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A quantum mechanical theory of electron transfer reactions is developed using the techniques employed in 
solid-state and radiationless transition theory. This theory allows one to incorporate the effects of both the 
long-range polaron modes of the liquid and the short-range specific hydrational modes around the ions. 
Typical calculations suggest that the resulting temperature dependence of the activation energy may be 
observed experimentally in some cases. 

I. Introduction 

oxidation-reduction reactions in polar liquids 
The experimental progress in the kinetic studies of ionic 

(where A and B are ionic species) has coincided with the 
development of numerous theories of thermal electron 
transfer processes.l-“ From the point of view of the chemist 
such outer-sphere electron t r a d e r  processes in a polar sol- 
vent exhibit the following unique features. (a) The chemi- 
cal reaction does not involve the rupture of chemical bonds. 
(b) As the chemical process proceeds uia charge exchange 
between well-separated ions the pertinent nuclear configu- 
rations of the systeim consists of a huge number (of the 
order of Avogadro’s number) of nuclear coordinates involv- 
ing the molecules in the first coordination layers and those 
of all the polar molecules in the bulk. Thus a proper semi- 
classical or quantum mechanical description of this chemi- 
cal process has to consider a “supermolecule” consisting of 
the two ions and the solvent. (c) The interaction inducing 
the charge transfer process (or in the chemists language the 
weak electronic interaction in the “activated complex”) can 
result in nonadiabatic chemical reactions, in analogy to 
unimolecular decomposition processes of some triatomic 
molecules which involve a change in the electronic state. 

An important contribution to the understanding of ho- 
mogeneous and electrochemical electron transfer processes 
was provided by the extensive theoretical studies of Mar- 
C U S , ~ , ~  which iiivolves the following ingredients. (a) A clas- 
sical general approach based on absolute reaction rate 
theory was adopted. (b) The nuclear motion was assumed 

to be classical. (c) Nonequilibrium dielectric polarization 
theory was developed to account for the contribution of the 
rotational (permanent) polarization of the solvent outside 
the first coordination layer to the reaction coordinate. The 
bulk was handled as a continuous dielectric medium. (d) 
The contribution of configurational changes in the first 
coordination layer to the reaction coordinate was handled 
classically. (e) All electron transfer reactions were assumed 
to be adiabatic, although his use of K allowed for nonadia- 
batic situations to be considered. 

From the point of view of a theoretical chemist outer- 
sphere electron transfer reactions should be amenable to a 
fairly complete quantum mechanical description, which 
should rest on the following general picture. (a) The chemi- 
cal reaction can be envisaged in terms of a change in the 
electronic state of the total system which involves the two 
ions embedded in the polar liquid. (b) The transition be- 
tween states has to be properly formulated to account for 
the coupled electronic and nuclear motion of the total sys- 
tem. (c) The total Hamiltonian of the system is partitioned 
into a zero-order Hamiltonian and a (weak) perturbation 
term. Within the framework of the Born-Oppenheimer ap- 
proximation the initial and the final zero-order states of 
the total system can be conveniently chosen to constitute 
dense manifolds of vibronic levels, as each of these states 
involves a superposition of the polar modes of the solvent 
(which form a continuum analogous to the optical modes of 
a solid). Provided that the eigenstates of the zero-order 
Hamiltonian constitute a “reasonable” description of the 
physical system, the electron transfer reaction can be de- 
scribed in terms of a relaxation process. The zero-order vi- 
bronic state corresponding to the initial electronic configu- 
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ration is nonstationary but is coupled to a continuum of 
final states, and thus ensuring a reversible decay process. 

These general features of the quantum mechanical de- 
scription of thermal electron transfer processes bear a close 
resemblance to the theoretical description of a wide class of 
molecular relaxation processes such as nonradiative intra- 
molecular relaxation processes in large molecules in the 
statistical limit, radiationless decomposition processes such 
as predissociation anid autoionization in electronically ex- 
cited states, and unimolecular decomposition processes. Fi- 
nally and perhaps most important the theoretical descrip- 
tion of electron transfer reactions is completely analogous 
to the study of radiationless process such as thermal ioniza- 
tion of impurity centers and thermal electron capture in 
semiconductors which were studied by Kubo, Toyozawa, 
Lax, and ~ t h e r s . ~  This theory of multiphonon processes in 
solids is directly applicable to electron transfer reactions in 
polar solvents. A major contribution to the quantum me- 
chanical theory of electron transfer processes in solution 
was provided by LeQich6 and his school7 which began with 
the following assumptions. (a) The reaction rate is ex- 
pressed in terms of the thermally averaged quantum me- 
chanical transition probability between the vibronic levels 
of the total system. (12) The ions with their first coordina- 
tion layers are regarded as rigid “metallic” spheres. Config- 
urational changes in the first solvation layer are neglected.8 
(c) The bulk of the sol!vent is considered as a continuous di- 
electric. (d) The harmonic approximation was applied for 
the orientational vibrational polarization modes of the me- 
dium. (e) The normall polar modes of the medium are re- 
cast in terms of the Fourier components of the total energy 
of the polarization field, as is common in polaron theory. 
The equilibriuni values of the medium coordinates were re- 
cast in terms of the derivatives of the potential energy with 
respect to these medium coordinates. (f) As common in po- 
laron theory the frequencies of the medium polar modes 
were approximated by a single frequency. The effect of dis- 
persion was also subsequently studied.gJ0 (g) For a weak 
electron exchange perturbation the transition probability 
for electron transfer can be expressed within the frame- 
work of first-order tirne-dependent perturbation theory in 
terms of Fermi’s golden rule. This approach provides the 
basis for the study of nonadiabatic electron transfer reac- 
tions. (h) Adiabatic electron transfer reactions were han- 
dled on the lbasis of a semiclassical treatment in terms of 
the Landau-Zener theory. 

A complete quantum mechanical theory of electron 
transfer reactions will be of considerable interest because 
of the following seasons. (a) The quantum mechanical rate 
expressions do not invoke the classical concept of the acti- 
vated complex. (b) A ,general formulation of adiabatic and 
nonadiabatic chemical reactions should be found without 
introducing semiclassical theories. (c) The nature of quan- 
tum effects on electron transfer reactions, in particular the 
temperature dependence of the activation energy, can be 
elucidated. 

A partial resolution of these questions was provided by 
the work of ILewich arid Dogonadze.6 Concerning points a 
and c above it was demonstrated that for nonadiabatic 
reactions in the low-temperature limit the electron transfer 
process corresponds to nuclear tunnelling between zero- 
order states, whIle in the high-temperature limit the major 
contribution to the transition probability and to the rate 
constant originates from the vicinity of the crossing of the 
potential surfaces This general feature is common to all 

nonadiabatic unimolecular and solid-state processes. How- 
ever the Levich theory cannot reproduce many interesting 
real life situations as the configurational changes in the 
first coordination layer were disregarded. Further theoreti- 
cal work in this field is therefore required. The work of Do- 
gonadzeg has been in this direction also. 

In this paper we pursue the formal analogy between elec- 
tron transfer reactions and nonradiative relaxation pro- 
cesses in molecular and solid-state physics. The main goals 
and accomplishments of the present study can be summa- 
rized as follows. 

(a) The transition probability for electron transfer, 
which involves a weighted density of states function (i.e., 
the density of states weighted by different interstate cou- 
pling terms for each state), was handled by the mathemati- 
cal methods previously applied for the Mossbauer effect, 
multiphonon processes in solids and in large molecules, and 
the optical line shapes in solids. Indeed, transition proba- 
bilities for both radiative and nonradiative processes can 
be recast in terms of a generalized line shape function, and 
the nonradiative decay probability can be expressed in 
terms of the line shape function at  zero frequency. The 
transition probability is expressed in terms of a Fourier 
transform of a generating function. These technqiues were 
applied to electron transfer processes and enabled us to 
handle a system characterized by many vibrational modes, 
while the original work of Levich and Dogonadze6 was lim- 
ited to a quantum mechanical expression for a single-fre- 
quency model, and subsequent work utilizes semiclassical 
approximation for a high-frequency mode. 

(b) Numerical techniques based on the steepest descent 
method and expansion methods of the generating function 
were introduced to derive general expressions for the elec- 
tron transfer probability in the high-temperature limit, 
while in the low-temperature case series expansion of the 
generating function lead to explicit expressions for the 
transition probability. Schmidtll has also considered these 
techniques for this application. 

(c) The nature of the medium polar modes was reinvesti- 
gated. On the basis of polaron theory we were able to derive 
explicit expressions for the displacement of each normal 
polar mode, thus providing a slight extension of Levich’s 
continuum model. Configurational changes in the first 
coordination layer were estimated from experimental spec- 
troscopic and structural data. 

(d) We were thus able to derive general quantum me- 
chanical expressions for the nonadiabatic electron transfer 
transition probability including both the medium modes 
and the configurational changes in the first coordination 
layer. Other efforts have recently been made in this area by 
Dogonadze, Ulstrup, and Kharkats,12 Schmidt,13 and 
Schmickler and Vielstich.14 

(e) In view of the high frequency of the ligands in the 
first coordination layer interesting quantum effects on the 
rate constant are predicted for systems characterized by 
large local configurational changes. 

Let us first recall the general features of the electron 
transfer problem, where an electron is exchanged between 
a pair of solvated ions. The initial state of the system con- 
sists of a pair of ions (AN+ + BM+) while the final state in- 
volves the A species in its reduced state and the B species 
in its oxidized state, i .e.  (A(N+l)+ + B@f-l)+). In the pres- 
ent model the two ions interact strongly with their first 
coordination layers and exert long-range electrostatic inter- 
actions on the bulk of the solvent outside the first coordi- 
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taining the contributions of the two ions, T N ~  and T N ~ ,  the 
first coordination layers T N ~ ,  and the solvent T N ~ )  

T ,  = TNa + TNb + TNC + T,' (1.3) 
Ha and f fb correspond to the electronic Hamiltonians (the 
electronic Hamiltonians contain the relevant electronic ki- 
netic energy contributions) of the bare reduced ions A(N+1) 
and BM+, respectively, while Vea and Veb correspond to the 
interaction potential between the electron and these bare 
reduced ions. Vab is the nuclear repulsion potential be- 
tween the reduced ions. H, and H, represent the electronic 
Hamiltonians of the solvent and of the first coordination 
layers, respectively. 

