Molecular photodissociation

Shaul Mukamel! and Joshua Jortner
Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

Department of Applied Optics, Soreq Nuclear Research Centre, Yavne, Israel
(Received 5 December 1973)

In this paper we present a quantum mechanical model for direct photodissociation and for
predissociation of polyatomic molecules in terms of a sequential decay scheme involving multiple
coupled continua, where each continuum corresponds to a different internal vibrational state of the
fragments. The coupling matrix elements between the “initial” state and the continuum states are in
general determined by the appropriate vibrational overlap factors for the polyatomic radical, while
intercontinua coupling for a triatomic molecule occurs only between adjacent vibrational continua.
The time evolution of the system was handled by the Green’s function method. Explicit theoretical
expressions for the final vibrational distribution of the fragments in the photofragmentation of linear

triatomic molecules were derived, which are determined by the initial coupling to the different
continua and by a wave matrix which couples the various dissociative channels. The wave matrix
was evaluated for some simple realistic models for the intercontinua coupling. The available
experimental data for the vibrational distribution of the CN(B*3) radical resulting from
photodissociation and predissociation of XCN molecules are well accounted for in terms of our

theory.

I. INTRODUCTION

The basic experimental and theoretical features of
direct photodissociation and predissociation of diatomic
molecules are well understood since the early days of
modern spectroscopy and quantum mechanics. 1-3 “Long
time” optical excitation, ! characterized by high energy
resolution, of both dissociative and predissociating
molecular states will result in physical information re-
garding the cross sections for optical absorption, for
photon scattering and for photofragmentation. ‘“Short
time” excitation experiments,® where the excitation and
the subsequent decay processes can be separated, are
practical only for the case of predissociation. These
will yield information regarding the time resolved decay
pattern, which will be exponential for the case of a
single molecular resonance when the dissociative con-
tinuum does not carry oscillator strength from the
ground state, while a system characterized by a discrete
zero order state coupled to an optically active continu-
um® will exhibit a complex decay pattern.” These gen-
eral features of photofragmentation are, of course, per-
tinent for the elucidation of the characteristics of these
processes both in diatomic and in polyatomic molecules.
In the latter case additional interesting information in-
volves the vibrational distribution of the fragments.!?:?
In terms of quantum scattering theory this problem just
corresponds to partitioning between the final open dis-
sociative channels of the system.

The nature of the final vibrational states of the prod-
ucts resulting from photodissociation of triatomic
molecules was considered by Holdy, Klotz, and Wilson®
in terms of a “half-collision” model for the atom-di-
atomic fragments. The ITFITS model®® developed later
by Heidrich, Wilson, and Rapp is a direct extension of the
simple “half-collision” model. Subsequently, Shapiro
and Levine® applied the density amplitude method!® to
the “half-collision” problem to obtain the vibrational
distribution of the diatomic molecules.

There are currently quite extensive experimental
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data available regarding the photodissociation and pre-
dissociation of triatomic XCN molecules resulting from
direct optical excitation® and electronic energy trans-
fer.! The work of Mele and Okabe® resulted in de-
tailed information regarding the vibrational states of the
electronically excited CN(B®%) radical obtained from
photofragmentation of XCN compounds in the spectral
range 2000-1300 A A cursory examination of the
absorption spectra of ICN, BrCN, and CICN'? reveals
that they are characterized by a broad dissociative con-
tinuum (the A system) in the 2600-1800 A region, fol-
lowed by a second weak absorption continuum towards
shorter wavelengths (the a stystem) and an intense dis-
crete absorption spectrum including Rydberg series be-
low 1700 A. Excitation into the dissociative continua
corresponds to direct photodissociation, while excita-
tion into the Rydberg bands will result in indirect photo-
fragmentation via predissociation. It will be useful to
have a general theory encompassing both kinds of pro-
cesses. The “half-collision” model®? does not inherent-
ly include the excitation process and so it does not de-
fine the nature of the experiment with respect to “long
time” or “short time” excitation and with regard to the
excited level structure. A more profound understanding
of these problems will be of methodological interest.
From the experimental point of view, direct photodis-
sociation and predissociation of XCN molecules results
in a vibrational distribution of the CN(B?Z) radical where
high vibrational levels are populated (Fig. 1). This ex-
perimental result is incompatible with the predictions
of the semiclassical “half-collision” model® and its
quantum mechanical extensions. 9

We have recently proposed!® that several interesting
processes in electronically excited states of polyatomic
molecules, such as photodissociation, predissociation,
electronic quenching of an atom by a diatomic molecule!*
and vibrational excitation of diatomics via compound
negative ion states, 15 are amenable to a theoretical de-
scription in terms of a sequential decay model involving
multiple coupled continua. In the present paper we pre-
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sent a quantum mechanical model for direct photodis-
sociation and predissociation of polyatomic molecules,
with specific applications to the dynamics of photofrag-
mentation of triatomics.

tl. A SIMPLE PHYSICAL MODEL

As became common in theoretical studies of molecular
radiationless processes, we have now to define zero or-
der states of the system and the relevant perturbation
terms which couple these states. Subsequently, we have
to specify the initial conditions of the system, which per-
tain to the “preparation” of the metastable decaying
state. We shall focus attention on a general physical
situation which is applicable both for direct photodissoci-
ation and for predissociation. We consider a polyatomic
molecule RA, where R is a polyatomic radical and A is
an atom. Adopting the conventional chemical description
we consider direct photodissociation

RAZR+A (I1. 1a)
and predissociation
RAXLRA*~R+A, (I1. 1b)

where RA is in the ground electronic state, RA* corre-
sponds to a metastable zero order electronically excited
state, while the fragments R and A may be either in the
ground or in electronically excited states and the radical
R may be also vibrationally excited.

The total Hamiltonian H for the system is recast in
the time independent form

(I1. 2)

where Hyg is the molecular Hamiltonian in the Born—-
Oppenheimer approximation, H, represents the non adi-
abatic intramolecular coupling terms (i.e., nuclear ki-
netic energy and spin—orbit interactions), H.,, corre-
sponds to the Hamiltonian of the radiation field and H,,,
denotes the molecule-radiation field interaction. The
Born-Oppenheimer Hamiltonian can be represented in
terms of the well known products of electronic |j,) and
nuclear |ja) wavefunctions

o) =iy |ie)

H=Hyo+Hy+ Hegg+ Hyyy

(11. 3)

which are characterized by the zero order energies
€;4, Where j and a correspond to all the electronic and
nuclear quantum numbers, respectively. Hpyg takes the
form

HBO:‘ZZ Uea} eja<jea|

Z |76 HE3 G, (II. 4)
where by utilizing Eq. (II.3) we have defined
HY)= Z lie) €, (I1. 5)

so that the operator HY) acts on the nuclear coordinates
space.

We shall now invoke the following assumptions regard-
ing the eigenstates of Hyg:
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FIG. 1. The vibrational distribution P, of the CN(B2Z) radical

produced by photofragmentation of various cyanides, after
Mele and Okabe? (exciting lines 1165 &, 1236 A). (a) ICN; (b)
BrCN; (¢) CICN. These plots should be linear for a Poissonian
distribution.

(A) Only two electronic states are considered in the
description of the photodissociation process, which cor-
respond to the ground electronic state |g,) and to the
electronically excited dissociative continuum {f,).

(B) In the case of predissociation we consider three
electronic states lg,), 1s,) and if,), where |g,) and
|f.» are identical to those defined in (A) while [s,) cor-
responds to a bound zero order electronically excited
configuration.

(C) The operators HY%) and HS) are characterized by
a discrete spectrum of vibronic levels which we denote
by lga) and 1sB), respectively.

