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Abstract. This paper reviews the current state of the art of theoretical understanding of the radia-
tionless decay channels in electronically excited states of polyatomic molecules.

1. Introductory Comments

The theoretical chemist dines and wines well at the theoretical physicist’s table. The
borderline between theoretical physics and quantum chemistry is fuzzy and not well
defined. The theoretical techniques employed are identical, only the goals and the
nature of the specific questions often differ. The theory of relaxation phenomena in
excited electronic states of polyatomic molecules, which is the subject matter of the
present paper, draws heavily on work performed in the fields of radiation theory,
collision theory, nuclear reactions and even elementary particle physics. This is not
surprising as the decaying electronically excited states of a molecular system are
amenable to theoretical descriptions in terms of compound states or resonances. Thus,
there is a set of general features common to a wide class of physical systems. The
decay characteristics of metastable states in atomic, molecular, solid state, nuclear and
elementary particle physics should be described in terms of a unified theoretical picture.

Let us now attempt to specify and classify the field of non-radiative transitions.
From the experimentalist’s point of view, radiationless processes involve any ‘transi-
tion” between the ‘states’ (i.e. electronic, vibrational, rotational) of a system (i.e. an
atom, a molecule or a solid) which do not involve absorption or emission of radiation.
These processes encompass a wide class of phenomena, which can be classified in the
following manner:

A. Atoms: (Al) Atomic autoionization [1]
B. Molecules: (B1) Molecular autoionization [2]
(B2) Predissociation [2]
(B3) Thermally induced predissociation
(B4) Electronic relaxation between different states of a large mol-
ecule. Internal conversion and intersystem crossing [3-15]
(B5) Vibrational relaxation [16]
(B6) Photochemical rearrangements [17-19]
C. Solids: (C1) Thermal ionization of impurities [20]
(C2) Thermal electron capture [20]
(C3) Electronic relaxation in impurity states
(C4) Electronic energy transfer [21-23]
(C5) Autoionization of metastable excitons [24]
(C6) Electronic relaxation of exciton states [24]
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D. Solutions: (D1) Thermal electron transfer [25]
(D2) Electronic energy transfer [21]
(D3) Dynamics of electron localization [26].

From the theoretician’s point of view, this broad definition is fraught with diffi-
culties, involving some hidden assumptions and pitfalls. First, and most important,
the concept of a ‘state of the system’ has to be specified. Obviously, if we specify the
Hamiltonian of the system in terms of the molecular Hamiltonian, all time dependent
transitions between the stationary states of this molecular Hamiltonian are radiative
in nature [27]. Thus, in order to exhibit nonradiative evolution, the system has to be
‘prepared’ by some experiment, via optical, electron impact, thermal or collisional
excitation in a nonstationary state of the system’s Hamiltonian. The resulting
‘metastable state’ will subsequently exhibit time evolution, where some of its decay
channels may be nonradiative in nature. Second, the radiative decay channels (which
involve a change in the occupation of the photon field) and the nonradiative decay
channels (which conserve the number of photons) in an excited state cannot be sep-
arated. A large bulk of physical information now available [28-33] originates from
optical studies of optical line shapes, radiative decay characteristics of electronically
excited states and quantum yield measurements. A complete theoretical understanding
of radiationless processes in excited electronic states of molecules should emerge from
the proper description of their radiative decay.

Therelevantrelaxation processes in excited molecular states can beclassified as follows :

(a) Radiative decay.

(b) Direct decomposition, i.e. photodissociation and photoionization.

(¢) Indirect decomposition, i.e. predissociation and autoionization.

(d) Nonradiative electronic relaxation in excited states of large molecules.

(e) Vibrational relaxation.

(f) Unimolecular photochemical rearrangement reactions.

These processes, listed above, provide the main decay channels which can be
encountered in excited electronic states. Processes (a)~(c) which obviously occur in an
‘isolated’, collision-free, molecule are not expected to be modified by an external
medium. Process (d). occurs in an isolated large molecule which corresponds to the
‘statistical limit’, while it may be induced by medium perturbations in a small mole-
cule. Process (e) exclusively originates from medium perturbations. Processes of type
(f) are very complex and may involve a combination of processes (b)-(d).