Finally VintY and VintC are the electrostatic interaction 
terms of the total ionic and electron charge distribution 
with the solvent (s) and with the first coordination layers 
(c), respectively. We have presented this cumbersome nota- 
tion and definitions as a very recent treatment of this prob- 
lem failed to include all the pertinent terms (such as Viilts) 
in the Hamiltonian. 

The details of the time-dependent quantum mechanical 
treatment of the system specified by the Hamiltonian (1.2) 
are outlined in Appendix A. The electronic states at  fixed 
nuclear configuration, Q, are characterized in terms of the 
eigenfunctions {\ka;(r,Q)] for the total system (AN+ + BM+) 
and by {\kbj(r,Q)) for (A(N+l)+ + B(M-l)+), obtained from 
eq A.2. The indices i and j refer to all ground and excited 
electronic states of the systems. The corresponding eigen- 
values E,;(Q) and EbL(Q) correspond to the potential ener- 
gy surfaces of the pairs (AN+ + BM+) and (A(N+l)+ + 
B(M-l)+) in various electronic states, respectively. The 
time-dependent wave function of the system can be ex- 
panded either in terms of a single basis set {@ai] or ($&) 
(e.g., (A.3)) or alternatively in terms of both sets. The 
physically plausible expansion (A.4) results in a coupled set 
of equations (eq A.ll) for the expansion coefficients. Equa- 
tion A.ll involves a complicated complete expansion (in- 
cluding continuum states). To simplify the treatment two 
assumptions are introduced. 

(A) A two electronic level system is considered, including 
only the lowest states \k, = !Ira() and q b  = which are 
characterized by the adiabatic surfaces E,(Q) and Eb(Q), 
respectively. This simplifying assumption may be justified 
as the basis of perturbation arguments as the off-diagonal 
terms are usually negligibly small (for the case of weak 
overlap) relative to the electronic excitation energies. This 
assumption is common in solid-state theory where configu- 
ration interaction effects are disregarded. 

(B) The contribution of the Born-Oppenheimer operator 
L, eq A.6, is disregarded. This assumption i s  fully justified6 
for electron transfer between ordinary ions where ( Vea)/  
( L )  - M/m. In the case of reduction reactions involving 
the solvated electron the ( L )  term may be important in 
view of the strong dependence of the electron wave func- 
tion on the nuclear coordinates. Thus for a two electronic 
level system we have the simple expansion S(r,Q,T) = 
X,(Q,t)\k,(r,Q) + Xb(&,t)\kb(r,&) where the expansion 
coefficients are obtained from the coupled equations 
(A.12). A t  this stage one defines zero-order vibrational 
wave functions X,,(Q) and Xbw(Q), satisfying the eigenva- 
lue equations (A.13). The zero-order vibronic states of the 
two system 

Figure 1. General model of electron transfer reactions. The medium 
outside the first coordination sayer is treated as a continuum. The 
first solvation sheath is characterized by a totally symmetric vibra- 
tion. 

nation layers (Figure 1)- The role of solvent exchange in the 
first coordination layer is neglected and one considers two 
supermolecules each conSisting of an ion with its first coor- 
dination layer embedded in the polar solvent. The long- 
range interactions bietween the ionic charge distribution 
and the solvent outside the first coordination layers bear a 
close analogy to the problem of the motion of a small polar- 
on in polar crystals.") 

It is worthwhile to consider the Hamiltonian for this sys- 
tem and the correspolnding equation of motion. A reconsid- 
eration of this probllem is of interest because of the fol- 
lowing reasons. (a) The Hamiltonian for the electron trans- 
fer problem between the two centers A and B cannot be 
separated into the simple form HA + HB + VAB (where HA 
and HB are the Hamiltonians for the two centers and VAB 
corresponds to the coupling term) as is the case for energy 
transfer between atomic or molecular pairs.16 (b) The 
Hamiltonian for the electron transfer problem can be con- 
veniently dissected to yield two different zero-order basis 
sets, corresponding to localization of the electron on center 
A or on center R, respectively. Either one of these two elec- 
tronic basis sets is adequate from the formal point of view, 
and some care must be exerted to avoid overcomplete ex- 
pansions. (c) These two electronic basis sets are nonortho- 
gonal, and the raonorihogonality problem has to be incorpo- 
rated in the time-dependent formalism. This problem re- 
sembles exchange perturbation theories of intermolecular 
forces, where elaborate schemes must be employed. Since 
we are interested in a time-dependent problem we cannot 
adopt these theories and an alternative approach has to be 
developed. 

The total Hamiltonian for the system can be written as 
consisting of the following contributions 

3c = T ,  4- T ,  + Ha 4- H ,  + Vab + v,, + Veb + 
IT, -t- H ,  + VintS + VintC 0 . 2 )  

where the indices a and b refer to the two ionic centers A 
and 11, respectiively, e labels a single electron which is being 
transferred while s and c label the bulk of the solvent and 
to the first Coordination layers. T, is the kinetic energy of 
the transferred electron, T N  corresponds to the sum of the 
nuclear kinetic energy operators for the whole system (con- 

(I. 4) 
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are Characterized by the energies Eauo, and &w0, respec- 
tively. T o  obtain the equations of motion and the transition 
probabilities we have followed the techniques introduced 
by Holstein15 in the study of the small polaron (eq A.14 
and A.15). Application of second-order perturbation theory 
to eq A.15 the decay probability W,, of a zero-order vi- 
bronic level (aL ) = \kaXauO to the manifold (Ibw ) )  = 
( \kbXbf f io}  results in the familiar Fermi golden rule where 
the coupling maitrix element of 

vav, b% = &a,” 1 1 I’eb + 

Sab-’($b i veb 1 *a) 1 ‘b) iXb>) (I* 5, 
the generalized exchange operator and ( ) refers to integra- 
tion over nuclear coordinates. 

The generalized exclhange perturbation term V a u , b w  (1.6) 
induces transitions between two different vibronic mani- 
folds corresponding to electronic ground states. If we would 

electronically excited states, refraining 
from accepting nssumlption A, the exchange operator will 
act in a dual role. (a) It will induce transitions between dif- 
ferent centers, resulting in electron transfer involving elec- 
tronically excited states. (b) It will force transitions be- 
tween different electronic states on the same center, in 
analogy with the role od the nonadiabatic operator which is 
conventionally allowed for nonradiative relaxation of excit- 
ed states of molecules and of solvated ions. This is a nice 
example for the effect of an external field on nonradiative 
electronic relaxation processes. These externally induced 
electronic relaxations of excited ionic states can explain the 
effects of self-quenching of the fluorescence yield of rare 
earth ions in bolution. 

Adopting the language of molecular relaxation theory the 
width, Ira,, of each “initially prepared” zero-order state I au) 
is related to W,, (ece 1.6) by 

r a w  = AWau (I. 7) 
The present model (see Figure 1) implies that the zero- 
order states I au) are metastable. A sufficient validity condi- 
tion for the irreversible decay of each of these states into 
the manifold (1 bw)] i s  that either the states in the density 
of the accepting (final) states is exceedingly large, so that 
the spacing hetween adjacent levels 6 E b  = (w + 1) - 
Ebwq is small satisfying the conditions 

rav >> 6Eb (I. 8) 
whereupon the width Fa, spans a large number of levels. 
Alternatively one may require that the total width Ybu of 
each of the acccpthg states I bo) is large relative to their 
spacing 

SE,  <<: Y b v  (I. 9) 

The total width Ybrj consists of a nonradiative electron 
transfer contribution I bu) - (Iau)) better than (Le.,  the 
back reaction), Fb,, and most important, vibrational relaxa- 
tion in the (Ibu)) manifold. A5 we consider here a dense 
polar liquid coupling to the medium will result in medium 
induced vibrational relaxation characterized by a width p b u  
within the manifold { lbu ) ) ,  so that Y b u  = p b u  + r b u .  Provid- 
ed that either of eq 1.8 and 1.9 (or both) will be satisfied, 
the manifold (1 bu)] constitutes an effective continuum for 
the relaxation process. In a polar liquid we expect that the 
coupling betweon the polar modes is always sufficient to 

ensure at least effective vibrational relaxation process so 
that (1.9) is satisfied. In many cases of interest we also be- 
lieve that the dense dual spacing condition (1.8) for the 
polar modes holds. We thus conclude that in any case the 
manifold (1 bu ) )  provides an effective dissipative continuum 
for the electron transfer process. 

It is important to notice at this point that the decay 
probability of an “initial” zero-order state lau) can be ex- 
pressed by the first-order perturbation expression (11.19) 
only when it is justified to consider the decay of a single 
resonance. We thus invoke the basic assumption that the 
spacing between the resonances (1 au ) )  considerably exceeds 
their widths. Denoting by 6Ea = [E,, - Ea(,+l)l the energy 
spacing between the adjacent order states lau) and la(u + 
1)) we imply that 

rav << f i ~ ,  (I. 10) 
We note in passing that condition (1.10) does not violate 

the irreversibility requirement, as it is sufficient that only 
relation (1.9) is valid. 

Thus, when interference effects between resonances can 
be disregarded, the decay pattern of each zero-order state 
is exponential and being characterized by reciprocal decay 
time (1.5). The applicability of restriction (1.10) will imply 
that the thermally averaged rate constant will involve a 
preexponential factor which involves the interstate cou- 
pling matrix element I V a u , b w l .  This physical situation is 
often referred to in chemical kinetics as a nonadiabatic 
transition. 

ZJp to this point we have been concerned with the decay 
of an initially prepared isolated resonance, without refer- 
ring to the “preparation” of the decaying states. Two trivial 
further assumptions are introduced a t  this point. 

(D) Thermal vibrational excitation (and relaxation) rates 
in the initial manifold {I au)) considerably exceed the non- 
radiative decay probabilities whereupon 

raV,% << t i i  (I. 11) 
where t ,  is the vibrational relaxation time. 

(E) The width of exact resonance is considerably less 
that the thermal energy kBT, in the temperature range of 
interest 

raw << kBT (I. 1 2 )  
Thus all the mixed (Iau) + {lbw)}) states in a single reso- 
nance are equally thermally populated. 