(D) The vibrational eigenfunctions lga) and [sg) in
the 'g,) and |s,) electronic configurations, respective-
ly, will be represented in terms of products of har-
monic oscillator functions corresponding to the normal

modes of the radical R and the R~A bond mode. So that
we write for the eigenfunctions of H¥} and HE)

lga) =x& Q) - X&) (@) (1L 6a)
and

|58 = x5 @) x5 (Qu) (11. 6b)

respectively. Here Qg represents the collection of the
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normal modes of the R fragment and @, corresponds to
the R—A coordinate. ¥® and x‘® correspond to bound
harmonic oscillator wave functions in the two electronic
states. In (II.6) we have separated the quantum num-
bers «a and B into ag, and By which are the collections of
of quantum numbers related to the R normal modes, and
into a,, and B, which correspond to the quantum num-

bers of the dissociating mode. Thus

a=(ag, a,) (IL. 7a)
and

B=(Bp, Ba) - (IL. 7b)

The representation (II. 8) corresponds to a quasidiatomic
approximation for these bound states.

(E) The potential for the nuclear motion in the disso-
ciative If,) electronic state is represented in terms of
a sum of contributions of the molecular fragment R and
the interaction between R and the atom A. Thus HY)
=T+ VY, where 7T is the nuclear kinetic energy and

VOQg, Qa) = VaQgr) + Veal@4a) » (I1. 8)

where Qg is the collection of the internal nuclear coor-
dinates of R while @, is the single dissociative coordi-
nate. The interaction potential (II.8) involves contri-
butions only from neighboring atoms.

(F) The potential V(@) is harmonic.

(G) The role of bending modes and of rotations will
be disregarded and we consider at present a linear dis-

lgq’tg>

l9>

FIG. 2.
(a) Direct photodissociation, (b) predissociation.

Relevant coupling schemes for molecular fragmentation
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socijation process along @,.

(H) The Hamiltonian HY} for nuclear motion in the
|f,) state is represented in the form

H{ =L+ v, . (1. 9)

The eigenstates of HY) are given in terms of a product
of harmonic oscillator wavefunctions of the internal co-
ordinates of the polyatomic fragment R, and a function
of the dissociative coordinate @. Thus these zero order
nuclear eigenstates |fv), with the eigenvalues ¢,,, are
given by

7 =x9 Q) x¥P (@Qa) . (II. 10a)
And so
A= 22 1) 6,45 (1. 10b)

Y

where x‘f}i is the nuclear wavefunction (product of har-
monic oscillators) which corresponds to the radical R
characterized by the vibrational quantum numbers yg,
while xf* corresponds to the dissociative mode, and

is specified by the quantum number 1 for the relative
translational energy in the latter mode. The nuclear
perturbation term V; consists of mixed derivatives with
respect to nuclear coordinates and it is completely de-
fined in terms of Eqs. (II.5), (II.9), and (II. 10). We
note in passing that the basis (II. 10) does not correspond
to the Born-Oppenheimer nuclear wavefunctions (in the
harmonic approximation) but rather to a more crude
representation. This representation is, however, more
general than the simple “quasidiatomic approximation”
utilized'® to describe the line shape of dissociative spec-
tra of polyatomics, which did not include the perturba-
tion term V.

We shall now utilize Eqs. (II.2), (II.4), (II.5), and
(I1. 9) to partition the total Hamiltonian in the general
form

I1.11)

For the case of direct photodissociation we consider a
two electronic level system

H=Hy+V .

H0: lge>Hg(;<ge’ + lfe>ﬁl(3f(;<fe |+Hra.d 3 (II. 12)
V=H,+ |fe> Vf<fe[ (1. 13)

while for the case of predissociation, three electronic
configurations are included,

Ho=lg,) B3 g, |+ [s0) HEY (s, |
+tfe>ﬁg8<fe|+Hrm ,
V=H, +H,+ ’fe> Vf<fe| .

(I1. 14)
(I1. 15)

Now, as we are not interested in multiphoton pro-
cesses we limit our attention to weak electromagnetic
fields, and thus consider only zero photon, |vac), eigen-
states and one photon, ke), eigenstates of H,4. Here
k specifies the wave vector and e is the polarization vec-
tor of a photon. The zero order eigenstates of H, (Eqgs.
(1. 12) and (1I.14) are: |g,a,ke) and |f,7, vac) for photo-
dissociation and |g, o, ke), Is,B,vac), and If,7, vac) for
predissociation. The molecular wave functions are
specified in terms of Egs. (II. 3), (IL 6), and (II.10). A
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schematic energy levels diagram for photodissociation
and predissociation is portrayed in Fig. 2.

To avoid unnecessary formal manipulations let us now
specify the experimental conditions for both experi-
ments. We shall be mainly interested in the vibrational
distribution of the fragments [i.e., the states yz, see
Eq. (II.10)] resulting from direct or indirect photode-
composition. In the case of direct photodissociation we
can consider excitation of the molecule by a photon
wavepacket Yy, a,,/ke), where the coefficients a;, repre-
sent the wavepacket amplitudes, so that the state of the
system at (=0 is

|2)=(0) = ‘kL ay,|g,0,ke) , (I1. 16)
(]
where « =0 corresponds to the lowest vibrational level
of the ground electronic state.

The excitation amplitudes a,, determine the time
scale of our experiment, 1617

In a typical “long excitation” experiment we have a
monochromatic field (i.e., a,= 5k —k,) 5(e - e,)) and we
can envision the photodissociation as a scattering of
lg)=1g,a,ke) into a set of coupled continua |f,7, vac).
To specify the vibrational distribution of the products
we have to evaluate the elements of the scattering S
matrix, which may be obtained as the limit { = < of the
matrix elements of the time evolution operator U(-¢/2,
$/2).'® In order to monitor the time dependence of a
photodissociating system we should begin with a photon
wave packet of finite width.

In the case of predissociation we assume that the dis-
sociative continuum does not carry oscillator strength
from the ground state and the only appreciable coupling
by Hy,, is between the |g,a,ke) and |s, B, vac) states.
The line shape for each predissociating state is a Lo-
rentzian characterized by a total width v, provided that
the spacings between different |s8) levels exceed the
widths of the resonances. We can then consider the ex~
citation of the molecule by a light pulse of duration
T,<<73%. Under these conditions we can consider the
time evolution of an initially excited stateé+7

&)= |58, vac) (. 17)

decaying nonradiatively into a set of coupled continua
17y, vac),

From the foregoing discussion we conclude that we
can finally describe both direct photodissociation and
predissociation in terms of a two electronic levels sys-
tem characterized by the decay of a single resonance
state [g) given in terms of Egs. (II.16) or (IL. 17) into
the coupled manifolds [f) =|f,y, vac). The relevant cou-
pling matrix elements of the perturbation (II. 13) or
(1. 15) between these zero order states are of course
different for the two cases.

For the case of direct photodissociation we have

(11. 18)
Vipryr =(Fov, vae| Ve [£., vae) . . 19)

Making use of Eqs. (IL §), and (II.10) and invoking the

VE,fYE<gea’ ke | Hint ler; vac> »

Condon approximation, the coupling matrix elements
(I1. 18) take the explicit form:

Vga.f'/zK - k() <ge )p *€ )f )
X Q) [ x$2Qx) * (x4 (Qa) [ x(@4), 0L 20)

where { } and ( ) denote matrix elements in the elec-
tronic and nuclear coordinates space, respectively, and
where

- (efr/m)(21/ Qnc )2 . (1. 200

Here e and s denote the electron charge and mass re-
spectively, c is the velocity of light, and @ is the vol-
ume of the system (note that our photon states are box
normalized). h(k)=1/V% contains the dependence of the
coupling on the photon energy. The {(g,!p-elf,) factor
is an electronic matrix element of the electronic mo-
mentum (in the directwn of the photon polarization e).
The product (x“" (@A) 1x9(Q,)) corresponds to the vi-
brational overlap integral between the harmonic R~A
mode in the ground state and the dissociative R~A mode
in the excited state, while

Fcef(am YR) (X(ﬂ (QR ‘X(f) QR)

corresponds to the Franck-Condon vibrational-overlap
integral between the harmonic modes of the R fragment
in the two electronic states. These are determined by
the configurational modifications and frequency changes
between the ground state of the molecule and the re-
sulting R radical.