We would like to discuss some of the results of recent work [34-68] regarding the
fate of electronically excited molecular states, in an attempt to provide a unified
picture for the interplay between the various basic decay channels which involve

radiative decay, direct and indirect decomposition, electronic and vibrational relax-
ation.

2. Experimental Observables

From the experimentalist’s point of view, the following spectroscopic information is



of fundamental importance for the elucidation of the decay characteristics of excited
molecular states:

(1) Decay characteristics of electronically excited state. The most detailed informa-
tion originates from the time and energy resolved pattern of excited electronic states.
In the simplest common case, the decay pattern is exponential and the excited state is
characterized by a single lifetime. More complex decay patterns which involve a super-
position of exponentials were also recorded. Finally, the decay may (in principle)
exhibit an oscillatory behavior, which originates from interference between closely
spaced discrete levels. This phenomenon of quantum beats which is well known in
level crossing atomic spectroscopy, was not yet conclusively established in large
molecules.

(2) Cross sections for photon scattering from molecules. These involve both elastic
photon scattering to the ground electronic-vibrational state and resonance Raman
scattering to the ground electronic configuration. We shall refer to these processes as
‘resonance fluorescence’. ‘

(3) Optical absorption line shapes.

(4) Cross sections for photodissociation for molecules undergoing direct photo-
decomposition.

(5) Quantum yields for resonance fluorescence.

(6) Quantum yields for photodissociation.

These experimental observables fall into two different categories. In general, two
classes of experiments which will be referred to as ‘short excitation’ and “long excita-
tion’ processes can be utilized to extract physical information concerning the decay
of electronically excited states of large molecules. When the temporal duration of the
exciting photon field is short relative to the reciprocal width of the molecular reso- -
nance, it is feasible to separate the excitation and the decay processes and to consider
the decay pattern of the metastable state. This experimental approach involves a
‘short excitation’ process. The study of the decay pattern of an ‘initially’ excited state
corresponds to such a ‘short excitation’ experiment. On the other hand, when the
exciting photon field is characterized by a high energy resolution, being switched on for
long periods (relative to the decay time) the excitation and the decay processes cannot
be separated and one has to consider resonance scattering from large molecules
within the framework of a single quantum-mechanical process. Such ‘long excitation’
experiments involve the determination of optical line shapes, cross sections for reso-
nance fluorescence, for intramolecular electronic relaxation and for photodissociation.
Emission quantum yields can be obtained both from ‘short time’ excitation exper-
iments (by the integration of the decay curve) or from ‘long time’ experiments (which
yield the energy dependence of the quantum yield). In the special case of an isolated
resonance, the information regarding the resonance width, its decay time and the
corresponding energy independent quantum yield obtained from ‘long time’ excita-
tion experiments should be identical to that obtained from a ‘short time’ excitation.
However, for more complex physical situations one cannot get away by considering
just the resonance width. When interference effects between resonances are exhibited,
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the decay curve in the ‘short excitation’ experiment is nonexponential, the quantum
yield is energy-dependent, and the information obtained from ‘short time’ and ‘long
time’ experiments is complementary but not identical.

In the discussion of ‘short time’ and ‘long time’ experiments, we have focused atten-
tion on the nature of the optical excitation process. One can subsequently consider
two extreme types of photon detection. Broad band detection which admits all emitted
photons and narrow band detection which spans a narrow energy region. It is im-
portant to note that the detection process is independent of the excitation mode. Both -
detection methods are useful for specific purposes.

3. Models for Relaxation of Electronically Excited States

During the past few years several theoretical models for the decay characteristics of
excited states were developed and solved at various levels of sophistication. These
models provide a schematic description of the energy levels of a zero-order Hamilto-
nian which should also include the radiation field, while the residual interactions
couple the zero-order states. Clearly, the choice of the basis set is merely a matter of
convenience and does not affect any observable quantities. Let us consider the con-
ventional dissection of the molecular Hamiltonian, H, for a molecular system including
the radiation field,

