@)= [ dEo,(®, E) . av.1)

Making use of Eq. (TI.20), we get the general result for
this mode of excitation,

(271') 27 RJ IR',”

pd.r' .r;r 721 Epn = Ep +3i(Ty0 +T;0) ity
(Iv.2)

In the derivation of Eq. (IV.2), we used the fact that

R;. is a slowly varying function of the energy over the

energy range I';. R,, in Eq. (IV.2) is taken at the en-

ergy E,..

W, (@)=

At this stage, we again invoke the axial recoil approxi-
mation; thus, Eq. (IV.2) results in the expression

(217)

w,(@)= PaFJ—’RJIZ X
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rz
X AL 42 it n:]
[JZ"UJJ Z (E;e— Ejr) +1—.‘2r77.r.r ’

JI'JII
T (Iv. 3)
which can be brought into the alternative form
_2m2m 2
W,(0)= 30 R
E;u=E; /)
RTINS S
[J;I:" g J;J' (E;o - E;.f+T% Maes
Iv.4)

The first sum on the rhs of Eq. (IV.4) is given by Eq.
(B4) in Appendix B. To evaluate the coefficients n7%;.
(J'+J") in the second sum, we make use of Eqs. (A4)
and (A5) in Appendix A, bearing in mind that C(7 'J''01A
- A) vanishes for J'#J". Thus, we get
N3N =730 uPy(cos@); J#EJ”,
T3l =CW T "2| A= N)C(T17 " |0R)
eC(J1J"|0n)c(112]00)

(= 1M (27 +1)(2J "+ 1))V 2w(1J24 "] 7 '1).

(Iv.5)

Making use of Eqs. (B4) and (IV.5), we obtain the trans-
parent result

27)?
w,(0)= é—c% pal B; |2 Db (@,0, 0|2 0, P, (cos@)],
(1v. )
where
6%, —
;=2 i‘:’g‘z’[‘— TR awv.n
70 geng s 2,
Jll) Jl

and 6;.y» = |E;. — E;« | /T, is proportional to the ratio
between the molecular lifetime T';! and the mean rota-

tional period at the J level, |E,, — E,« |, where J',J"
=J,dJ +£1. Equation (IV.6) contains two contributions.
The first term involves the anisotropy for “instant pre-
dissociation” being proportional to cos?® for a parallel
transition (A=0) and proportional to sin’® for a perpen-
dicular (A=1) transition. The dynamical information
concerning the system is incorporated in the a; parame-
ter, Eq. (IV.7), of the second term in Eq. (IV.6). The
magnitude of this second contribution which partially
erodes the anisotropy in predissociation is determined
by the ratio §;.;., when 6;.;.>1 the second term has
maximal influence on the distribution, whereas when
8;+;»— 0, this term vanishes and the distribution is
governed by the “instantaneous” term.

It is a straightforward matter to evaluate the coeffi-
cients 774 ., Egs. (HI.21) and (IV.5), which can be
used to evaluate ¢, [Eqs. (III.20) and (II. 22)] or the
angular distribution (IV.6) for the broad band excitation
limit.

To compare our results with Jonal's treatment,® we
consider a special case of !X - predissociation, where
all three | g,), |s,), and |d,) electronic configurations
correspond to a 1T state. We now have to evaluate the
174 . coefficients for JJ "=J 1. After some algebraic
manipulations, we get

so [ g+l (T+1)J+2)
NIs,e1= 3 +
LI T gl 27 41 (27 +17

P, (cos®)] )

1 J J{J—1)

Thram 7l ; (Iv.s
Nr-1,71 3{2J+1 +m P, (cos@)] s )

J(J +1
Nra= TZ—J—;I_))apa (cos®) .