The thermally averaged nonadiabatic electron transfer 
probability from the initial manifold lau) to the final mani- 
fold (1 bw ) 1 is now 

(I. 13) 1 w, = z p d - P E a V w a v  

where 
= Cexp( -PEa,O) (I. 13a) 

0 

and 
p = (k,T)-* 

In the theory of unimolecular nonadiabatic reactions the 
“high-pressure” rate constant is identified with W,, eq 
11.24. In the present case the zero-order states (Iau)) and 
(1 bw)) which can be obtained from eq A.13 are very compli- 
cated. To simplify the problem further we utilize Levich’s 
approach.6 

(F) We calculate the electron transfer probability at a 
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fixed relative separation of the ions. This implies neglect- 
ing the contribution T N ~  + T N ~  in eq 1.3 and consequently 
also in eq A.13. ‘The zero-order energies EauO and EbwO are 
then calculated at  LL fixed nuclear separation Rab between 
the two solvated ions. The transition probability (1.5) is a 
function of Rab, Le., Wa E Wa(Rab). The bimolecular rate 
constant k is expressed in terms of the volume integral of 
the probability f(R,l,) for finding the ions at  a distance Rab, 
whereupon 

= / d3Rabf (Rab)Wa(Rab) (I. 14) 

In the limit of a dilute ionic solution one can approxi- 
mate each ion with its coordination sphere by a hard-core 
radius R L- R, + 2r, (see Figure 2) so that for outer-sphere 
reactions 

f (Y) == 0 Y < R  

f ( ~ )  = exp[ -Pu(R)] Y > R 
(I. 15)  

with u(r) being the interionic interaction potential 

u(r)  = ?zwte2/RD,,, (I. 16) 
This concludes an outline of the theory of nonadiabatic 
outer-sphere electron transfer reactions. This lengthy ex- 
position leads to the original results of Levich. We believe, 
however, that the present treatment is more systematic 
than previously attempted. In particular, our expressions 
are general, being applicable for the interesting case of con- 
figurational changes in the first solvation layer. 

TI. Formal Expressions for the Electron Transfer 
Probability 

In order to evaluate the nonradiative electron transfer 
probability (1.5) and its thermal average (1.13) we require 
explicit expressions for the energies Ea(Q) and &(Q) which 
correspond to the adiabatic potential surfaces and the total 
energies of these states Eaoo and E b o  (at fixed &b). To re- 
duce the formal results into a useful and tractable theoreti- 
cal expression we introduce the following approximations. 

(GI The harmonic approximation is invoked for the po- 
tential energy surfaces Ea(&) and &(&). These are multidi- 
mensional potentials which are determined by the nuclear 

= {Q,] of the first coordination layers and of 
all the solvemt molecules outside them are expanded 
around the equilibrium configurations = {Q,O(a)] and 
Q0@) En the initial and in the final states. 

1 - pij(Qi -- Q i 0 ‘ ” ) ( Q ,  - Q j o ‘ b ’ )  + E , ( Q O ( ~ ) )  (11.2) 
2 ij 

where aij and &, are the second derivatives of Ea(Q) and of 
Eb(Q) with respect to Qi and Q;, respectively. 
(H) We introduce a further simplifying assumption that 

the normal modes arid their frequencies (corresponding to 
the two first solvation layers and to the medium) are the 
same in the two states, except for displacements in the ori- 
gins of the normal coordinates. This assumption can be re- 
laxed as one can account formally for frequency changes 
and for the change in the direction of the principal axis of 
the normal coordinates between the two electronic states. 
The resulting equatictns are very cumbersome, and in view 

I av> 
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1 bw> 

Flgure 2. Typical energy level diagram for radiationless transitions or 
electron transfer reactions. The coupling matrix elements and the 
width of the accepting states are also indicated. 

of our present ignorance of the “molecular” parameters in- 
volved we shall use the simple version of the multiphonon 
relaxation theory which rests on the present apgroxima- 
tion. 

The normal modes of the system in both states are char- 
acterized by the frequencies {a, ] and by the effective mass- 
es {Ad;]. It will be convenient to define reduced normal 
coordinates qj normalizing the displacements from origin 
{ Q j  - Q j O O ]  for one state in terms of the zero energy mean 
square displacements {Q2 ) = (h/mJwJ)1/2 so that 

Finally the reduced displacements between the origins of 
the two potential surfaces are given by 

A j  = (7) M j w j  ‘ I 2  ( Q j o c a )  - Qjo(’ ) )  (11.4) 

The two potential surfaces (see Figure 3) are expressed in 
the final form 

1 
Ea(&) = z C f i W j q j 2  (11.5) 

j 

The energy gap between the minima of the two potential 
surfaces (see Figure 3) is 

AE = E , ( Q O ( ~ ) )  - E ,  (11.7) 
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0 

q j  - 
Figure 5. A general diagram for the change in a medium coordinate, 
ql, between two states.. A quadratic energy dependence is assumed. 

The energy term in eq II.6 

(11.8) E ,  = - C I i W , A j 2  
2 ,  

corresponds to the shift of the vertical energy difference 
between the two potential surfaces at  QO(a) from A.E. In mo- 
lecular spectroscopy EM corresponds to half the Stokes 
shift. 

Finally the quantized energy states Eauo and Ebwo can be 
specified in terms of the two sets of vibrational quantum 
numbers u E (uIJ and I(. = (wj), so that 

1 

(11.9) 

\60, + - Rw, + Eb(Qo'b') 2 '3 Ebwo = 
j 

The evaluation of the electron transfer transition proba- 
bility (1.13) is reduced to the calculation of the nonradia- 
tive relaxation rates between two harmonic potential sur- 
faces. A further assumption will greatly simplify matters. 

(I) The electronic matrix element in (1.6) is weakly de- 
pendent on the nuclear coordinates, so that within the 
"Condon approximation" the interstate coupling matrix el- 
ement is recast a3 a product of an electronic matrix element 
and a vibrational overlap term 

where  

calculated at  @'(a). This approximation is not valid for non- 
radiative processes induced by the nuclear momentum op- 
erator L, howevler, for the present case it is perfectly ac- 
ceptable. 

Our problem thus reduces to the calculation of a multi- 
phonon type relaxation rate induced by a coupling b which 
i s  independent of changes in nuclear coordinates. The non- 

radiative decay probability (1.5) of a single level corre- 
sponds to a weighted density of states function where each 
delta function is the formal expression for the density of 
states p(EaUo)  = 2,6(Eauo - Ebwo) of the manifold E b w o  
a t  the energy Eauo modified by the vibrational overlap 
term ( X a u o / X b w o ) .  A closed form for (1.5) with (11.10) can be 
obtained by the Feynman operator techniques and subse- 
quently inserted into (1.13). Alternatively the thermally av- 
eraged probability (1.13) can be directly evaluated by the 
generating functions method. As these techniques have 
been widely utilized for nonradiative decay processes in 
solids and molecules we shall just quote the final r e ~ u l t . ~ J ~  
The electron transfer probability (1.13) is expressed in 
terms of a Fourier integral 

where the Fourier transform of the nonradiative decay 
probability i s  

f ( t )  = e x p [ - G ]  exp[G+(t) -t G _ ( t ) ]  (11.13) 
where the auxiliary functions in eq 11.13 are 

2 ,  
~ , ( t )  = - X A j 2 ( E j i  1 + 1 )  e x p ( i w j l )  

(Ir. 14) 
1 ~ _ ( t )  = - C A ~ ~ F T ~  exp(-iojt) 
2 ,  

R j  corresponds to the number of excited vibrations at  the 
frequency in thermal equilibrium 

Zji = [ e x p ( P Z w j )  - 11-I (rr. 1 5 )  

Finally the dimensionless quantity 

G = G+(O) + G_(O) = - 1 A j 2 ( 2 E j  + 1) (11.16) 
2 j  

is referred in solid-state physics as the electron-phonon 
coupling strength. A very rough estimate of G is obtained 
replacing all the frequencies by an average frequency ( w ) ,  
which as shown in section I11 is unjustified for our system. 
In this case from eq 11.11 and 11.8 we have 

G (E,/E(w)) coth (PE(w>) (11.17) 
Two physical situations were distinguished. (a) The weak 
coupling situation G < 1 which is realized at  low tempera- 
ture ( h ( w )  >> ~ B T )  and when EM < h ( w ) .  (b) The strong 
coupling limit G >> 1 which is realized at  high temperatures 
( h ( w )  << k g T )  and/or when EM >> h ( w ) .  

Molecular electronic relaxation processes usually corre- 
spond to the weak coupling situation, while the corre- 
sponding multiphonon processes in solids a t  high tempera- 
tures correspond to the strong coupling limit, which was 
also applied to Levich6 for electron transfer processes. We 
shall now demonstrate that when configurational changes 
in the first coordination layer are incorporated the electron 
transfer probability has to be handled in a more complicat- 
ed manner. 

The calculation of the electron transfer probability re- 
duces to the evaluation of the integral (11.12)-(11.16). Inte- 
grals of the form 

I = s" -19 exp[-A(t)] dl  (11.181 

where the integrand is a highly oscillatory function can be 
approximated by the saddle point method.17 The saddle 
point is taken at  t o  where 
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[3A(t) /3tI to  = 0 (11.19) 

so that the Taylor series expansion 

1 A(t) = A(2,) -I- z(a2A/aP),( t  - to)  (II.19a) 

exp[-A(to')] (11.20) 

When the integral {11.12)-(11.16) is handled by this method 
the saddle point in the complex t plane is obtained from 
the relation 
-AE + 5 - j ~ w ~ ~ ~ : ; ( z ~  + 1) exp( iw, t )  - 

? 

In the high-temperature case when 

Rw,  << k,T (11.22) 

for all i, G >> 1 corresponding to the strong coupling situa- 
tion. Under 1:hese conditions one can expand the right- 
hand side of the saddle point eq 11.21 in a power series in t 

,-hE 4- E ,  -+ i&D2t - 

E ~ ~ ~ h t t '  4- . . . = 0 (11.23) 
i 

where we have defined 
1 

0' = - zWi2Ai2(2Mi + 1) (11.24) 
2 i  

and EM is given by (11.8). Retaining the linear term in t 

it, = - (AE -- E,)/ED~ (11.25) 
whereupon eq 11.12 takes the familiar form 

Equation 11.26 has been widely utilized in the electron 
tramfer theory of Levich.6 It is interesting to note that we 
can easily obtain a formal relation between this quantum 
mechanical result and conventional reaction rate theory. 
The points of intersection of the two harmonic potential 
hypersurfaces are obtained from the relation E,(Q) = 
Eb(Q). The intersection point of minimum energy, E A ,  
measured relative to the origin, Ea(Q0(,)), satisfies the rela- 
tion 

EA = (AE - EM)'/4E, (11.27) 

Thus eq 11.26 ( can  be reduced to the form 

where the effective temperature is defined by 

kBT* = fi2D2/2E, (11.29) 
In the high-temperature limit (11.22) T* - T and the tran- 
sition probability in the strong coupling limit 

w = 'U2(;7/~2EMk??)i'2 exp[ -PEA] (II.28a) 

assunies the conventional form of an activated rate equa- 
tion. This result hac3 been obtained without invoking the 
concept of the activaLed complex. 