{11.21)

Let us consider a photon polarized paraliel to the mo-
lecular electronic transition matrix element {(g,|pif.)
then for a given bound-continuum electronic transition
the product

DO =Kn(ke)g, [p-elf) (X QA[xP @) (1.22)

depends essentially only on the quantum number I of the
dissociative mode, and we finally write for the case of
photodissociation

Vea,fr = Dl(pd) - chf(an’ YR) . (I1. 22"

In the derivation of Eg. (II. 22") we have assumed that
we begin with a, =0 (ground vibronic level) and we have
also ignored the weak % dependence of 4{k). It should
be noted that calculation of absolute cross sections re-
quires averaging of (II. 22) over molecular orientations.

Turning now to the case of predissociation, the cou-
pling matrix elements between the zero order states are

(1. 23)

while Vy, ... is again given by Eq. (II.19). When the
electronic configurations |s,) and f,) correspond to dif-
ferent spin states H, =H,, is the spin—orbit coupling
operator, whereupon (II. 23) takes the form

Vg,fr =<se Bs vac ‘ Hv Ife Vs V&C) »

Veis»=D{*' FCyflag, vz), (1. 24)
where

D™ =(S, | Hyo £ )67 @a) | x2(QW)) (1. 25)
and FC.(ag, vy) is given by Eq. (II.21). Equation

(I1. 24) for spin orbit induced predissociation is, of
course, analogous to Eq. (II.22). When nonadiabatic
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coupling between the same spin states Is,) and If,? is
considered Eq. (II.23) is rather complex. A reasonable
approximation is based on the assumption that the major

contribytion to nuclear kinetic energy coupling originates

from the dissociative coordinate, whereupon we define
the double vibrational electronic integral

D= (7@ 6, | 5q: Lond™@w) (.25

and

4
Vesr =Dy e FCyag,vg) . (11. 26)

We thus conclude that the coupling matrix elements
(11.18) and (11. 23) between the “initial” state and the
continuum states are determined by the Franck—~Condon
overlap (II. 21) both for the case of photodissociation
and for predissociation. What remains to be done is to
obtain explicit expressions for the coupling matrix ele-
ments (II. 19) connecting different continuum states
which correspond to different vibrational states of the
R fragment. This will be done for the case of a triatom-
ic molecule.

I, INTERCONTINUUM COUPLING FOR A
TRIATOMIC MOLECULE

We consider now the V; operator for the linear photo-
dissociation or predissociation of the triatomic molecule
ABC, resulting in the diatomic fragment BC and the
atom A. Equation (II. 8) takes the form

VO =V, 5Rap) + Vac(Rie) , (III. 1)

where R, and Ry are the internuclear distances, V,j
is repulsive, and V¢ is harmonic. Making use of the
reduced coordinates!®

( /et _
y:[ﬁgg____ (Rgc - Rpe)

n (I11. 2)
(UBCE)1/2]1/2[7“B+7”C ¥ _ B :\
A = X— o
* [ " Mg Byc
and of the reduced mass parameter
m= e (II1. 3)

(M +mig+me)my

the nuclear Hamiltonian (II. 5) for the dissociative state
takes the form?!°

1 8 1 8 1
o__ 2 2 2 2 8 - 1II. 4
Hfg=~ 5~ — 5 7 +2y+V(x y), (I.4)

where V(x - y) is a repulsive term. In Eq. (III.2) and
(IM. 3) &, Rpc, and g are the BC oscillator force con-
stant, equilibrium distance, and reduced mass, respec-
tively. Rpgc is the BC distance and X is the distance of
A from the center of mass of the BC molecule. Note
that Eq. (III.4) is mathematically equivalent to the
Schridinger equation of a particle of mass m colliding
with a harmonic oscillator of unit mass. We can now
define a new coordinate z = (x -~ y) and transform Eq.

(I11. 4) to a new set of coordinates (y, z), whereupon

1 @ 14,1\ 2
m) ay?

PRI ARV

1, 1 9
gy +Vi) - m  9yodz

(Im. 5)
Thus Eq. (II.5) is dissected as follows:

_ 1 1/ 1\ 1
Héf(g:__ __—<1 )—:72-4.53)2{-1/(2),(111.6)

2m 9z° 2 +%
1 &
£77 0 ooz (1. 7)

so that the intercontinua coupling involves a product of
the nuclear momenta for the internal BC coordinate
and for the dissociative z coordinate. The eigenstates
of HY) Eq. (IL 8), for the present case are

o =xP ) xPe) ,

where v is the vibrational quantum number of the diatom:
ic fragment BC and ! represents the relative transla-
tional energy in the z dissociative mode. For the sake
of convenience we shall denote the set of dissociative
continua in the triatomic molecule by

(I11. 8)

lvl)=|f,7,vac) . (1. 9)

The relevant zeroth energy levels scheme is given in
Fig. 2. To explore the detailed form of the intercon-
tinua matrix elements (II. 19) with V, given by Eq. (II1.7)
and the states represented in terms of Eqs. (III.8) and
(II1. 9), we write

1 !
Vf——m(a—a) 5 (111. 10)
where a and a* correspond to the annihilation and to the
creation operators of the B - C oscillator. Thus Eq.
(I1. 19) takes the form

Vi, orrr =01 lVf }”’l'>
- 7?1;;<v|(a_a*)10'><zt —8-2— 7'y, (m1.11)

We note in passing that (ITI. 11) vanishes for v=2'. For
the sake of convenience we choose the |!) wavefunctions
to be real (sinusoidal behavior at large z). Let us con-
sider |1 to be the wavefunctions of a particle in a box.
In this case we have

l’
(1 ]é]l')” 'l—g—_é—lﬁ;l+l'=2n+l

~0, I+0'=2n. (11, 12)

We then assume that our matrix elements of 8/8z be-
haves in a similar way, i.e.,

(to/oz|U') =Cyr, 1>V

==Cpy, I<l", (I 13)

Now, since we are interested in near resonance coupling
between |g) [Eq. (IL 6)] and the continua {Ivl)}, we have
to consider the {| vl)} states in the vicinity of Ig). This
implies that we can utilize Eq. (II.13) with I >1" for
v<v' and with <!’ for v>»’. Thus from Egs. (IIL 11)
and (I, 13) we get

1
WLV, [0 )= (v |- = (Cypoa+ Crea®) |07)
’ Ve T (1L 14)
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Making use of the well known properties of a and a’,

<U[a(1}’)=vv+16u',x»1 ’ (IH.IS)
wla*lv"y=Vv b (1. 16)

vyvel ,

we now obtain the general form of the coupling matrix
elements

V,,l'uq::(vl\ Vf lv'l'>= vo+1 (4 77T 6!1"1»1

+VU 0oy By, (1. 17)

where we have defined

oy =-(1/V2m)Cyye . (111.18)

Equation (III.17) implies that intercontinuum coupling

in the photofragmentation of triatomics occurs only
between adjacent concinua. This is a consequence of the
harmonic approximation for the diatomic BC radical,
which is explicit in Eq. (II.4).%°

Finally we have to specify the coupling matrix ele-
ments V,, ,; [see Eqs. (I1.18) and (II. 23)] for the linear
photodissociation or predissociation of a triatomic
molecule. From Egs. (II.22), (II.24), and (II. 26) we
write

Ve,u =D FCW) ; i=pd, so, na (ITI. 19)

where FC(v) corresponds to the Franck-Condon vibra-
tional overlap integral for the BC mode. Denoting by 7
the dimensionless reduced shift in the BC harmonic
mode between the ground state and the diatomic radical,
and assuming that in the ground state, only the zero
vibrational level is populated we have

nz n v
Ve, o =D,‘”exp (— T)(-\/——z'——) /m .