The general cross section, Eq. (III.20), is given by

|
_ (emp? | Ry 12 70 IRy 12 70
0,(®, E)= 7 Pa (E— EJ+1)2+%F§_“TIJ+1,J+1 + (E-E, f+iT%, Nr-1,0-1
*
R.r ] R.I-J. 7,0
+2Re (E-E;q+3iT,.) (E-E,; 4 -3iT, ) 1) av.9)
r

While the angular distribution in the short excitation 3 Z IR, 12 4B%(J +1)(27 +1)
limit, adopting the axial recoil approximation [Eq. 2Ty T, 4B%*2J +1¢+T¢ exp(- BE,) .
(Iv.6)], takes the form @v.11)

(27)? 2

W, (@)= TR, |2 [cosz®

/] r
J(J +1)

'2(2.1 +1)

2
1‘{:'%? P, (cos@))] , (Iv.10)
J

where B is the rotational constant of the molecule, i.e.,
E;=BJ(J +1)and ¢, =2B(2J +1)/T,.

To derive the thermally averaged distribution, Eq.

(IIL. 19), for a broad-band excitation of a '=—-!% predis-
sociation process, we define the thermal averages

2 2
yl=<Lf%d_> =%Z(wu) '—Ilf-f'— exp(- BE,)
J 7 I

and

Equation (IV. 10) now yields the thermally averaged dis-
tribution

3

(W) = -(—2:%)6—7/-1 ps[1 +2bP, (cos®)], (Iv.12)
where

p=A"22 (1v.13)

"

Equation (IV. 12) provides a slight generalization of
Jonah’s results® for a 'Z~1% “retarded dissociation.”
Jonah’s semiclassical treatment did not include thermal
averaging of the |R,|%/T, terms, which are not expected
to be constant over a broad J range.!s

It is easily demonstrated that Eq. (IV.12) provides
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the correct limiting cases. Inthe case of fast predis-
sociation I'; > (B(J +1)) =V BEs T, then y,/7 ~ 0 and
b-1, so that

(W(@))=

(2m3 /1R, 1® .
L b <~1:;—> cos?® , av. 14)
while for the limit of slow predissociation I'; « VK, TB,
Y/7 =%, b=1, and therefore

_ (@m? <|RJ|2 1 2
ween = - o, (1 >4(1+cos ®) . (1v.15)
This limiting angular dependence has previously been
derived.®

V. TIME-DEPENDENT APPROACH TO DIRECTIONAL
PREDISSOCIATION

We have obtained the final distribution of the predis-
' sociation products in terms of averagés over the rele-
vant cross sections. The latter were derived by the ap-
plication of the T matrix. This approach considers the
molecular system as a “black box,” in the sense that
no information is obtained regarding the time evoluation
of the system. An alternative attitude to the problem
of directional predissociation can be based on the time-
dependent approach. In this section, we shall provide
a formulation of the time resolved angular distribution,
which in the limit of =« reduces to the scattering for-
malism of Secs. II-IV. This time-dependent approach
is of interest, as it elucidates the nature of the semi-
classical approximations, 8

In the time-dependent approach, we begin with a pho-
ton wave packet characterized by the amplitudes 4,, in-
teracting with a ground state in a well-defined angular
momentum eigenstate. The wavefunction of the system
at £=0 ig2%!

P(0)) = D Au|g0M k) . (v.1)

Utilizing the partitioning of our Hilbert space [Eq. (IL 8)]
and the Green’s function [Eq. (II.11)], one can follow
the time evolution of the system in terms of the pulse
and the molecular characteristics. It can be shown*
that in the extreme short time excitation limit (i.e., a
white photon wave packet of short duration), the system
is “prepared” at £=0 in the doorway state

PO)=|N),
|N) = PHysy g 07M, k)

= 2 |sIM)Y ("M | H i |2 0M, k) . (V.2)
Jl
The time evolution of |N) is given by
|N(t))=§1r-z.—f dE exp(~ iEt)G*(E)|N) . (V. 3)

Since we are interested in the angular distribution of
the dissociation products, we should consider the pro-
jection of |K) (II.5) on (V. 3),

(KINW) = (2ri) [ dB(K[GGE)E |N) expl—iEY) . (V.4)

The operator 9G*(E)P is given by’