It is important a t  this point to establish the validity con- 
dition for eq 11.26, which implies that the term O ( t 2 )  in 
(11.23) is negligible, so that 

iD2 to >> 3/1@c w i3A to2 (11.30) 
i 

which from eq 11.24 and 11.25 implies that 

(11.31) 
Obviously the validity condition (11.31) is satisfied (for rea- 
sonable values of A,) only a t  high temperature. To demon- 
strate this point consider single frequency whereupon this 
condition is simply 

(2; + 1) >> IAE - E,//E, (II.27a) 

and for symmetric electron transfer processes when aE = 0 
we require that ii >> 1. In general, for physically realistic 
model of electron transfer, when the role of the first coordi- 
nation layer is incorporated relation 11.31 does not hold 
and consequently eq 11-26 has to be modified. 

111. A Semimolecular Model for Electron Transfer 
We adopt a simplified model, which has been popular in 

the studies of ionic solvation and in classical formulation of 
electron transfer processes. The first coordination layers of 
the two ions are treated in terms of a molecular model ac- 
counting for the totally symmetric vibrations of the nearest 
solvent molecules. The contribution of the first coordina- 
tion layer in the initial AN+ + BM+ and in the final A(N+l)+ 
+ B(M-l)+ state to the potential surface is specified in 
terms of the four equilibrium configurations ro(AN+), 
ro(BM+), ro(A(N+l)+), and ro(B(M-l)+). These equilibrium 
configurations are obtained from the ionic radii r,, so that 
ro = rL + r, where r, is the radius of the solvent molecule. 
Utilizing the simple model of displaced identical potential 
surfaces we take the vibrational frequencies of the first 
coordination layer of the A or of the E ionic species to be 
equal in both valence states, so that W A  = u(AN+) = 
w ( A ( ~ + ~ ) + )  and WB = w(BM+) = w(BiM- l)+). The available 
experimental data (Table I) indicate that this approxima- 
tion is not too bad. 

Finally we can define reduced displacement coordinates 
for the first coordination layer 

and the two displacements 

in terms of the reduced masses M A  and MB of the ions with 
the first coordination layer. The contributions of the first 
coordination layers to the potential energy surfaces (11.5) 
and (11.6) are 
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TABLE I: Totally Symmetric Vibrations of 
Coordination Layers arid Approximate Radii 

Ion E W ,  rm-l Comments Y ,  2 

c ~ ~ + - H , Q  

Cr2"-H,0 
Mn2'-H,0 

Fe2'-HzQ 

Fe3+-H20 
Ni2'-Hz0 

Cu2'-H,Q 
Hg2'-W 20 
Zn2*-H,0 

Ni2'-D,0 

Ca3'-H,0 
Co2'--H2C) 

V2"- H 2 0  
v~+-H,o 
Cr * - B 2Q 
Cr3"- H,O 
EU, *- H,Q 
Eu3"-Bz0 

490 

395 

389 

405 

440 
362 
385-400 

or 369 
389 

Aqueous solution" and 
Cr(H,0)GC13 in crystalb 

Aqueous solution' and 

Aqueous solution' and 
Mn(H20)6SiF, in  crystalb 

Fe(H,0)&3F6 in  crystalb 

Aqueous solution'" and 

Aqueous solution' 
Aqueous solution'" 
Zn(H,0)6 in crystal' 

N ~ ( D , o ) ~ s ~ F ,  in crystalb 

Ni(H,O)@F, in crystalb 

0.65 

0.83 

0.83 

0.67 

0.83 
0.67 
0.82 
0.65 
0.83 
0.65 
1.18 
0.99 

a Data compiled by D. E. Irish in "Ionic Interactions," Vol. 11, 
S. Petrucci, Ed., Academic Press, New York, 1971. * I. Nakagawa 
and T. Shimanovichi, Spcictrochirn. Acta, 20, 429 (1964). R. E. 
Hester and R. H. Plane, lnorg Chern,  3, 513 (1964); 768, 769 
(1964). dTaken from E. Sacher and IC. S. Laidler in "Modern 
Aspects of Electrochemistry," Vol. 3, J. O'M Bockris and B. E. 
Conway, Ed., Butterworths. Washington, D.C., 1964. 

where we defined 
1 
2 EMC = -((ttwAAA2 + kw,AB2) (111.4) 

The medium outside the first coordination layers will be 
handled as a continuum dielectric as originally proposed by 
Levich6 who was the first to apply polaron theory to this 
problem. The vibrational modes of the outer medium are 
approximated by a single mean vibrational frequency, wo, 
which was estimated from the dielectric loss measurements 
as wo - f cm-l. This aplproach has been common in polaron 
theory. The polar modes are specified in terms of the set of 
coordinates (Q'J and reduced masses {MJ, which provide 
the equivalent of lattice optical modes for a polar liquid. 
The equilibrium configurations of the medium modes are 
affected by the charge alistribution which is different in the 
initial and in the final state. The equilibrium configura- 
tions are (Q,o(a)) and (Q,o(b)) in the initial and final states. 
The reduced coordinates and displacements of the outer 
medium are 

qK = (?%/MK~o)1'2(QK - (111. 5 )  

A, = (%/M,uO)' '2[QKo(a) - QKO'b)]  (111.6) 
so that the contribution of the polar modes to the potential 
surfaces are 

g,(Q,) e ~ o x q ?  (111.7) 
K 

2 4 r  - + EMS (111.8) 
K K 

21 55 

where the solvent induced Stokes shift is 
1 

EMS = - ( t t ~ , w ~ A , ~  (m. 9) 2 K 

Applying polaron theory (see Appendix) we get Levich's re- 
sult for the contribution of the external medium 
EMS = 

Ce2 
- 2 S S d3z d3x'{[pa(x - xO) - $(x - xO)] x 

[p"(x' - xo) -. pb(x' - Xo)1}/IX - x F  I = 

where pa and pb are the charge densities in the initial and in 
the final state, respectively, while Da and 
electric displacement vectors in the initial and in the final 
states, and 

C = Do-i - DS-l (111, loa) 
The total potential surfaces for this simplified model take 
the form 

The quantum mechanical treatment of the electron 
transfer probability is now more complicated than pre- 
viously considered in view of thd appearance o l  the contri- 
butions of the first coordination layers. These local 
frequencies of the solvent molecules are rather high w~ - 
W B  - 300-400 cm-l for hydrated ion (see Table X). The 
high-temperature approximation (11.22) does not hold for 
the local modes, which under ordinary circumstances a t  
room temperature are "frozen." The frequency of the polar 
modes is expected to be low wo 1 cm-l so that for these 
modes the high-temperature approximation (111.22) is valid. 
Thus the Levich equation (11.26 or 11.28) is valid only for 
systems where the configurational changes in the first sol- 
vation layers are negligible, i.e., AA = AB = 0. On the other 
hand, for many outer-sphere electron transfer reactions the 
theory has to be modified (see also ref 12). 

From the foregoing discussion we conclude that for many 
processes of interest we have to consider the local modes of 
the first coordination layer W A  W B  = wc in the low-tem- 
perature approximation while the medium modes have to 
be handled in the high-temperature limit, i e . ,  f i #  = 
(Phwti)-l  for all K. To derive a general expression for the 
electron transfer probability we separate the local (c) and 
the medium (s) modes in the vibrational wave function in 
eq 1.4 so that 

which are characterized by the Vibrational energies 
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The electron trans.Fer probability (1.13) is 

E,)I(F:av,!X'bu,)2(Xbu, /xbw,)2  6(E,c + € a s  - 

ebc - E,, + A E )  (111.14) 

can be recast. in terms of a convolution 

where we have defined two auxiliary functions 

\ 2  
~ X a ~ g X b u z s '  s (E ,  Ebg + - €1 (111*16) 

We have thus separated the transition probability into 
the contribution of the external. medium and the first coor- 
dination layer. The functions F, and F, represent general- 
ized transition probabilities (at the energy) and can be re- 
garded as generalized line shape functions. The line shape 
function for the lovv-frequency medium modes can be han- 
dled in terms of the high-temperature approximation 
(11.26) so thah 

E,' - E ) / ~ D , ~ @ ]  (III.17) 

where the equivalent expression to eq 11.24 is 

The line shape function for the first coordination layer can 
be represented formally as 

(111.19) 

where Ac2 = Aa2 +  AB^ and n, = [exp(phw,) - 1]-'. Ex- 
pansion of the exponential in the integral results in 

F&E) = exp[(---~; /2)(2n,  + I)]  x 

(a, + l ) 'nck  6 ( E  - 

lEw, + kEw,) (111.20) 

Combining eq 111.17 and 111.20 we finally obtain 

2 
(AE  .- EMS - (I. - k ) E u c )  /4EMS] X 

Z ! k !  

em[ (- A:/2)(2n, + 1)] (A~/2)*+*(nc  + l)'n,* (111.21) 

This is a tractable quantum mechanical expression where 
Ac and h w ,  are obtained from experiment while EMS is 
evaluated from strongly coupled polaron theory (Appendix I 
B) via eq 11.9. 