If the initial state is characterized by a vibrational quan-
tum number v, (not necessarily zero) we have:

{I11. 20)

2
i "\ —
Vews,u =Df* exp ‘T) vstvl

min(v,vg)

®Z (—1)*"" (n/ﬁ)wus-m

=0 rHo,-nlw-71"

(Ir. 21)

Equation (III. 21) is important particularly for predisso-
ciation where the different initial vibrational states may
be selected by optical excitation. We could have easily
extended Eqs. (III.20) and (III. 21) to incorporate the
frequency change in the BC mode, however this is not
essential at present.

In conclusion we notice that the relevant coupling
terms (III.17) and (II1. 20) between zero order states in
the photodissociation and predissociation of a triatomic
molecule are determined by the parameters a,;,, D’
and the cofigurational change 7.

IV. SEQUENTIAL DECAY MODEL FOR
PHOTOFRAGMENTATION

Photodissociation and predissociation in polyatomic
molecules can be now theoretically described in terms
of a sequential decay scheme!® where the |g) state [Egs.
(I1. 16), (I1.17)] is coupled to a set of continua, each cor-
responding to a different internal vibrational state of the

fragments, and where different continua are coupled. A
model system for sequential decay has been recently
handled by Nitzan et al. 1% who derived a general solution
for the case when the intercontinua coupling matrix ele-
ments are constant. We shall now consider the case of
sequential decay for a triatomic molecule (Fig. 2) con-
sidering the decay of the !g) state into the manifold,
{1w)}w=0,1,...,N=1).

The time evolution of the system will be handled by
the Green’s function method. Let the matrix elements
of the Green’s function G*(E)=(E - H+in)!, n~0", be
denoted by Gj,(E), where 7,j=g,vl. Then the probability
to find the system in the “initial” state is

2

00

f exp(= iE1) GL(E) dE

1
pelt) = 4r? Iv.1)

while the probability of decay into the v continuum is ob-
tained by summation over all the states in this partic-
ular continuum

+e 2
ﬁu(t)=4—;gz f exp(-iE1) :x,,(E)dE’ . (1v.2)
1 -0

The final vibrational distribution of the fragments is
pvzpu(oo) . (IV. 3)

The problem is reduced to the evaluation of the matrix
elements of the Green’s function, which can be accom-
plished by the application of the Dyson equation,® result-
ing in

. 1 1 .
Ggg: E+-E‘ * E+—E‘ szvhvl vl, g (IV.4)

N 1 ' 1 "
vlg ™ E-E, }; ; Vor,oree Gorpr g + E-E, Vit,e Gee
(Iv.5)

for each » and I, where E (i =g, vl) are the energies of
the zero order states, and E*=E +i1.

Equations (IV.4) and (IV.5) provide us with an infinite
set of coupled algebraic equations. In order to obtain
manageable results the following approximations are
introduced at this stage:

(1) The number N of the continua is finite, being de-
termined by the highest continuum accessible by reso-
nance coupling to g) (see Fig. 2).

(J) The coupling matrix elements V,,,, are indepen-
dent on the particular translational state I, and we set
D{’=D in Eq. (I0.19). Thus V,,,, =V, ,being deter-
mined by the Franck-Condon overlap. [We take the
continuum states to be energy normalized, i.e., {{I7")
=5(1-1").] This simplifying assumption, which will
result in the vanishing of some level shift terms due to
the g vl coupling, is common in the treatment of
radiative and non radiative coupling with continua.

(K) The intercontinua coupling terms {Eq. (III. 17)]
will be simplified by assuming that the coefficients a,;.
in Eq. (III. 18) are independent of the particular trans-
lational states. Since we are essentially interested in
near resonance coupling it is reasonable to assume that
@;; for the coupling between {]v1)} and {lv+1,1)}is
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determined by the continuum index v, and we shall re-
place a;;. by a®. For the present we shall even go
further and assume that a‘® is independent of v. This
last assumption will be relaxed in Sec. V.

(L) The dissociative continua are unbound below, and
threshold corrections will be disregarded. This as-
sumption is consistent with assumptions (J) and (K),
and will result in the vanishing of level shift terms.

Invoking assumptions (I) and (K) we may now rewrite
Eqs. (IV.4) and (IV.5) as follows:

. 1 R
Gie= 575 (1 DY VM,G,,,,,> , (1v.6)
v (B )'l(a“””\/'v_qv_l Z G
vl g vi T (uel)l’g
G
+(E*=~E ) Vi, Gl @v.n)

where v=0, 1,...,N-1and 0<(},!")<«. Note also
that in Eq. (IV.7)

a®P=a"=0, {Iv.8)

We now perform an integration over the continuum
states, 3,~ [ dE,;p{”, where p{’ is the density of states

in the {1vl) } continuum. We define the sums

4,23 Giue= [0 Gl - (1v.9)

Utilizing assumption (L) we obtain from (IV.7) the set
of equations

Ay= = impP @ VT Ay + VT A, )

—inp{"V,, Gy (Iv.10)
forv=0,1,...,N-1, and where
Ay=A,=0. av.10")
In deriving Eq. (IV.10) we have used the relation
w0 (v)
PidE; _ . w
=~ V.
[ = =~mof (v.11)

the (real) principal part of the integral (IV.11) was
disregarded.

Finally, utilizing assumption (J) we recast Eqs. (IV.6)
in the form

(B* = E)Gh=1+ D, Ve oA, av.12)
v
while Eq. (IV.7) takes the form
Ghy,e=(E* - E ) a®PVu+14,,
+ @ A, 1+ VGl Iv.13)

Equations (IV.10) and (IV. 12) constitute a set of N+1
algebraic equations for Ay, 44,...,A, and G}, once
this set of equations is solved we obtain an explicit ex-

+

pression for Gy, via Eq. (IV.13).

We have previously provided the solution of these
equations for the simplest possible case where the inter-
continua coupling terms are constant being independent
both of v and of 7.!®* We shall now proceed in two steps.

First we consider the effect of the internal coupling con-
tributions vo and vo+1 on the intercontinua coupling
terms. In Sec. V we first present a solution assuming
that a® is independent on ». Later we present the so-
lution for some simplified but physically reasonable v
dependence of a‘,

V. APPROXIMATE SOLUTIONS FOR THE
SEQUENTIAL DECAY PROBLEM

We now proceed to derive an explicit solution for Eqgs.
(Iv.10) and (IV.12). In the treatment presented in this
section we assume that the coefficients a®*p{* are
constant, independent of v, thus we may omit the super-
scripts from these quantities. We have thus the follow-
ing set of N+1 equations:

A,=B8Vv+1A,, —B*x/?Av_l— Yo s

v=0,1,...,N-1 (v.1)

(E+_Ez)G;£=1 +Z Vevls (v.2)
where

A =Ay=0. (v.3)

Here we have defined the parameter 8 which corresponds
to the reduced intercontinuum coupling

6:_iﬂapl 3 (V 4)

B*=imap, | '
and

Vo=tV 01 Gop - (v.5)

The off-diagonal elements Gj;,, are given by Eq. (IV.13)
with

a(uﬂ.) (v)

zaP=q. (V.6)
A. Coupling of |g ) with a single continuum

We shall consider first the simple case of coupling of
the “initial” state to a single continuum { 12)} so that

Ve,o=VerOu,p - V.7
Equations (V.1), (V.2) takes the form
A=o+1A, -V Ay, v#kR (v.8)
Ap=pVE+1 Ay~ BFVE Ay -7 v.9)
(E'-E)Gp=1+V, A, . (v.10)

The solution of the set of Eqs. (V.8)-(V.10) is repre-
sented in the form (see Appendix A)

A,==F,k) vy , (v.11)
where the matrix F(v, k) is defined as follows:
O. /B1\Y/2
Flu, k)= ——————QéQk (TJ_Y—) Bk"” v<k
¥ !
e} r\1/2
- _%_Qv_<%> (=8*)**, vzk. (V.12)
N !