QG*E)P=(E ~Hy-QVO)'OvPGP . (V.5)
Utilizing Eqs. (V.5), (I 3), (II.6), and (III. 11), Eq.
(V.4) assumes the form

(K|N(t))= ZR‘“ R{%)A;. DY\ (8,0,0)V2T+1

1
(E —K+in)(E —Ejl‘f'%irjl) ’
(V.6a)

Performing the integration and introducing the definition
F.. (t), we get

xf dE exp(-iEt)

(K|N(t))= X;R‘“ RSO A, V2T +1 F,. (1)DY,(8,0,0),
7 (V. 6b)
where
Fulf)= exp(~- iKl) - exp(—iE .t - 1T, t) V.7

K-E; +4l,

The time-dependent angular distribution is given by

W, (e, t)=§J—1+—I MZfdkl(KIN(t))Iz,

where the integration is performed over the energies
and not over spatial directions. Equations (V. 6) and
(V.8) result in

(V.8)

W, (0,6)= 2. RpR¥Iemidabsose (t), (V. 9)
T JTNT T4l
where
B goyolt) = f dKF ;o (t)F3a () . (V. 10)
From Egs. (V.7) and (V. 10), we get
b e pelt) =i 1 - exp[~iE; ~E j)t]exp[— ${Ty. + Ty t]
et EJ'I_EJ-I +%i(1";. +FJ-M) '
(v.11)

Finally, we consider the counting rate of the predis-
sociation products at (©,¢), which is given by the time
derivative of the probability function (V. 9), so that

S Ws0,1)- 2 RpuRNmiAbpgmlt), (V.12)

¥ L %)

d
where
éJth(t) = exp[— i(EJl - E'ru)t] exp[-— %(rr + l",u)t] . (V. 13)

Equations (V. 9) and (V. 12) together with (V.11) and

(V. 13) provide the exact formulation of the time evolu-
tion of a |g0JM) molecular ground state interacting with
the radiation field. To gain some further physical in-
sight, let us invoke the axial recoil approximation;

Eq. (V. 12) reduces to

d
77 7(6,1) =|R,e7?

[Z "755\.7""2 E

Tbvl}a cos (E.rl - Ein)t] N
=T, T J’ J'-J'IJ*I

(v.12")

consisting of a direct scattering term and an interfer-
ence term. When the energy ratio
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(8) =By T/T,

is small, the contribution of the second term in (V.12)
is time independent at the relevant time scale (a few

T'; values) and the time-dependent angular distribution
is given by exp(-I',#) ID{(, ©,0) 2. On the other hand,
when (5) is large, interference type oscillatory contri-
butions result in a partial erosion of the anisotropy.

These remarks are of academic interest only, as it
is practically impossible to monitor the time evolution
of the dissociation products on the time scale of the
predissociation process, i.e., #/I';. More important,
we note that in the limit ¢ - ¢ . (t), Eq. (V. 11) takes
the form

()= =
Gl T, i kT, D)

(V.14)

whereupon W;(©,©)=W,(0) and Eq. (V. 9) reduces to
our previous result, Eq. (IV.2), which was obtained
using scattering theory.

To compare the present quantum mechanical approach

with Jonah’s original treatment,® all that is necessary
is to assume that the fragments recoil along the molec-
ular axis. Thus, the semiclassical probability for re-
coil in the Q spatial direction is obtained from |N(t)),
Eq. (V.3), expressed in the £ representation that is

d o

7 Vse, ) [(Q|P|NE)) | (V.15)
Such a treatmert results in Eq. (V.12’) and automatical-
ly introduces the axial recoil approximation.