HT:HM+Hrad+HinU (3 1)
Hy = Hyo + Hy, '

where the molecular Hamiltonian, H,,, consists of H,,, the zero-order molecular
Hamiltonian and H, which corresponds to the nonadiabatic intramolecular inter-
action which involves the interstate coupling via nuclear kinetic energy or spin orbit
coupling. There has been lately a lively controversy regarding the nature of these
interactions [52-53, 69-77]. We shall avoid a detailed discussion of this problem and
just point out, at the risk of triviality, that any untruncated complete molecular zero
order basis set is adequate for the specification of H,,. It was recently emphasized
[52-53, 74, 77] that the Born—Oppenheimer (BO) basis set is superior to the crude
adiabatic basis set as it minimizes off-resonance coupling terms between different
electronic configurations. Thus the utilization of the BO basis set (i.e. Hyo=Hpo)
and the identification of Hy with the breakdown of the BO approximation provides
the ideological basis for the basic model systems for electronic relaxation which
usually involve a two-electronic level system for the excited state. To complete the
definitions in Equation (3.1), H,,, is the Hamiltonian for the free electromagnetic
field, while H,,, is the radiation-matter interaction term.

The electronically excited eigenstates of H,,, will be labelled as follows: (1) Discrete
levels |s), |r), etc. which correspond to low lying vibronic components of excited
electronic configurations. (2) A manifold of levels {|/>} corresponding to a lower
electronic configuration and which are quasidegenerate to the |s) (and/or to the |r))
level. The levels of types (1) and (2) are sufficient for the description of electronic
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relaxation. For direct and indirect photodissociation we have to consider in addition:
(3) an intramolecular dissociative continuum {|/>}. The electronic ground state of
the system will be labelled by the vibronic components | gv) where v =0 refers to the
vibrationless level while v#0 represents excited vibronic components. Note that for
the low lying ground state | gv) can be considered as eigenfunctions of H, as well as of
Hy+Hy, as off-resonance nonadiabatic corrections for these states are negligible.
The eigenfunctions of H,,4 will be given by the zero photon state |vac) and by one-
photon states [ke) where k and e are the wave vector and the polarization vector of a
photon, respectively.
A possible choice of the zero-order Hamiltonian, being often used is

Hy=Hyo+H,y=H-V,
V=H,+H

int*

(3.2)

The eigenstates of H,, consists of zero-photon states |s, vac), |r, vac), {1, vac)} etc.,
and of one-photon states |gv, ke).

It is important to emphasize that the separation of the Hamiltonian as expressed by
Equation (3.1) is by no means unique and this can be accomplished in a variety of
ways. Another useful approach is to adopt the molecular eigenstates basis |n), which
diagonalizes the total electronic Hamiltonian H,, [7, 34] whereupon

HO = HM o+ Hrad!

Gessil = o it C

The eigenstates of H, consist now of the one-photon states |gv, ke> and the zero-
photon states |1, vac). The hierarchy of basis sets useful for the description of decay
channels in excited molecular states is summarized in Table I.

It should be noted that we have neglected the contribution of multiphoton states of
the radiation field such as |gv, ke, k’e’>, however, in general (at least for conventional
excitation sources), the contribution of such states is negligibly small. We shall now
proceed to portray the energy level diagrams for the excited states of the relevant
physical systems.

In figure la we present a highly idealized level scheme which provides a universal
model for radiationless transitions in a large ‘isolates’ molecule [7, 34, 78]. A zero-
order vibronic level |s) of a higher electronic state, which carries all the oscillator
strength from the ground state, is quasidegenerate with an intramolecular manifold
{I{>} of bound levels which correspond to a lower electronic state. The {|/>} mani-
fold is devoid of oscillator strength. In the case of a large molecule when the energy
gap between the electronic origins of |s) and the {|/)} states is reasonably large
(~1eV) we have large densities of {|/>} states which are quasidegenerate with |s.
The |s) state plays a special central role as it is optically accessible from the ground
state. This situation is analogous to a ‘doorway state’ in nuclear scattering where a
single excitation can be reached via the incident channel [81-82]. This physical system
will not exhibit a truly intramolecular nonradiative relaxation but rather a Poincaré
cycle [34]. For the limiting case of a large density of states, the recurrence time, #,, for
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TABLE 1