IV. Quantum Mechanics of the First Coordination 
Layer 

In order to evaluate the transition probability we need to 
express the results in a more compact notation. Introduc- 
ing the expression for the occupation number of the coordi- 
nation layer photons each of energy and 

we have 
1 i 2  

X 
W A2 coth 
- ! VI2 = e - [ -  2 

This result can be simplified by using Bessel functions of 
imaginary arguments, I ,  as has been shown by many au- 
thors5,18,19 

x 

(IV. 5) 

Several limiting forms of this result are of interest. At 
very low temperatures or low values of A,, zp is very small 
and for such arguments20 

so  that 

2 exp[-(AE - E,' - n ~ t Z w , ~ ~ / 4 E , ~ k , T ]  X 

an expression obtained by Levich, et ~ ~ 1 . ~ ~ 2 ~ ~  in another con- 
text. This is the same type of expression usually found for a 
weak coupling case in radiationless transitions. At these 
low temperatures (but still high for the polaron modes) 
only m = 0 contributes since hw,@ is large. Thus the right- 
hand side of the equation reduces to 

e-[- (AE - EMsj2/4EMSk,T] (IV. 8) 
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corresponding to an activation energy for this part of the 
expression EA' of 

For very large xp, Le., high temperatures, another limit- 
ing expression can be derived. The simplest derivation be- 
gins with the basic equation (111.19) and making the strong 
coupling approximations as in section I1 but now for the vi- 
brations in the first coordination layer, Le., we expand the 
exponentials in (111.19) and obtain 

it t2 
~ ~ ( 6 . )  = d t  expi- -[- E (E + E,) - ~ D c 2 1 1  

(IV. 10) 
s 

where  
De2 ( h ~ / 2 ) 2 ~ , 2 ( 2 n ,  + 1 )  (IV.11) 

and 
E, = Rw,AC2/2 (IV. 12) 

This leads to a total rate proportional to 

(IV. 13)  
This can be integrated to yield 

- E 2  f 
( L I E  - E ~ ~ ) ~  (constant) exp - - I 4EmSk,T @E:k,T 

-- [E,"E, - (AE - E m S ) E 2 ] 2  
2E,sE,(EmS + E,) ] (IV.14) 

which simplifies to 

] (IV.15) 
(&E - EMS - [ 4(E,s + Ec)k,T 

(constant) ex-p - - 
ox 

The limiting cases quoted are not useful for most appli- 
cations as they represent temperature regions not usually 
studied for typical systems. The low-temperature limit is 
only applicable if there is only a very slight reorganization 
of the coordination layer as in the case of strongly bound 
complexes, e.g., ferro- and ferricyanides, or if extremely low 
temperatures, way bellow the medium freezing point. The 
high-temperature limit is also unlikely in practice since for 
typical hydration cases it would involve temperatures of 
50O-10OO0. 

We can easily evaluate the entire expression, eq IV.3, by 
a straightforward computer program and extract from it 
the rates or values of EA' for typical ranges of the parame- 
ters. In Tables I11 and IV we have tabulated the results for 
Ems = 2 eV, and for typical values of hw,, AE, and Ac2/2. 
Typically hw,  is about 400 cm-I (see Table I) for hydration 
of ions and much higher when stable complexes are in- 
volved. Ac2,/2 can be around 10 when major reorganization 
of hydration laycns occurs but is much smaller for strongly 
bonded complexes. 

Before commenting on these results it is useful to pres- 
ent a derivation of a reasonable approximate formula 

TABLE 11: Activation Energies, EA' ("Kp 

A:/2 = 5 AC2/2 = 5 A:/2 = 15 
PiwC = 400 tio, = 600 Ew, = 400 

Temp, T cm-' cmmi cm-1 

50 
100 
150 
200 
2 50 
3 00 
350 
400 
450 
5 00 
600 

1000 
co 

5808.6 
5941.1 
6115.9 
6240.6 
6320.3 
6371.9 
6405.7 
6429.7 
6446.8 
6459.9 
6475.2 
6497.3 
6518.8 

a Ems = 2eV, AE = 0. 

5800.7 
5852.6 
6009.4 
6190.0 
6342.2 

6543.2 
6606.8 
6655.1 
6692.0 
6743.1 
6825.2 
6878.8 

6457.8 

5825.7 
6224.1 
6749. 6 
7123.9 
7363.2 
7517.1 
7619.4 
7691.8 
7743.3 
7780.5 
783 1.6 
7914.5 
7956.3 

which is an accurate representation of the computer re- 
sults. 

Expanding eq IV.4 we can rewrite the right-hand side as 

m = - m  

where 

= ( % w , ) ~ / ~ E , ' ~ , T  

y = hE%W,/EMskBT 

For usual hydration parameters ha, < kT and h w ,  << E M S  
so that cy is small (-3.9IT) and e-am2 - 1. Using this and 
the following identity 

and (IV. 18) 

e z / 2 ( t + l / t )  - - 2 t m I m ( Z )  ( N . 1 9 )  
mn-m 

we can simplify the results to 

- 2 ,  cosh  p%w,/2 - cosh  

P 
exp[- - E , q  ( N . 2 0 )  

or  

= exp[ - x ( c o t h x  A 2  - csch  x cosh(xAE/E,'))] x 2 

exp[-(P/4E~')(hE - EMs)'] (Iv. 21) 

where x = hwC/2kT. .This leads to an effective activation 
energy E AA' of 
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TABLE 111: Aetivaition Energies, EA' ("K)a 

Temp, T EQJ, = 400 cm" ttw, = 600 cm-' ~ w ,  = 400 cm-l ttw, = 2100 cm-' ttw, = 400 cm"' 

_l_l_--- 

A2/2 = 5 Ac2/2 = 5 A 2 / 2  = 15 Ac2/2 = 1.0 AC2/2 I= 10 

50 
I00 

200 
250 
3 00 
350 
4 00 
450 
5 00 
600 

1000 

n50 

vo 

5808.6 
5941.1 
6115.9 
6240.6 
6320.3 
6371.9 
6405.7 
6429.7 
6446.8 
6459.9 
6475.2 
6497.3 
6518.8 

5800.7 
5852.6 
6009.4 
6190.0 
6342.2 
6457.8 
6543.2 
6606.8 
6655.1 
6692.0 
6743.1 
6825.2 
6878.8 

a Ems = 2eV, A E  -- 0. 

TABLE IV: Aetiva tion Energies, EA' (kcal/mol)a 

5825.7 
6224.1 
6749.6 
7123.9 
7363.2 
7517.1 
7619.4 
7691.8 
7743.3 
7780.5 
7831.6 
7914.5 
7956.3 

5800.0 
5800.0 
5800.1 
5801.0 
5805.2 
5814.9 
5831.3 
5854.8 
5883.5 
5915.9 
5985.7 
6218.8 
6554.8 

5817.1 
6082.5 
6432.5 
6682.0 
6841.4 
6944.2 
7012.3 
7060,7 
7094.5 
7119.8 
7153.1 
7109.2 
7237.5 

A E  = 0 A E  = 1 eV A E  = -1 eV 
____ 

Temp Numerical Approximate Numerical Approximate Numerical Approximate 
(2'1, "K result  formula' resultb formulaC result formulac 

!j 0 11.546 11.547 2.9566 2.9636 26.02 
100 11.810 11.818 3.2302 3.2483 26.28 26.31 
150 12.3.57 12.168 3.4757 3.4880 26.53 26,55 
200 12.4: 05 12.416 3.6389 3.6402 26.70 6.70 
250 12.564 12.573 3.7414 3.7334 26.80 26.79 
3 00 12.866 12.674 3.8068 3.7923 26.87 26.85 
3!50 12.733 12.742 3.8508 3.8311 26.91 26.89 
4 00 12.781 12.788 3.8810 3.8577 26.94 26.92 
450 12.958 12.822 3.9030 3.8767 26.90 26.94 
500 12.841 12.846 3.9176 3.8906 26.98 26.95 
6 00 12.871 12.879 3.9398 3.9093 27.00 26.97 

loo0 12.815 12.929 3.9764 3.9375 27.04 27.00 
el. 12 I 95 8' 12. 958e 3. 9933d 3. 9496e 27.05d Ta.01e 

a Ems = 2 eV, A,z/Z = 5,  h w ,  = 400 cm-I. * From eq IV.3. From eq IV.20. d Asymptotic limit from eq IV.16. e Asymptotic limit 
from eqIV.23. 

t ($)(%) cschx X 

- C S C ~  x + COSh (gx) coth x - 

This approximate formula goes to the proper Iow-tempera- 
ture limit but has a small error at  high temperatures. Its 
high-temperature limit i s  

@f(l 4 E M S  
- $) (IV.23) 

us. the exact result of eq IV.16 which can be written as 

(IV. 24) 
In both cases E ,  = (Ac2/2)hw, represents the shift in the 
zero-point energy of the primary solution layers. The two 
results are correct through the first order of (EJEMS) and 
since this is usually small (X0.25)  the error involved in 
using is also small, i.e. 

[ (AE)2/4EMS] (IV. 25) 
The results of this approximate formula are also tabulated 
in Table IV for comparison. 

In Figure 4 we also plot the activation energies deter- 
mined from the exact formula for various values of &2/2 
and h w ,  for AE = 0 and E d  = 2 eV. 

In order to evaluate these expressions for actual ions we 
need to evaluate  EM^ (eq 111.10). This can be given in terms 
of Di the initial electric displacement and Df the final dis- 
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A E: = 13.0 I i 
>! O e V  

w 
z l  

T E M P E R A T U R E  

Figure 4. Typical results for the  change in the effective activation 
energy with temperature for various values of the parameters. The 
parameters are curve 1, hw, 400 cm-l, AC2/2 15; curve 2, hw, 
400 cm-l, AC2/2 10; curve 3, hoc $00 cm-l, AC2/2 5; curve 4, 
hw, 400 cm-I, AC2/2 5; curve 5, hw, 2100 cm-l, AC2/2 1. The 
horizontal lines to the righit represent the asymptotic limits of these 
curves. 

placement. If we initially have an ion with charge +m on 
center A and an ion with charge +n on center B with sizes 
a, and b, leading to ions of charges m + 1 with size a,+l, 
and charges n - I with size b,..-I, on centers A and B, re- 
spectively, and if we further adopt Marcus' method of eval- 
uating the termti using the concepts of metallized ions we 
have 

where, for example 
0 Y < a, 

Y > a, 

It is important tia note that because we consider separately 
the first coordination layer all ionic radii refer to those of 
hydrated ions, 

Since a,,, > an,+l and bn < b,-1 we have 

- '1 (IV.28) 
nz(m + 1) 

' a m  R 
For an isotopic ,exchange reaction m = n - 1, thus b, = 
a,+l and b,-1 = a, so that the results reduce to 

When ar2 = an-.l z= r ,  we obtain the simplified formula often 
quoted 

Our approximate formula (eq IV.21) is predicated on the 
magnitude of a being small. To justify this we must consid- 
er the available experimental parameters which determine 
the important quantities. In this work we will consider only 
the totally symmetric vibration of the hydration layer, al- 
though in principle all modes could be considered. The dif- 
ficulties in using the other modes is that there is no simple 
way to estimate the shift in these coordinates between vari- 
ous oxidation states of an ion. These shifts are probably 
smaller than the radial mode whose change we can relate to 
the size of the ion. In Table I we list the experimental re- 
sults for the totally symmetric mode for the hydration layer 
as determined by the Raman spectrum of aqueous solu- 
tions or crystals containing hydrated ions. The other quan- 
tity needed is the radius of the ions in the various oxidation 
states. In our discussion we will use those values quoted in 
Table I. 