VI. CONCLUDING REMARKS

We have provided a general quantum mechanical
treatment for the problem of angular anisotropy in the
predissociation of diatomics. From the point of view
of general methodology, it is important to emphasize
that no delay effects are observed in direct photodis~
sociation, which, for all practical purposes (i.e., on
a time scale larger than the inverse width of the bell
shaped absorption line shape), can be considered to be
instantaneous. The delay time for predissociation which
was previously introduced in an ad hoc way,® originates
in a self-consistent manner from our study of predis-
sociation. Our theory reduces to the original results of
Zare' for the case of direct photodissociation when we
set the width I}, to be large. The same limiting result
can be obtained by solving the problem of angular dis-
tribution in predissociation of a molecule where both the
discrete excited state and the dissociative continuum
carry oscillator strength from the ground state.?!’ When
the coupling between the discrete state and the con-
tinuum is switched off, the direct photodissociation re-
sult is, of course, recovered. The extension of the
present system for the Fano problem? may be of some
experimental interest in view of the recent observation
of interference effects in the absorption line shapes for
the predissociating Rydberg states of the H, molecule.?

The results of Busch and Wilson,5 Jonah,® and the
present detailed treatment demonstrate that for the case
of instantaneous direct photodissociation (or fast pre-

dissociation), the distribution of the products is deter-
mined by the initial distribution of the absorbing mole-
cules, Slow predissociation does not erode all the an-
isotropy effects, although these are obviously reduced.
Thus, for example, in a '$-13 predissociation, the an-
gular distribution is changed from cos?0 for large value
of (6)=T;/(BkzT)? to (1 + cos?®) for small value of

(6). It can easily be shown that for a plane rotator, the
product distribution will become isotropic in the limit
of large (5). However, for a three-dimensional rotor,
the dissociation process retains some of the information
regarding its initial orientation even on a time scale
long relative to the rotational period. This result can
be rationalized in terms of two independent rotational
modes of a three-dimensional rotor; one giving an iso-
tropic distribution, while the other resulting in an an-
isotropic contribution.

There is a set of unified general features character-
izing the angular distribution of photofragments in
molecular photodissociation and predissociation, the
angular distribution of electrons in atomic and molec-
ular photoionization,'® as well as angular correlations
in nuclear decay.m‘ The most general expression for
the angular distribution, I(®), resulting from dipole in-
duced one photon processes with an isotropic ensemble
as a target, is of the form'°

1(@)=a(E) +b{E)P,(cos0) . (VI.1)

The general results [Eqs. (IIL. 20) and (III. 21)] for the
case of predissociation derived herein are of this form,
as the angular dependence of the cross section is deter-
mined by the parameters 7/}« which just contain the ro-
tation matrices Dy =P(cos®) and DZ =P ,(cos®).

It will be interesting to confront these theoretical re-
sults with a real life situation and to study experimen-
tally the angular distribution in molecular predissocia-
tion of a single molecule by varying some of the follow-
ing parameters: (a) Excitation energy into different vi-
brational (rotational) levels. For the case of intersec-
tion of potential curves on the attractive branch of the
bound state (Mulliken’s case C*), the predissociation
widths T,; exhibit a fluctuating pattern with changing the
vibrational quantum number v, while for intersection on
the repulsive branch of the bound state (Mulliken’s case
C°), a smooth variation of the widths I',; is exhibited by
changing v.##~27 In suitable predissociating systems, one
can thus vary the parameters (5,) ~ (Bk, T)!/2/T,, pass-
ing from the slow decay limit to the fast decay situation;
(b) In certain cases, external magnetic fields can en-
hance the predissociation rate,? thus providing an alter-
native way for passing to the fast dissociation limit; (c)
Temperature changes will, of course, modify the angu-
lar distribution under the common excitation conditions,
when individual rotational states are not selected. Let
us now consider several specific examples, which dem-
onstrate that in many common cases the predissociation
decay rates are low relative to the rotational period. In
the case of predissociation from the B31(0%) state of I,,
the predissociation rates are in the range 3x 10°-3
x 10° sec™, whereupon I'~1.5x10%~5%10"® cm™. The
rotational constant being B=0.029 cm™, so that
(Bt T)' /3= 2.4 cm™ at room temperature, whereupon
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(6) ~ 10° and the slow photofragmentation limit prevails.
In the case of predissociation from the B3>:' state of O,
the predissociation linewidth fluctuate for different v
values in the range® 0.1~5.0 cm™, while B=1.5 cm™,
and (Bk,T)'/?=17 cm™ (at 300 °K), thus (5,) varies in
the range 15-0,3. Some modification of the angular
distribution will be exhibited when different vibronic
manifolds are optically selected; however, even for the
broadest vibronic levels, the situation will still be close
to the slow dissociation limit. Another interesting case
in this category involves predissociation from the BO0j
state of Se,. Theoretical studies'®® indicate that the
resonance widths for different vibronic manifolds vary
in the range 0.01 cm™ to 200 cm™. From? B=0.01
em™, we have (Bk,T)!/%=2.4 cm™ at 900°K. Thus