Hierarchy of basis sets for description of electronic relaxation processes

Basis set Major properties Applicability
x> Diagonalizes H (with zero- and Proofs of general theorems for the
one-photon states) . properties of the decay amplitudes
| j, vac) a. Radiative decay provides the Time evolution of discrete
only dissipative channel electronically excited states
b. Defined in £ subspace
¢. Diagonalizes Hers
d. Nonorthogonal
e. Specifies independently
decaying levels
|J, vac) a. System characterized by Paralle]l radiative and nonradiative
two parallel decay channels, decay of excited states
radiative and nonradiative
b. (e) as for | j, vac)
|n, vac) Diagonalizes Har Radiative decay of small molecules
and intermediate-type states of
large molecules
Born-Oppenheimer a. Diagonalizes Haro = Hgo Description of the statistical limit
basis b. Off-resonance interactions

with higher excited states
are negligible

(1a)

(ib)

Figs. 1a-b. Useful molecular decay models. — (a) Interstate coupling and nonradiative decay in an

$,vac

|

o

{Il,voc)}

N 5%

{lLvac>}

isolated large (statistical) molecule. (b) Interstate coupling in a small molecule.
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the simple Bixon-Jortner model [34] (see Section 13) is t,=/ig, where g, corresponds
to the density of states in the {|/>} manifold. This insures irreversible decay character-
ized by the decay time [34,83-84] 7,,, = /(27| V| 0;)~ ' on the time scale, 7, of interest, i.e.
1,, <t €1,. Subsequent consecutive damping processes (which were disregarded in this
simple scheme) of the {|/>} manifold, such as infrared radiation [34], or photon emis-
sion in the case of internal conversion [41, 79], will deplete these levels (see Section 13)
insuring the occurrence of irreversible intramolecular radiationless processes in an
isolated molecule. This situation is commonly referred to as the statistical limit [35].
If the large molecule is subjected to perturbations by an external medium [4, 64-65]
the decay lifetime 1, is not affected in the statistical limit but the occupied {|/>} levels
will be again depleted via vibrational relaxation insuring the irreversibility of the
electronic relaxation process.

The basic energy levels scheme presented in Figure la is by no means restricted to a
large molecule. The flexibility of molecular systems allows us to change the density of
the {|/>} background states at will, by considering different molecules characterized
by different numbers of degrees of freedom and by varying the electronic energy gap.
A level scheme appropriate for a triatomic ‘small” molecule [80] is presented in Fig-
ure 1b. In this context one has to be careful to distinguish between the implications of
interstate coupling and intramolecular relaxation [34-35]. Intramolecular interstate
nonadiabatic coupling is exhibited both in ‘small’ and in ‘statistical’ molecules. How-
ever, when the level density of the background states is low, no intramolecular relax-
ation is encountered in the small molecule. In Figure 1b we present the physical
situation appropriate for level scrambling in a small molecule, where again a single
|s) state corresponds to a doorway state.

The simple schemes (1a) and (1b) are grossly oversimplified, as the effect of the
radiation field was not yet considered. In Figure lc we present the appropriate level
scheme (for the eigenstates of Hy=Hpyo+ H,,4) corresponding to a large molecule.
Now the doorway state |s) is simultaneously coupled to the radiation field {|g, ke)}
and to the intramolecular continuum {|/>}. The analogous situation for the case of a
small molecule is portrayed in Figure 1d. In this case two alternative descriptions
which rest on different choices of the zero-order Hamiltonian are illuminating. We
may proceed as before choosing Hy= Hpy,+ H,,4 whereupon the BO doorway state
s, vac) is coupled to a sparse manifold |/, vac) and to the radiation field. Alternatively
[40-41], one may look for the molecular eigenstates |#) which diagonalize the elec-
tronic Hamiltonian H,,. The zero-order states of H, = H,, + H,,, correspond to |n, vac)
which are coupled to the one-photon states. If the spacing between the molecular
eigenstates considerably exceeds their radiative widths, each of these |n) levels will
decay (and will be excited) independently. We thus encounter a situation occurring in
atomic physics where a manifold of well separated levels (corresponding to the mole-
cular eigenstates) is coupled to the radiation field. It should be noted, however, that
accidental degeneracy between a pair of molecular eigenstates may result in interfer-
ence effects which will exhibit quantum beats [38] in the radiative decay.