Since many redox couples have similar vibrational ener- 
gies we shall concentrate on but one typical reaction, name- 
ly, the Fe2+-Fe3+ system assuming that it proceeds uia a 
direct outer-sphere mechanism. We will assume that hw, = 
389 cm-l in both oxidation states. From the definition 

i 12 M u  
A, = (T) A R  = 2 . 2  (IV.31) 

since M ,  is the appropriate reduced mass p = (18)(1.66 x 
= 2.98 X lowz3 g and Ar  = 0.16 A. Thus  EM^ = 

(hw,A,2/2)2 = 0.117 eV X 2 = 0.233 eV 

Z,  = 2.42 C S C ~  x (IV. 32) 

and x = (1.4388)(389)/2T = 280/T. The factor of 2 is re- 
quired since two ions are involved. The other quantity 
needed in our calculation is  EM^, the medium reorganiza- 
tion energy. Since we consider the first coordination layer 
separately, this quantity can only include effects of the me- 
dium beyond the primary solvation layer. The size of our 
ions are therefore the ionic radius plus the thickness of the 
solvation layer which we take to be 2.76 A. Thus the ferrous 
ion has an effective size for the continuum medium contri- 
butions of a2 = 3.59 A and the ferric ion a3 = 3.43 A. Using 
the formula derived for EM' 

and substituting the values appropriate to the Fe3+-Fe2+ 
couple we get 

EMS = (3 .13  - - 7 .94)  ev (IV. 34) 
R a b  

where R,b is in A. For a transition region of R N 7 A we get 
E ,  = 2.0 eV or less. 

We now have all of the factors to investigate the approxi- 
mate formula derived earlier. For the Fe2+-Fe3+ couple we 
obtain 

280 0 .0482)  - 3$7 
4 

ff = x(Ew,/EMS)/4 = (-) ( 
T 

(Iv. 35) 
Thus at ordinary temperatures, a is quite small. If it i s  
small enough our approximate formulas will be reasonable. 
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We have already seen that there is a good agreement be- 
tween the approximate and the exact formulation for such 
a range of a. 

We can give further evidence by comparing the formula 
for AE = 0, i e. 

* 

2; = G ( B ,  zp) exP(z,) (IV. 36)  

where for small a we expect G(a)  - 1. In Table V we list 
the function cakulated or typical values of the parameters. 
From these results we can see that the error involved is 
only a few per cent, certainly an acceptable approximation 
in EL rate calculation. For a specific estimate of the error we 
can consideir the .Fe2+-Fe3+ couple at  room temperature 
(300°K) whcre we find x = 0.93, zp = 2.02, and a = 0.0113 
corresponding to G(a,  zp) of about 0.98. At lower tempera- 
tures or larger kw,, it.is even closer to one. 

V. Evaluatim of the Rate Constant 

m=- m 

The rate constant can be written (1.14) 

whcre U(RalJ is defined in eq 1.15 and R is the distance of 
closet appro:ich of the ions. 

We can either substitute the numerical values for 
W,(R.b) or use the approximate formula from (1v.21). 
Using the latter course of action we have 

c sck  x cush ( x A E / E M 3 )  exp[-(P/4EMS)(AE - 1 
UPR,b) 1 eXp[-PU(Rab)IRa: a a b  (V. 1) 

where  specif ical ly  

[Jab = mneZ/Ra$,ff (V. 2 )  

for the ions involved using an effective dielectric constant 
Deffs 

If we restrict our attention to the Fe2+-Fe3+ couple 
where BE = 0 and 

(v.3) EMS = (9/Q, - 8/Q2 - 1/Rab)(Cpe2/4) 

the formulas simpliify greatly to yield 

In any case, to proceed further we need to evaluate the 
matrix elemlent v. As has been pointed out in section 11, 
this matrix is simply 

For the rnornent we shall consider v as a parameter al- 
though the value will be related to the orbital exponent of 
the d orbitals as 

TABLE V: Value of G(a,z,) (Eq IV.36) for Typical 
Values of the Parameters 

0.000 All values 
0.010 1.0 

2.0 
3.0 
4.0 
5.0 

0.020 1.0 
2.0 
3.0  
4.0 
5.0 

0.030 1.0 
2.0 
3.0 
4.0 
5.0 

0.040 1.0 
2.0 
3 .0  
4.0 
5.0 

0.050 1.0 
2.0 
3.0  
4.0 
5.0 

1.0000 
0.9902 
0.9807 
0.97 14 
0.9624 
0.9537 
0.9808 
0.9626 
0.9454 
0.9290 
0.9135 
0.97 17 
0.9456 
0.9215 
0.8991 
0.8782 
0.9629 
0.9296 
0.8994 
0.8720 
0.8469 
0.9544 

.9144 
0.8790 
0.8473 
0.8188 

We now consider only the Rab dependent factors in the 
integral in eq, V.4, i.e., for Fe2+1Fe3+ 

and assuming that Deff is only weakly dependent on Rat,. 
Following Levich we shall approximate this integral by its 
value at  the distance where the expontial is a minimum, 
i.e., at the value of Rab called R,, such that 

is a minimum. If this number is less than R, R, is taken to 
be R. The value of R, is found by setting the derivative of 
(V.8) equal to zero 

for reasonable values of y (Le., 1-5 A-I) and 20 < D,ff < 
40, R ,  is real but small, less than 5 A. As a reasonable esti- 
mate regardless of D,ff, we shall use R = R,. The meaning 
pf this is important. The rate constant increases with de- 
creasing R and thus it is dominated by the interaction a t  
the distance of closest approach. This is in contrast to the 
work of Levich6 who used an extremely unphysical value 
for y, namely, about (6/Deff) A-1, taking Deff about 45. Al- 
though we expect y to be modified from its value in a free 
atom, there is no theoretical justification for dividing it by 
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Deff. Using R = R ,  we now obtain 

c sch  x) xu (E,) exp - -. - - - - l)X l 2  :[ ( :3 a2 R 

(:g) ] ~~SL-G~~P/RD, , , ]~XR~/~)  (V. 10) 

Qr 
R = .A e x p ( - V / k T )  (v. 11) 

where 

and 
2 v=------- k B T A c  (coth x - csch  x) + 

2 

As a check this expression goes to the proper high-tempera- 
ture limit of 

6e2 (V.14) ('J(T--+ M )  = 2 + ~ + - E EMS 
4 4 RDeff 

For the general case of AE # 0 we can derive an equiva- 
lent expression if R, =: R. It  is the same as (V.11) except 
that V becomes more complicated than in eq V.13, namely 

[Goth x - CsCh x CQsh ( x A E / E M s ) ]  + k T A 2  v = - 2 2  
2 

(AE - EMS)' /4EMS + U(R) (V.15) 
However at  the temperatures involved in most experi- 

ments there will be a temperature-dependent contribution 
from the first coordination layer. For moderate tempera- 
tures we can expand thie results about x = 0. It is more im- 
portant to concentrate our attention on the activation ener- 
gy E A  and not on v itself since 

where EA' is the numerical results derived in the last sec- 
tion or the approximate form EA, (eq IV.24). We shall use 
the approximate form here in which case 

(V. 18) 
An approximate result can be obtained for moderate tem- 
peratures by expanding EAA' about x = 0 

where y = AE/EM=. Thus 

EA(T) = EA(T -+ m) - -(1 E 2  - 2y2 + y4) -t 1 6  

At low temperatures the activation energy is known exactly 
from IV.9 so we can find 

- ( A E  - E ~ ) ~  
4 EMS E , ( T )  = E ~ ( T -  00) + 

if AE = 0 the results simplify to 

EwC << KT 
mne2 

= E A ( T +  m )  - E, - [i - @kT/Eui,)]  + 
Fiw, >> kT (V.22) 

As an example of the magnitudes of these quantities we 
will consider the Fe2+1Fe3+ couple. In this case E ,  = 0.23 
eV = 5.30 kcal/mol and thus a t  room temperature the acti- 
vation energy differs from its asymptotic limit by about 
0.30 kcal/mol, at  low temperatures (-100°K) it differs by 
E J 4  or about 1.3 kcal/mol. For typical examples see Figure 
4. 

It is important to realize that these high- and low-tem- 
perature limits are accessible to experimental verification. 
There is another low-temperature limit discussed by Lev- 
ich6 corresponding to the low temperature relative to the 
polaron modes but such effects can only be observed at  ex- 
tremely low temperatures, probably below 10°K. In both 
cases the activation energy decreases due to the increased 
importance of tunneling at  the lower temperatures. 

For the Fe2+1 Fe3+ couple the preexponential factor is (in 
cgs units) 

3.16 X 1Q18 u 2  (V.23) 
If we use the best single SIater orbital exponent to repre- 
sent the 3d wave function we should use 4.7 A-1 as calcu- 
lated by Watson and quoted by SlaterZ1 we obtain 

= 0.61 x 10-24 /~ , ,~  (v. 24) 
which leads to an extremely low value of A. The value of u 
is extremely sensitive to the orbital exponent. Unfortunate- 
ly, we do not know the exact value to use in this system 
since the integral depends on the tails of the wave func- 
tions and these are greatly affected by all sorts of medium 
effects: orthogonality, screening, etc. As a reference, in the 
accurate evaluation of exciton states, Katz, et found 
that these integrals in the range of 7-8 A were about 1 cm-l 
for organic crystals. If we adopt such a value we find 
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z, = 2 x IO-16 ergs (v. 25) 
or A = 1.25 X sec-l 
mol-I. 