The matrix F(v,k) is determined in terms of the @,
and @, polynomials, defined and listed in Appendix A.
From Egs. (v.8), (V.9), and (V.11) it follows that it
obeys the recurrence relation
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Flw,k)=8Vv+1 Flo+1,k) = B*Vv Flo~1,k) +8,, .
(v.13)

The diagonal matrix element of the Green’s function

[Eq. (v.10)] can be now expressed utilizing Eq. (V.11),

GiE)=(E —E +(i/2)T )", (V.14)
where the characteristic width is

= Zﬂ(Qkék/QN)l Ve, lz [} (V.15)
which can be finally written in the form

T =T% Flk,k) (V.16)
and where the zeroth width is defined as

Tee=s2m IV,,klzp, . (v.18"

We now proceed to the evaluation of the the off-di-
agonal matrix elements of the Green’s function [Eq.
(Iv.7)]. Making use of Eq. (V.11) we obtain:

tre= o [aVU 1 Flv +1,k) + aVo Flv ~1,k)]
! E -Ey
+ —-—YE’-‘—— G+ (8] (V. 17)

E+_Ev1 EEV R *

Application of Egqs. (V.5), (V.13), and {V.14) to (V.17)
results in

Flv,k) V,,

Gy, AE) = (v.18)

(E-E,+iT,/2{E*-E,;) *

pV
0!
102
192
. 181=0.
|04r—-
] ] ] ] | J |
) 1 2 3 4 5 6 y 7

FIG. 3. Vibrational distribution of products [Eq. (V,21)] for
various |8} values. N=14, k=0,

o™

104

| J

4 6 8 10 Ry 14

10>

A

0

FIG. 4. Dependence of the vibrational distribution on the initial
vibrational state & and the coupling parameter 8 for N=14 in the
weak coupling limit, (a)2=0 181=0.3, b) k=7 |81=0,05, (c)
=7 I1B1=0.3, @) k=7 IB1=0.6, (e) k=13 |5 1=0.3.

Equations (V.14) and (V. 18) together with the definition
tions (V.12) and (V. 16) determine the time evolution of
the system. Making use of the general relations (IV.1),
(IV.2) we obtain for the present case

Pt)=|C0)|2=exp(-T,,0) (V.19)
[Fv,k)12 V12
[Cut)|?= (E,(f E:)'2 +l r?k/‘l {1 +exp(=T,,t)
- 2exp(-Tut/2)cos[(E,~E)t]}. (V.20

The probability (IV.2) for the decay into the v continuum
at t== is

Pv:f ’Cvl(“’)‘zpszx:'F(U,k)\z. (v.21)

The matrix F(v, k) contains all the relevant physical
information regarding the time evolution of the system
characterized by lg)«1kIl) coupling. We notice that
“the decay width” T',, is determined by the diagonal ele-
ments F(k, k), while the vibrational partitioning is given
in terms of | F(v, k)12,

The F matrix is determined by the polynomials @,
and Q, [via Eq. (V.12)]. These polynomials include the
same powers in | 812 for the pairs Qum, Qams and Qom,
Qam-1, Where m is an integer, m =(N-1)/2. Thus
the degree of the @, polynomials increases while the
degree of the @, polynomials decreases by two for every
second polynomial (see Appendix A). We also note that
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F obeys the unitary conservation relation
Do Fw, k)31
v

It will be useful at this stage to explore the implica-
tions for the model system with [g)~1|£I) coupling:

(v.21")

(a) For the limit of weak intercontinua coupling
[B1<1 and the polynomials @, and @, are close to unity
for all v.

In this limit we have from Egs. (V.12), (V,21)

P,= B3P Wwi/kl), v=k

=| BB PRI f0)), vk . (V. 22)

We note in passing that only when k=N -1 (i.e., for
direct coupling to the last continuum) the distribution is
Poissonic. The vibrational distribution is then a smooth
function of v, as demonstrated in Fig. 3 for the physi-
cally relevant case #=0 [i.e., 7=0 in Eq. (III. 20)].

(b) In the limit of strong intercontinua coupling when
[ B121 the vibrational distribution exhibits an oscilla-
tory steplike structure, (see Fig. 3) which originates
from a significant contribution of the polynomials @,
and @, to F(v,%). The increase in an even power of | 81
for every second polynomial results in an oscillatory
distribution in the strong coupling limit for the model
used herein. This feature of the distribution arises
from our assumption (K) of constant coupling strength
between all the continua and will be relaxed in Sec. VB.

(c) The % dependence of the distribution is presented
in Figs. 4 and 5. In the weak coupling situation P,
exhibits a maximum at v =% followed by a sharp decrease
(of the form 1813"""*! for | B1<<1) at higher v. In the

G4 1 1 1 I
¢] 2 4 6 8 10 12 v 14

FIG. 5. Dependence of the vibrational distribution on the initial
vibrational state k and the coupling parameter 8 for N=14 in the

strong coupling limit, 181=2, (a) k=0, ) k=5, (c) k=13.

63 | [ 1 [ | [ I
0 | 2 3

FIG. 6, Dependence of the vibrational distribution P, on the
number of continua (N). Strong coupling, g =4 (a) N=12, (b)
N=15, (c) N=16, Weak coupling, 181 =1. (d) N=12, () N=15
(f) N=16,

strong coupling limit the distribution is less regular.

(d) The dependence of P,(~) on N is weak for [Bl<1
(when v is not too close to N), and also for | 8[>1 for
either even or for odd N values. We note that changing
N by unity in the strong coupling case shifts the maxima
and minima in P,(*) from v to v +1 (gee Fig. 6). In this
case the averaged distribution:

(P,) =[P (=) + PN (w))/2

is a smooth function of v. This averaged (P,) distribu-
tion exhibits a weak dependence on N.

(v.23)

{e) All the results deduced so far pertain both for pre-
dissociation and photodissociation. In the case of pre-
dissociation we can identify I'y, with the decay rate of the
“initially prepared” |g) state, whose decay mode is ex-
ponential [see Eq. (V.19)].

(f) The width T',, decreases with increasing | 8| (Fig.
7). This is a manifestation of the role of interference
effects in sequential decay, which was previously studied

[
T, o
T
107 —
1072 i 1 i L |
0 4 8 12 16 |5 20

FIG. 7. Retardation of the characteristic width [Eq. (V16)] as
a function of 18|, N=14, k=0.
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Y

r (a)

(b}
o3 1 | | | | 1 i
0] 2 4 6 8 10 12 K 14
FI1G. 8. The characteristic width [Eq. (V16)] as a function of

k. (@ IB1=0.2, b} IB]=5.

for simpler systems.'¥!'® From Fig. 7 it is evident that
T~ T for 181~0and I'y,—~ 0 for 131>>1. Finally we
notice that as F(k, %) contains the factor ©,Q,/Qy then
in the strong coupling limit T',, exhibits an oscillatory
dependence on % (see Fig. 8).

(g) The results obtained herein are qualitatively sim-
ilar to but differ quantitatively (see Fig. 9) from those
of our previous treatment’ of a simpler model system
where the Vo dependence in Eq. (III. 17) was not in-
cluded.