(8,) varies from 0, 01 to 250 for different v values span-
ning the whole domain from slow dissociation to ex-
tremely fast photofragmentation. It should be noted,
however, that some of the details of the present theory
have to be modified to handle this latter case properly.
First, we have to consider the rotational states and the
intramolecular coupling for Hund’s case (c), while the
present treatment strictly applies to Hund's case (a).
Second, and more interesting, for the broad resonances
in Se, we cannot get away with the treatment of the inde-
pendent decay of a single vibronic level, as the spacing
between vibronic states® (w= 360 cm™) is of the order
of their widths'®® (I'~200 cm™). The theory has to be
extended to account for this interesting situation.

APPENDIX A: EVALUATION OF THE CROSS SECTION
FOR PHOTODISSOCIATION FOR A SINGLE GROUND
STATEJ LEVEL '

Equation (III. 16) can be written with the help of Eq.
(IT1. 13) in the explicit form

Osul®, E)=—" 271) (2 +1) p,

® " RpuR¥wApApDYy, (8,0, 0)1)’A (2,6,0)
T J2T,T 8 (E E,:+—1,1"J.)(E EJN" zr',u)

(A1)
Using Rose’s Eqs. (4. 22) and (4. 25),'% we have for the
products of the Wigner rotation matrices

D, Dyfy = (- 1Y** D, Di
=2 el I T|M-M)eld' J"T| A~ MDYy . (A2)
T

We can now obtain ¢,(8, E)[Eq. (IIL 17)] by summing
Eq. (Al) over M to give

1
GJ(G,E)=53;_—1'Z”0m(®,E)

(21)® Ry R}«
= Py < nyym
74 L LN Y (E E,:+"’l’rr)(E EJu— —11"_,»)
(A3)
where

A= Za—cu J" T A = A) WL |On)e(d 177 ON) DY
(A4)
and

az= }‘; (= 1)¥4e(d’ 3" T | M ~ M)c(J 1" | MO)c(J 17" | MO) .
(A5)

Making use of the well-known properties of the Clebsch
Gordan coefficients (Rose,15 Chap. 3), we have

CY;= 2”_,: )M-

J'I"T | M~ M) (19T |oM) (- 1)7+7*+
27" +1

3 : (A6)
In this form, we can use Rose’s Eq. (6. 5b) to get

az= (= 1) f277+ 120" + 1) WJTJ"(J" 1)

c (117]00) , (AT)

clJI"L|M = M) (- 1)7+¥

where Wiabcd : ef) is the Racah coefficient.'’

The factors C{(J1J'{0\), C{J1J"|0)) do not vanish
only when J’, J"=J,J+1 (for A=0, only if J',J"=J+1).
The coefficient C(11J!00) requires J=0 or 2. Equation
(II1. 20) is obtained from Eqs. (A3)-(A7).

APPENDIX B: SOME ALGEBRAIC MANIPULATIONS

From Egs. (Al) and (A3), we have

(: l*
mike=d" Y AnA;DYy(®,0,0)DY, (8,0,0)
B 00 I S TR v

7 Din®,0, 0) . (B1)

Using Rose’s'® Eq. (4. 25), we get

> n;:.“,..—z | Dy (@, ©, 0) D}, (2,0, 0)|?; (B2)
JI'JII

since
Z[D (#,0,0)|%=1 (B3)

we finally obtain

Z A= |Dhi2,0,0)|% . (B4)
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