Working backward that value of v corresponds to about 
y = 0.9 A-1 if Deff - 10. This value is not unreasonable as 
in a very accurate nonrelativistic SCF calculation on iron, 
Clementi has one small 3d exponent of 1.45 A-l, however, 
its coefficient is only 0.15 in the 3d orbital wave function. 
Until better ways are found to estimate this matrix ele- 
ment, our value of 1 cm-l is a reasonable estimate. The ac- 
tual activation energy for this couple a t  room temperature 
is E A  = EA(T - a) - 0.30 kcal/mol where E*(T - a) = 
(12.87 4. 28Ea/D,f& kcallmol, neglecting (aD,ff/aT).23 These 

tly larger than those of Levich due to our 
improved treatment of EhlS and the contribution of the 
first coordination layer. 

'The effects calculated for the Fe2+1Fe3+ couple are small. 
However, in many systems these effects could be much 
larger. Styaies and I b e r ~ ~ ~  from X-ray studies of cobalt- 
amine complexes obtain a charge in radius of 0.178 A based 
on the Co(lB)-PJ and Co(1V)-N distances. This leads to 
A,:3/2 = 7.9 which along with an AI, vibration of 495 cm-l 25 

leads to  a somewhat larger effect. The activation would be 
expected tc. change by about 6.3% in going from 200 to 
350OK. Much larger temperature dependences should be 
obtserved in more complicated cobalt ligands [Co([l4]di- 
eneN4)(CHq)2],26 In that case the Co-0 distance can 
change by 0.54 A along one axis. This can lead to huge 
&2/2 values of about 58. Using a reasonable guess for the 
viitrational frequency of 300 cm-l one expects the activa- 
tion energy to vary by 17.3% from 200 to 350°K and even 
3.1% from 300 to 350°K (using the approximate algebraic 
expreesionj 

cm3/sec molecule or 0.75 X 

VI" Discusraion 
\Ne were able to derive quantum mechanical expressions 

for nonadiabatic electron transfer reactions where the role 
of configurational changes in the first coordination layer 
was incorpcasated in the theory. The probability for the 
electron transfer process was recast in terms of a general- 
ized line shape function including the contribution of both 
the high-frequency modes of the first coordination layers 
and the low frequencies of the external medium resulting in 
manageable expressions. The present formulation provides 
an extens,iori of the classical approach of Marcus and Hush 
to include the role of the first coordination layer, and of the 
early quantum mechanical theory of Levich and Dogo- 
nadze6J1 who disregarded these effects. Recent efforts by 
Dogonadae9JQJ2 and othersl1J3J4 have also begun to in- 
clude these contributions but in a less formal way. It is 
gratifying that the conventional simple-minded concepts of 
the ionic solvation and of the structure of the solvated elec- 
tron, separating the role of the first solvation layer and the 
polarixabile medium outside it, can be incorporated into a 
quantum mechaniical rate theory for outer-sphere electron 
transfer. The present treatment is analogous to electron re- 
laxation in a large supermolecule. The pertinent informa- 
tion for the relevant displacements and frequencies in the 
first coordination layer is obtained from structural and 
spectroscopic data, while the other medium is represented 
as a continuum dielectric. Thus this approximation in Lev- 
ich's approach which was recently criticized by Bockris27 
can be relaxed. It is important to note (see Appendix B) 
that the treatment of the outer medium in terms of polaron 

theory does not imply treating its interaction with a loosely 
bound electron (Le., the transferred electron) as suggested 
by B o c k r i ~ . ~ ~  Rather, polaron theory is applied to account 
for the response of the polar medium to the influence of the 
charge distribution of the ionic species in the initial and 
the final states, thus accounting properly for the configura- 
tional charges in the external medium. The present treat- 
ment rests on the relation between the bimolecular rate 
constant and the nonradiative electron transfer probability 
which are related in terms of an integral of an approximate 
distribution fraction. Thus relative ionic motion is disre- 
garded. Schmidt2* in his early work had attempted to ac- 
count for the role of relative ionic motion on electron trans- 
fer processes. Unfortunately, Schmidt's early formulation 
of the electron transfer problem is open to some serious 
criticism.29 The Hamiltonian employed by him (eq 7 ref 
28a) is unappropriate as it omits some crucial terms which 
involve the ion-solvent interaction. It is desirable to write 
the Hamiltonian in the Schrodinger representation as was 
done by us before proceeding to second quantization for- 
mation. In his formal treatment Schmidt disregards the re- 
verse reactions in the derivation of eq 12 of ref 28a which is 
inconsistent with the general formalism. Finally, in the 
Fourier transform of the autocorrelation functionZsa 
Schmidt assumes that the coefficients are time indepen- 
dent, which is not valid in general. In addition, there are 
some other technical details in Schmidt's work28 regarding 
commutation relations which were not properly handled. 
Thus we believe that Schmidt's results28 cannot be consid- 
ered as a valid extension of the Levich's theory. We assert 
that the role of ionic diffusion is still open. It should be 
noted, however, that the approximation of electron transfer 
between stationary ions is consistent with the adiabatic ap- 
proximation and as thus it is not expected that ionic diffu- 
sion will result in appreciable corrections for the rate con- 
stant for these activated processes. 

The final form of our rate expressions are summarized by 
eq V.1, V.4, and V.10. It is important to note that the quan- 
tum mechanical expression utilizing a continum model out- 
side the first coordination layer yields free energy contribu- 
tions for the external solvent bulk. We did not attempt to 
follow conventional chemical treatments separating the 
free energy and the enthalpy of activation but rather de- 
fined the activation energy via eq IV.9 and V.16. The acti- 
vation energy at  room temperature includes a 10-20% tem- 
perature-dependent corrections due to quantum effects of 
the first coordination layer in systems where h w ,  - 400 
cm-l. The outer medium can always be handled classic- 
ally, as in view of its low characteristic frequency, extreme- 
ly low and physically inaccessible temperatures will be re- 
quired to study quantum effects originating from the effect 
of these modes. 

The preexponential factor for the nonadiabatic rate con- 
stant exhibits a strong dependence on the scaling parame- 
ter of the electronic wave function. Its value depends on 
the behavior of the electronic wave functions at  large dis- 
tances, which is very poorly given even by the best avail- 
able Hartree-Fock approximations. Similar problems were 
encountered in theoretical studies on electron mobility and 
triplet exciton band structure in molecular crystals in 
which the excess electron and the triplet exciton band 
structures are determined by intramolecular electron ex- 
change or electron transfer matrix elements. The choice of 
u - 1 cm-l is reasonable as much lower values suggested by 
the Hartree-Fock calculations for Fe2" will result in an un- 
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physically low value for the electron transfer probability. 
Under these circumstances condition III.22 will be satisfied 
and outer-sphere electron transfer reactions will be always 
nonadiabatic and exceedingly slow. Adiabatic electron 
transfer processes as advocated by Marcus require that 
Vau,bw > kBT so that interference effects are crucial. 

Nonadiabatic processes will occur when interference ef- 
fects are negligible. The usual semiclassical description of a 
nonadiabatic transition is provided by implying that the 
splitting of the zero-order potential surfaces at  the inter- 
section point is "small." Levich and Dogonadze6J9 have 
provided a complete semiclassical criterion for the applica- 
bility of the nonadiabatic limit. To the best of our knowl- 
edge a complete quantum mechanical formulation of the 
adiabatic case has not yet been provided. In this context, 
Mies and ECrausa30 have provided a simplified model (equal 
resonance spacings and widths) which exhibits the transi- 
tion from the adiabatic to the nonadiabatic case. This for- 
malism is not applicable for th? present problem as the res- 
onance widths cannot be taken as constant, but rapidly in- 
creasing toward the intersection of the potential surfaces. 
Our nonadiabatic theory incorporating quantum effects of 
the first coordination layer results in a transmission coeffi- 
cient of K - when the temperature coefficient of the 
dielectric constant is neglected.23 Similarly by the same 
calculations many other outer-sphere electron transfer 
reactions would exhibit transmission coefficients of 10-3 to 
lo-* and we would have to concur with Levich6 that these 
processes correspond to nonadiabatic reactions. This nona- 
diabatic pattern in ioinic solution is similar to many non- 
radiative procerses in solids such as thermal ionizations 
and thermal ellectron capture which are adequaFely de- 
scribed in terms of second-order perturbation theory and 
where comparisan with experiment provides a legitimate 
basis for the validity of the nonadiabatic limit. The relev- 
ent parameters for thermal electron transfer in solution 
and for thermal electron capture or ionization in solids are 
quite similar, so we believe that nonadiabatic outer-sphere 
electron transfer processes in polar solvents are encoun- 
tered in real life 
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Appendix, A. Quantum Mechanical Manipulation 
In this appendix we provide the details of the quantum 

mechanical treatment of the wave function of the Hamilto- 
nian (11.1) Let us first rewrite the Hamiltonian (1.2) in two 
alternative forme 

H, + H, + Vin: + Vi,,: 
Following the conventional treatment applied for the 

separation of electronic and nuclear motion one can define 
two sets of electronic wave functions at  fixed nuclear con- 
figurations. 

HeaQai ( r ,  Q) = €ai  (Q)Qai (r, Q) 
(A. 2) 

Heb\T'bf(r? Q) = Ebj(Q)*bj(ri  
where r and Q refer to all the electronic coordinates and to 
all the nuclear coordinates of the system, respectively. The 
complete orthonormal set represent all the electronic 
states of the total system with the excess electron localized 
on center A [Le., the ground and excited states of the pair 
(AN+ + B'+)]. Each of these electronic states is character- 
ized by the nuclear potential energy surface taL(Q). Similar- 
ly the set (e,) characterized by the nuclear potential sur- 
faces €bj(Q) describes the ground and the excited electronic 
states of the pair (A(N+l)+ + B(M-l)+). From the mathe- 
matical point of view either of these two basis sets is ade- 
quate for the expansion of the total time-dependent wave 
function %(r,Qut) of the system 

(A. 3)  
where 2xai and 2Xbj are expansion coefficients. However, 
such an expansion is inadequate from the practical point of 
view as a large number of basis functions of type ai (includ- 
ing continuum states) will be required to describe the sys- 
tem with the extra electron on center b. One should follow 
chemical intuition by setting 

- * hQ? t )  = xxa!(Q, W ,  (A. 4) 
a! 

where the index a spans both ai and bj. The time-depen- 
dent Schrodinger equation for the total system yields a 
coupled set of equations for the expansion coefficients xol 

where ( ) refers to integration over electronic coordinates. L 
is the Born-Oppenheimer breakdown operator 

a m !  a a 2 w  LQa! = 2-- + - 
aQ aQ 8Qi 

(A. 6) 