B. Coupling of |g) to all continua

Utilizing the results of Sec. (V. A} it is now possible
to solve the problem [Eqs. (IV.4) and (IV.5) which cor-
responds to the initial coupling of |g) to all continua.
Now the coupling matrix elements V,; , are determined
by the Franck—Condon overlaps [via Egs. (III. 19),

(I1. 20] being determined by the parameter 7. The gen-
eral solution for the coefficient A, [Eq. (V.1)] can be
expressed as a superposition of the coefficients (V.11)
which correspond to the special case of |g)-—|kI) cou-
pling. Thus in the general case

N1
Ay=- 2 Flo,k)y, . (V. 24)
k=0

In order to evaluate G}, [Eq. (V.2)] we calculate the sum

Z Ve olAo=— Z };V,,,,F(v,k)yk
v v

= —imp, E Z Ve,o F0, R)V, . Gy | (V. 25)
k v

where we have made use of the definition (V.5). Equa-
tion (V. 2) is now obtained in the explicit form
Gyu=[E-E,-D,+(/2)T, 1, (V.26)

where we have defined the level shift D,, and the gen-
eral width ', in terms of the relation

D= /DT, =~inp, 2. 2. Ve Fl0,B) Vs, . (V.27)
v ]

4769

Defining the row vector
Voe

Vie
V= (v.28)

VN-lol
of the initial coupling terms, and the matrix F={F(v,k)}
we can write

T, =2mRe[(V*F V)p,] (V.29a)
and
D,=nlm[(V'F V)p,] . (V. 29D)

It is now a simple matter to evaluate the off-diagonal
matrix elements Gy,,, which are given by Eq. (IV.13)
with o™ = a. Making use of Eq. (V.24) we get

Gl e=E*=E )" [— avv+1 Z Flv+1,k)y,

P
—axff)_zF(v-l,k)'y,,+Vv,,,G;,]. (v.30)
’

Utilizing the definition (V.5) and the recurrence relation
(V. 13) we obtain

FIG. 9.
coupling on the vibrational distribution. —This work (including
the v depencence). - - - - Ref. 13, where the intercontinua
coupling is assumed to be » independent. (a) I81=0.1, (b)
181=0.6, (c) 181 =2,

The effect of the v dependence of the intercontinua
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Gpg= (B = E ) 20 Flv,k) Vi, G (v.31)
k

with G, now given by Eqs. (V. 25), (V.28), and (V. 29).
Thus we get

. S Fw, kv,
whe” TE-D,+ (/2T ,JE* ~E,)

(v.32)

The time evolution of the system is again given in
terms of Eqs. (IV.1), (IV.2) together with (V. 26) and
{(v.32). Thus, for the case of coupling of |g) to all the

continua we get
P(t)=exp(-T,1) (v.33)

with ', being given in terms of Eq. (V.29). In a similar
manner we get

| 5% Flo, k) Ve 1?

(E,-E ) +iT%

% [1+eTet — 271/ 2Tt cos(E,,; - E )]

‘ Cvl(t) '2 =
(v.34)

while the final vibrational distribution takes the form

P,=(21/T) /Z Flo,k)Vi,, |20s - (V. 35)

We shall now define the row vector of the vibrational
distributions

Py
Py
P= (v.36)
Py,
which from Eq. (V.35) and (V.27) is given in the form
LF V)12
 me————— . . 3
p, RV EV) (v.37)

Equations (V.12) and (V. 37) constitute the solution for
the model system under consideration where lg) is cou-
pled to all the continua. The solution is determined by
the vector V, which specifies the inijtial distribution and
by the F matrix (which is connected with the Moller wave
operator) defined within the subpart of the Hilbert space
spanned by the states {1vl)}. We shall demonstrate
elsewhere the general formal relation between I', [Eq.
(V.29a)] and F V and the projections of the level shift
operator in different subparts of the Hilbert space. 20

We shall now explore the effect of the initial coupling
terms on the final vibrational distribution. The vector
V is determined by the appropriate Franck-Condon fac-
tors via Eq. (II.20). These vibrational overlap factors
are determined by the parameter 7. The following points
should be noticed:

{a) In Figs. 10A and 10B we present the final vibra-
tional distribution for different n values for both weak
and for strong intercontinua coupling. For small values
of 7(n=0-0.5) the distribution is insensitive to 7 being
close to the result obtained for initial coupling to v =0
only, i.e., V, ,=V, 0,,,- For large n values, the final
distribution is, of course, appreciably affected by chang-
ing 7.

S. Mukamel and J. Jortner: Molecular photodissociation

{b) The final distribution P, assumes a Poissonic dis-
tribution in the extreme weak coupling limit when [ 3]
- 0. Under these circumstances F(v,k2) =3, ,, and thus
from Eq. (V.35) P,< |V, 1% and the final distribution
is then just determined by the initial coupling terms.
The Poissonic distribution thus obtained in the extreme
weak coupling situation originates from a different phys-
ical picture than the mathematically identical distribu-
tion obtained from the “half collision” model,® In the
latter case the parameter of the distribution is deter -

(a)

FIG. 10,
tribution [Eq. (V.37)]. N=8.
(B) Strong coupling 181 =2.

The effect of 1 [Eq. (III.20)] on the vibrational dis-
(A) Weak coupling |5 =0,3.
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mined by the Fourier transform of the force exerted on
the oscillator while in the present case 7 is related to
the initial coupling.

{¢c) The oscillations of P, in the strong coupling limit
exist also for large 1 (see Fig. 10B).

(d) In the weak coupling limit the distribution is again
insensitive to N for constant |81 and 1. In the strong
coupling limit the averaged distribution, (averaged over
two N values of different parity), which is given by
Eq. (v.23), exhibits a weak N dependence.

(e) Figure 11 portrays the dependence of P, on the
vibrational quantum number # of the initial state (g).
This dependence is relevant for the case of predissocia-
tion where one can often select £ by appropriate excita-
tion conditions. The coupling V, ,; in this case is given
by Eq. (II.21). We note that # has an appreciable ef-
fect on the final vibrational distribution.

(f) The width T', [Eq. (V.29a)]decreases with in-
creasing 1 (see Fig. 12). This is a consequence of in-
terference effects, which become more pronounced when
the initial coupling encompasses more states.

We were thus able to provide an explicit solution for.
the problem of sequential decay involving multiple con-
tinua with nearest neighbor intercountinua coupling. In
our model the vibrational distribution is determined by
the parameters 8 [Eq. (V.4)]and 1 [Eq. (UI.21)]. The

& N N R U S
o] 2 4 6 8 e} 2 y 14
FIG. 11. Dependence of the vibrational distribution on the ini-

tial vibrational state (¢) when n = 0 {Eqs. (III.21), (V.37)]
N=15,1=1, |81=0.3,

4771
Y ..
/10
ot | | l l 1 | ]
0 ! 2 3 4 5 6 5 7

FIG. 12. The characteristic width as a function of 7 [Eq.
(V.292)) N=14. [ is the width assuming |81 =0 and F(y,k)
=0 ]

vkt

basic simplifying assumption employed by us involves
the independence of the intercontinuum coupling on the
translational quantum numbers ! and !’ in adjacent con-
tinua. We believe that the strong oscillations exhibited
in P, for the strong coupling situations are a consequence
of this assumption. Simple model calculations for the
coupling between continua indicate that resonance cou-
pling of the states 1vl) and [v'l") around the energy

E, ~E,;.~E, will decrease with increasing v. A For
v=N -1, near threshold, we expect that (N -1,
11VIN=2,1") will be small. The simplest way to ac-
count for this effect is to consider the intercontinuum
coupling to be different for each pair of continua (v, v
{(where »"=v +1). We have accordingly performed fur-
ther model calculations solving Eqs. (IV.8) and (IV.7) and
assuming that the coupling terms exhibit some specific
dependence on v.

We have considered two simple cases which exhibit
the attenuation of the intercontinua coupling with increas-
ing v. First, we have taken for the intercontinua cou-
pling terms

o (vav+l) _ aoexp(— ¢U) , (V. 38)

(vv=1)

a = agexp[- ¢l ~1)],

where ¢ >0 is a real number and a, denotes the coupling
strength. The form (V. 38) corresponds to an exponential
attenuation of the coupling. Second, we have used a sim-
ple linear form for the attenuation of the intercontinuum
coupling

q
(v u+1) _ -
a =y <1 N_2 v) ,
7 (v.39)
e =gy [l-— N3 (v—l)]
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Here, again, «, represents the coupling strength and
0<4d<1 is a real number denoting the degree of attenua-
tion. Thus §=1~¢g corresponds to the ratio between
a¥2¥D and @Y, In Egs. (V. 38) and (V. 39) we as-
sume again that the continuum states are energy nor-
malized, (I11")=6(I-1").

The solutions of the algebraic Eqs. (IV.6) and (IV.7)
with (V. 38) or (V. 39) is straightforward but lengthy and
we shall just quote the final results. Most important,
we have found that the final vibrational distribution of the
products is given by the same form as Eq. (V.37) irre~
spective of the special form used for the intercontinuum
coupling, except that the matrix F ={F(v,%)} is different
for each case. This result manifests a special case of
the general features of sequential decay involving adja-
cent coupled continua which will be considered in sub-
sequent work. 2

For the exponential attenuation, Eq. (V. 38), we ob~-
tain

F(v,k):/%" "‘B’Q(;Q Bg'"exp[— ¢>(k—v)2(k+v—1)] ;
! N

v=k

| @9 “B)w+k—1
/;. B (- pgyren - Lmheb =l
vzk (V.40)

/
/
/()
/
/
/
\\l
v
53 L L1
0 2 4 6 8 10 12y 14
FIG. 13. Effect of the linear attenuation factor ¢ [Eq. (V.39)]

on the vibrational distribution for weak coupling. N=15, (a)
181=0.14=0, 0.99, ®) 181=0,56¢=0, b’) 181=0.5¢=0.99,
{c) 1Bl =1¢g=0, (c') IB1=1¢=0.99.

Molecular photodissociation

PV
0™
102 (b)
(e)
\ ()
10
|
10 \
(d)\
\_
S Ll

o) 2 4 6 8 10 2 - v 14

FIG. 14. Effect of the linear attenuation factor g, [Eg. (V. 39)]
on the vibrational distribution for strong coupling N=15. (a)
q=0, (b) g=0.5, (c) g=0.9, (d) ¢=0,99, (e) ¢g=0 (averaged dis-
tribution (P,) for N=14 and N=15 [Eq. (V.23)].

where By = —ina,p, and the polynomials Qv,@, are de-
fined in terms of the recurrence relations

Q=671

Qu1=Q, B |2vexp[-2(w-1)¢1Q,, , v=1  (V.41)

Z?-N-l =Qu2=1 ’

@1 = Qo+ | By + Dexp(- 209)Q, ,,+1), v<N=-2.
(v.42)

For the case of linear attenuation of the coupling, Eq.
(v.39), we get

R

wT v<k

Qva kev e ( 4 )
Fly, k)= 2%k nh--—
;) Qy Po j=v N-2)

— Qkau - v- i q : E-— )
M (1-_~—N_2]>/k! vk

_ Q49 v
Q

i

k (V.43)

where B,=~ina,p;, and now the polynomials @, and @,
satisfy the following recurrence relations:
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Q= =1
q 2
Q,,+1=Qv+1ﬁo\2v[1- ~=5 @ -1)] Quar, 021

— — (V. 44)
Qu1=Qy2=1

— q 2_
Z\?‘v-l:Qu'*'\Bolz(v'*'l)[l-m’l] Qv+1’ VEN-2 .
(v.45)

In Figs. 13 and 14 we present the results of numerical
calculations for the final vibrational distribution of the
products for the linear attenuation model based on Egs.
(Iv.6)-{IV.7), and (V.43)-(V.45). The additional pa-
rameter which enters into these calculations is the total
attenuation factor € =1 -4, From these results we con-
clude that:

(a) In the weak coupling limit P, is not sensitive to
the magnitude of the attenuation factor (see Fig. 13).

{b) In the strong coupling limit, reasobable values of
£ =0.1-0.01 result in damping of the oscillations in
P,. The distribution thus obtained (see Fig. 14) is very
similar to that given by the average value { P,) Eq.
(V.23). The only difference between the present results
and those for (B,) involve “edge effects” for the popula-
tion of the continua N ~ 2 and N - 1 where F, drops sharp-
ly for small £.

{c) The width T, is considerably affected by £ as is
evident from Fig. 15.

This concludes our formal discussion and we now pro-
ceed to compare the results of the admittedly approxi-
mate theory with the available experimental data.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

We now apply our model to direct photodissociation
and predissociation of Cyano triatomic molecules XCN,

r
/0
-1 q=0.99
10 —
q=0.9
62—
g=0
g2 l | 1 | |
] 4 8 12 16 18} 20

FIG. 15, Effect of the linear attenuation factor [Eq. (V.39)]
on the characteristic width., [Eg. (V.16)] N=8, k=0,
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yielding the B®T excited state of the CN radical.? The
compounds studied by Mele and Okake? were ICN, BrCN,
CICN, and HCN. Our model is applicable to linear
photofragmentation of triatomics and we shall thus con-
sider only the first three molecules. Excitation into the
a continuum of these molecules corresponds to direct
photodissociation, while excitation at higher energies
(below ~1700 A for ICN, below ~1500 A for BrCN and
below ~ 1400 A for CICN) results in predissociation
through Rydberg states.

Utilizing Eqs. (V.27) and (V. 37) together with the
linear attenuation scheme [Eqs. (V.39), and (V.43)~
(V.45)] we notice that four parameters N, 7, 8, and ¢
enter into our theory. The number N of effectively cou-
pled continua was estimated from the excess electronic
energy (E,) above the dissociation threshold (E,), i.e.,
N=(E,-E)/iWoy, where Wy = is the vibrational fre-~
quency of the CN B?S radical (see Table I). The param-
eter n [Eq. (II.20)] determines the vector V Eq. (V.28),
of the Franck~Condon factors. For the case of direct
photodissociation 71 is determined by the configurational
change in the internuclear C~N distance between the
ground state of XCN and of CN(B*%). For predissocia-
tion, 7 is given in terms of the change in the equilibrium
distance of XCN in the relevant Rydberg state and of the
CN(B’Z) radical. The available experimental data are
summarized in Table I. From these results we con-
clude that for all cases of interest n=0.2-1.2. For
1 <0.6 effective initial coupling occurs practically only
to the v =0 state and the final vibrational distribution
is determined by the intercontinua coupling. For larger
7 the experimental value was explicitly included.
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TABLE 1. Energetic and structural data for photofragmentation of XCN compounds, 212
Excitation
energy
(E,) Excited Nature of (AE)=(E,)-E, Rg a
Molecule (eV) state photofragmentation (V) N (A) n
ICN 6.7 o Photodissociation 0.39 2 1,159 0.2
7.2—-8.5 B Predissociation 1.43 6 1.169 0.4
C Predissociation 1.183 0.6
D Predissociation
8.4, 9.5 G Predissociation 2.1 9
D Predissociation
10, 10.6 High Rydberg Predissociation 3.9 16
states
BrCN 7.2-8.5 B Predissociation 0.99 4-5 1.16 0.2
C Predissociation 1.185 0,7
(o) Photodissociation 1.158 0.15
8.4, 9,5 B Predissociation 1.71 7 1.16 0.2
C Predissociation 1.185 0.7
E Predissociation
10, 10,6 High Rydberg Predissociation 3.48 14
states
CICN 7.2-8.5 o Photodissociation 0.99 4-5 1,159 0.2
8.4, 9.5 B Predissociation 1.10 5 1,210 .2
C Predissociation 1,213 1.2
10, 10.6 High Rydberg Predissociation 2.88 12

states

3R, is the CN equilibrium distance. For photodissociation R, refers to the ground state of the XCN

molecule, for predissociation R, refers to the predissociating level.