The electrostatic interaction is defined by 
U,, = U,, for cy. E ai; U,, for CY E bj (A. 7) 

6 is the electronic overlap matrix 

6,, = (*,I*,> = 

6,,; a, P E ai or  cy, 6 E bj 
(A. 8) 

Defining the inverse S-l of the overlap matrix 

2 S?'ol-lSa!B = (A. 9) where 
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eq A.7 can bi? recast in the form 

This coupled set of equations for the nuclear motion is gen- 
eral. For the sake of simplicity and relevance let us assume 
that \k, coriesponids to one of the two ground state elec- 
tronic wave functions \ka0 zz \ka or \kbO E \kb. The first sum 
of the right. hand-side of eq 13 then involves direct cou- 
pling between the ground state y with the ground electron- 
ic state on the other site and with excited electronic states 
on both sites. The second sum involves an overlap correc- 
tion to the coupling between the lowest zero-order elec- 
tronic states on the two sites and overlap exchange contri- 
butions of excited states. Restricting the treatment to a two 
electronic level system 9, and \kb, and neglecting the con- 
tribution of the nonadiabatic operator L eq A . l l  now re- 
duces to the following pair of equations 

[T" -t E,($') 4- ':@a/ rTebl*d + -1 (*bl vebl *a) - 

3 
ifi7-] d t  Xa =' [(*a I ueb 1 *b) '- (*b 1 ueb 1 * b h b  

(A. 12a) 

[ same  as (A. P2a.) with b in  place of a and vice 
versa lx ,  -= [ same as (A.12a) with b in  p lace  of a 

and vice  versa]^, (A. 12b) 
Following conventional procedures and neglecting the 
terms on the right-hand side eq A.12 one obtains the eigen- 
value equations for the (zero order) vibrational wave func- 
tions xauo(Q) and xbwg(Q) of the two electronic states 

The energies Eauo and Ebuo represent the zero-order vi- 
bronic states *aXauo and \kbXbwo corresponding to the 
ground electronic states of the systems (AN+ + BM+) and 
(A(W+l)+ -t B(M-l)+), respectively. Again, each of the sets 
(xauf3) and ( X ~ , ~ O ]  completely spans the nuclear space. 

The general nucllear functions xa(Q) and Xbw(Q) can be 
expanded in the complete zero-order basis sets 

Utilizing eq A.14 we are immediately led to the equations 
of motion for the expansion coefficients 

(A. 15)  

resulting in the conventional expressions for the transition 
probability in second order. 

Appendix B. Origin Displacements for the Polar 
Medium by Model Polaron Theory 

The nuclear Hamiltonians for the initial and final states 

Xa = TNC + TNs + .fZ(Q,,Q,, + ga(Q,) 
(B. 1) 

Xb = TNC TNS + fb(QA, QB)  + &Tb(Qx) 
which will be separated into the contributions of the first 
coordination lever and the medium outside it 

5 ~ a . b  = ~ ~ % b  + ~ ~ a , b  (B. 2) 
where the continuum Hamiltonian is 

H,' = TNS $. gi(Qx) i f a , b  (B.3) 
The Hamiltonian (B.3) can be handled by using the formal 
results of polaron theory as suggested by Levich. We shall 
apply the formalism of Frohlich and Allcock for the strong 
coupled polaron to drive the reduced displacements AK and 
show how our result reduces to that of Levich. The physical 
situation is essentially as follows: in the initial state of the 
continuum a t  x is polarized by a charge distribution (x - 
XO), where xo is an arbitrary origin, while in the final state b 
the change distribution is pb(x - XO). The polar modes can 
be represented in terms of the Fourier components of the 
polarization field, the coordinate and conjugate momentum 
of the V component being qv and Pea, respectively. The 
formulation of the Hamiltonian is equivalent to the Har- 
tree approach for the strongly coupled polaron except that 
the change distributions pi(x - xg) (i = a,b) are static. The 
strongly coupled polaron Hamiltonian i s  

(a,"* + (B.4) 
where the linear coupling coefficients are 

here the polaron coupling constant is 

while S is the reduced volume, 0 

(B. 7) 

(B. 8) 
A s  a,* = a_, and CY_,* = (Y,  one can define new 

s = ( a u n w O / ~ ) 3 / 2 ~  
and the polaron coupling term is 

c = (D/ - 0, - l )  

field coordinates for u > 0 
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P a u  == ~w%J - 4 - v )  
The Hamiltonian (A41 takes the form 

xrSZ(N , I  + o l , i ) q j u  + VT(4 - ~ , i ) q 2 u ]  (B.10) 
U>O 

Comparing (Pk.8) with a general harmonic Hamiltonian we 
notice that the displacements of the origins of the normal 
polar modes induced Iby the static charge distribution pi 
(relative to the unperturbed medium) are 

which from eq A.5 are 
1 / 2 1  

- Jd3x cos (v x)p’(x - x,) v 
(B. 12) 

i 121 
- Jd3x sin (vg x)p’(x - x,) 
V 

both of these displacements are real. 

b A:, = Aila - Ab are from (B.ll) 
The relative displacements between the two states a and 

(B. 14) 
b h2, Az> - A,, 

The relevant energy parameter EMS (eq 11.8) is now 

s 1  EM = 2 ~ ~ o ~ [ ( A l ~  - + (42: - A,,b)’] 
U 

(B. 15) 
Utilizing eq A.10 we get 

1 
X o )  - plb(x - x , , ) ] ~  + C-[d3x s in  (I“ X)[p”(x - 

U2 

X0)P”X - X0H2 

Performing the relevant integrations in (A.14) and using 

This is our final result. Equation B.15 can be recast in 
terms of the displacement vectors Da and Db in the initial 
and final states. It is easy to show that 

so that we get Levich’s result 

We have exposed the derivation of the E ’ M ~  term in consid- 
erable detail to demonstrate that the application of polaron 
theory to the present problem does not involve the conven- 
tional picture of one loosely bound electron (Le., the trans- 
ferred electron) with the polar liquid, but rather the energy, 
charzges accompanying the response of the medium to the 
different static charge distributions in the initial and in the 
final states. Our final expression is, of course, equivalent to 
the results of many other researchers. 
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Unlmolecular I?eactions and Energy Partitioning. Three- and Four-Centered Elimination 
Reactions of Chemically Activated 1 ,I ,2-Trichloroethane-do, -d,, and -d2 
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The unimolecular three- and four-centered hydrogen chloride elimination reactions of chemically activated 
4.,1:2-trichloroethane-l-d, formed by the combination of CHzCl and CDCl2 radicals, have been studied. 
Two other isomers, 1,1,2-trichloroethane-do and -2,2-d2, also were studied to confirm reaction mechanisms 
and to establish intermolecular isotope effects. Partitioning of vibrational energy to the dichlorolefin was 
characterized by observing the cis-trans unimolecular isomerization rate of 1,2-dichloroethene. Approxi- 
mately 81% of the total available energy was retained as internal energy of the olefin from the aa process; 
both the average energy and the energy distribution are consistent with statistical partitioning of the ex- 
cess energy. The results are less definitive for the ,f3a elimination reaction, but substantially less of the 
available energy was released to the olefin. The energy release data are consistent with the different poten- 
tial energy changes for the two channels. Fitting the magnitude of the various experimental rate constants 
to FtRKM calculations using optimized four- and three-centered transition-state models gave Eo values of 
59,!57, and 60 kcal mol-l for the pa, 018, and aa processes, respectively, of the do isomer. In addition to tri- 
chloroethane, chemically activated 1,2-dichloroethane and 1,1,2,2-tetrachlorethane also were generated 
and the half-quenching pressures were as follows: 1,1,2-trichloroethane-do, - d l ,  and -d2, 17, 11, and 8.0 
Torr, respectively; 1,2-dichloroethane, 18 Torr; 1,1,2,2-tetrachloroethane, 10 Torr. 

Introduction 

The four-centered HX elimination reactions of halogen- 
ated alkanes are we11 characterized with respect to thermal- 
ly and chemically activated unimolecular rate c0nstants.l 
Genieralized r n o d e l ~ ~ - ~  of the transition state match the ex- 
perimental rate data including inter- and intramolecular 
isotope effects. Three-centered (aa) elimination (followed 
by rapid rearrangement of the carbene to an olefin) com- 
petes with four-cen tered (pa) elimination if two halogens 
are located O J ~  the same carbon.5-7 We previously used the 
intramolecular Competition between HF and DF elimina- 
tion from C113&HFz to characterize the transition state 
model for o(a elimination.6 In the current work the elimina- 
tion reactions of chemically activated 1,1,2-trichlo- 
roethanedo, ~ 1 -d, and -2,2-d2 are reported. An advantage 
of the 1,1,2-trichloroethane system is that the energy re- 
leased to the dichloro olefins can be deduced from the cis- 
trans isomerization rates, if the elimination reactions give 
nonequilibrium cis:trans ratios of 1,2-dichloroethene. 

The energy release pattern for a unimolecular reaction 
depends upon the excess energy, ( E )  - Eo, and the char- 
acteristics of the potential energy surface on the product 
side of the barrier. Since RRKM theory appears to be ade- 

quate for describing the rate constants for HX elimina- 
t i ~ n , l - ~ * ~ - ~  we will assume, subject to testing, that the ener- 
gy distribution of the microcanonical ensemble of systems 
attaining the transition-state configuration is statistical. In 
contrast to this statistical distribution of the excess energy, 
the potential energy ( i e . ,  the threshold energy for the re- 
verse reaction) will be released according to the character- 
istics of the potential surface and associated dynamics of 
motion in a manner analogous to direct bimolecular ex- 
change  reaction^.^ Thus energy partitioning data supple- 
ment conventional rate data for unimolecular reactions and 
give some information about the potential surface on the 
product side of the barrier. The potential energy changes 
associated with the aa and @a elimination reactions differ. 
The four-centered process releases -30 kcal mol-' of ex- 
cess energy plus -50 kcal mol-1 of potential energy after 
crossing the barrier configuration. The three-centered pro- 
cess releases about the same excess energy since the thresh- 
old energies, Eo, are similar, but virtually no potential en- 
ergy is released in passing from the HCI elimination barrier 
to the carbene ( i e .  the activation energy for addition of 
:CClCH&I to HC1 is not known, but must be small). How- 
ever, a large intramolecular energy release accompanies the 
rearrangement of the carbene to the dichloroethene. Since 
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