The attenuation parameter was taken in the region
£=0.1-0.01. Except for the final distribution in the
N -1 and the N — 2 continua the results are not sensitive
to the choice of £ in the above region. Finally the effec-
tive coupling strength 8, was adjusted to provide best
fit to experiment. @, corresponds to {0l [v[11)p,, i.e.,
to the product of the coupling between the first pair of
continua multiplied by the density of states.

In Figs. 16,17 and 18 we provide a direct comparison
between the theoretical results and the experimental
data. Our theoretical scheme faithfully reproduces the
experimental behavior of P,. The general features of
these results are: (1) The P, distribution peaks are
at v =0 and (2) the distribution is wider with increasing
the photon energy. Feature (1) is consistent with the
relatively small value of 1 which according to the pres-
ent theory results in initial coupling only to the lowest
v values. Feature (2) implies a higher | 8| value with
increasing the excess energy above the dissociation
threshold, which is compatible with simple models for
intercontinuum coupling.?' It should be borne in mind
that our collinear model is applicable only for photo-
fragmentations of ABC molecules where all electronic
states involved have a collinear equilibrium configura-
tion. This is probably the case for the XCN molecules
although we cannot ignore the possibility that the elec-
tronic state related to the a continuum may be bent.'
The HCN molecule is linear in its ground state but highly
bent in its lowest excited states.? In spite of this it is
tempting to examine qualitatively this system in the light

of the present model hoping that the vibrational distribu-
tion is not appreciably affected by the bending. Figure
19 shows the fit of our model to the experimental re-

BrCN
| —
Py J\ A x=11654, 12368 +++ Exp.
4 \.o ~—— Calc. |
———Calc. 1l
o B A=12958, 14704 e oExp.
\ ~—==Calc.
102 \
\
\
\
\
+
16° 1 1 1 1 [ R
0 2 4 6 8 10 i2 14

FIG. 17. Comparison of our model with experimental results
for BreN®

A, n=0
Calc 1 N=14 1Bl =2.5 g=0.9
Calc 11 N=13 I1B1=2.5 qg=0.95
B. N=T7, 1BI=0.7 ¢g=0,9 n=0
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sults.? We expect that for DCN g will be smaller by a
factor of 2 as compared to the 8 value for HCN (since
B~1/m) and so we except the vibrational distribution in
the photofragmentation of DCN to be narrower.

Finally, we would like to emphasize that our treat-
ment is applicable only for a collinear photofragmenta-
tion process and does not incorporate rotational excita-
tions. The success of our model in accounting for the
features of photodissociation of linear triatomics (and
also for HCN) may originate from the fact that the sta-
tistical approximation for rotation effects?® may be not
too bad for the present case. Thus rotational effects
will probably not affect the gross features of the relative
vibrational distribution calculated herein. This assump-
tion can be crucially checked by a complete solution of
the three dimensional scattering problem with an angu-
lar dependent potential.

Summing up this discussion we would like to point out
that the results of the present quantum mechanical mod-
el for photofragmentation differ from the predictions of
the semiclassical “half collision” model.® The broad
P, distribution experimentally observed in the photodis-
sociation and predissociation of XCN molecules deviates
from a Poisson type or from a quasi-Poissonic distribu-
tion, ® but concurs with the predictions of our model.

APPENDIX A: SOME ALGEBRAIC MANIPULATIONS

We consider the solution of Egs. (V8)~(V10). Letus
try a solution of the form
A=Ay BTYQ, /Nl v=Fk (Ala)
CLCN
' 'S A r=i65R 12368 +++ Exp.
P, X
N Calc. I
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R}
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FIG. 18, Comparison of our model with experimental results
for CICN.?
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FIG. 19. Comparison of our model with experimental results
for HCN.?

Calc 1 I81=0.6 q=0.9 n=0

Calc II 1B1=0.6 g=0 n=0

DCN I1=0.3 qg=0 n=0
~ AN-1(—B*)0-N+1 /v! _

A,= T Q,, v=k (Alb)

where @, ,TQ,, are some yet unspecified functions of v to
be determined by Eqs. (V8)-(V10). Substituting Egs.
(A1) in Egs. (V8) shows that for v=0,1,...,k -1 Egs.
(v8) are valid provided that

@=@,=1
and

Quaa=Qu+ [B%Qu. |

(A2a)

v=1 (A2Db)

in the same way, for v=N -1, N-2,...,%k+1 the solu-
tion (V6) is valid provided that

[ =Qy.2=1 (A3a)
Qu1=Qy+ | B2+ 1)@, | (A3b)

We have now three different equations regarding A,

v=EN-2 .

(1) Using our recursion formula (42),

Apa=BVE A,—-B*VE<14,,, (a4)
which using (A1) and (A2) gives for A,:
_AgBTQ,
A= VB . (A4")

(2) Using our recursion formula (A43)
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Ap1 = BVR+2 A4, - B*VE+1 A, (A5)
which using Egs. (Al) and (A3) gives

_ AN-I(_B*)I:-N-!’Imak
- m . (A5')

(3) Equation (V9).

Ap

In addition we have to satisfy Eq. (V10) which we did
not consider yet. We have thus obtained the following

+

four equations for the unknowns A, A,, Ay, G,,.

A=A B Q. VR, (A6)
_ Ay (=) VRTQ,
A N-11 ’ (A7)
=R+ DBIE= X)) M VRT @y
A= m AN-1 (A8)
RIBIZB™Q,.
- ..-__\/__l};__g_kL AO -Ya s
and
(E*=Ep Gpp=1+V, A, . (A9)
Solving for A, and Ay ; we get
A - Ve Q,BFVET
0 Qk+16k+(k+1)llglz(l)k6k+l
- e QB VE!
= 0 (A10a)
and
N-1 b k
A, = SBNTW “DI Q=1 (A10D)
! Qk!1B1

it can be easily shown that F (k) defined by (A10a) is in-
dependent on k. Using Eqs. (A2) and (A3) we have

Frlk)=Quu Qpt b +1)[ B2 Q, Qg

= (Qu+ [ B2 Q)@+ ke + D[ B]%Qu Qs

Q@+ | BB+ 1) Quu) + Qu@uuy | B 120

=QuQpur+ | BIPR Quuy @p=Fylk -1), (A11)
and so

Full)=Fy0)=FyN-1)=0Q_,=Qy . (A12)

From Eqs. (A10) and (A12) we get for 4,:
=¥, Qe B VT

QN

Using (A13) it is straightforward to obtain A,, Ay, and
t. Utilization of Eqs. (A6), (A7), and (A9) results in

A= (A13)

A=A BFQ,/VET (A14)
k 0

Y, @ VN =TT (= gr)V-5-t
Ayg= Ye @ QN\/H— 8 , (A15)

2QrQu/Qu) o™ . (A16)
Equations (A13)-(A16) were used in Sec. V.

Gi(E)=[E —E +in| Vg,

Finally we shall give here the explicit forms of some
of the polynomials @, and @,:

Q=1 ,
Ql':l »

Q=1+]8/%,

Q=1+3[8[%

Q,=1+6]82+3|8]*,

Qs=1+10[8|%+15|8]*, (A17)
-Q—N-I:]' s

@v-zzl ’

Qua=l+(N-1)[B]*,

Qrs=1+2N=-3)[8]2,
Qys=1+30V-2)| 12+ W-1)(N=3)| B]*,
Que=1+20N=4)|8]2+ N2 -13N+14)[B|*. (AL8)
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B has now to be modified, Such an approach may be useful
for the study of photodissociation of polyatomics.
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