As it is common in physical problems, situations intermediate between the small
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Figs. Ic-e. (c) Radiative and interstate coupling in a statistical large molecule.
(d) Radiative coupling in a smail molecule. () Intermediate level structure in a large molecule.
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molecule and the statistical limit are encountered in real life. When the electronic
energy gap between the electronic origins of two excited states of a large molecule is
relatively small (2000-3000 cm ™ ') the density of background {|/>} levels corresponding
to the lower electronic configuration is not too high. This physical situation is referred
to as the intermediate case [9-10, 47]. Now in such a case the details of the coupling
strengths for various levels in the {|/)>} manifold become crucial. Obviously, not all
these levels are effectively coupled to the doorway state, and the coupling strength
(Hy ), varies substantially from one state to another. In the statistical limit the density
of these effectively coupled accepting levels is still very high and the variation of their
coupling strength is immaterial. In the intermediate case (Figure le) we expect simul-
taneous coupling of the doorway state |s) with a sparse manifold which will result in
the decay characteristics of a small molecule, exhibited by an excited state of a large
molecule which corresponds to the intermediate case.

Up to this point we have been concerned with simple coupling schemes where the
intramolecular {|/)>} manifold is not coupled to any additional decay channels. We
have now to consider sequential decay processes where the doorway state (coupled
to the radiative continuum) is also coupled to the (sparse or dense) {|/>} manifold,
which in turn is coupled to a final dissipative continuum. We shall consider first the
physical situation where each of the intermediate {|/)} levels is coupled to a different
final continuum, and will thus exhibit non-interfering sequential decay. Relevant
physical processes in this category are: (a) Sequential decay of the {|/>} quasicon-
tinuum in an isolated statistical molecule due to infrared emission [34, 85]. Thus each
of the |/, vac) levels is coupled to a separate radiative continuum |/’, k;,e> (see Fig-
ure If), where |k;.e)> correspond to an infrared photon. (b) Internal conversion in
large molecules [51]. In the case of internal conversion from a highly excited singlet
state the {|/, vac)} levels are electronically excited singlets, which are in turn radia-
tively coupled to highly excited (nontotally symmetric) vibrational levels |g,,, k'e’> of
the ground electronic state (Figure 1g). (c) Vibrational relaxation of the {|/>} mani-
fold of a statistical molecule embedded in a medium [64] (Figure 1h). In this case each
|/, vac) level is separately coupled to a |f{’,oJ,,, vac) continuum containing a collection
of medium phonon modes, characterized by the frequencies {w,}. (d) Sequential elec-
tronic-vibrational relaxation of a small molecule in a dense medium [65] (Figure 1i).
As we have already pointed out, an isolated small molecule does not exhibit intramol-
ecular electronic relaxation. However, when such a molecule is embedded in a dense
medium each individual level in the sparse manifold |/, vac) can subsequently decay
via medium-induced vibrational relaxation to a lower level /ws,,3» Vac) thus providing
a pathway for electronic-vibrational radiationless process. This process can be envi-
sioned in terms of vibrational relaxation of the molecular eigenstates, which are well
separated relative to their total (i.e. radiative and vibrational) relaxation widths. (e)
Sequential decay via a single level [50]. This is a model system where strong coupling
is exhibited between the doorway state |s, vac) and one of the |/, vac) levels (Figure 1j).
The special |/} level is subsequently coupled to an internal continuum due to vibra-
tional relaxation. Such a physical situation is encountered when an excited state of a
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(l) Sequential decay of intramolecular continuum by IR emission. (g) Internal

conversion. (h) Vibrational relaxation in the intramolecular manifold due to medium perturbation.
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large molecule, which corresponds to the intermediate case previously described in
Figure le is subjected to medium induced collisional perturbation [50]. In this case of
nearly degenerate two discrete levels interference effects in the decay process will be
exhibited.

Finally we have to consider sequential decay processes involving interference where
all the intermediate states {|/>} are coupled to the same continuum, The simplest
example (Figure 1k) involves the coupling between a radiative (g, ke) and the non-
radiative dissociative continuum {|/>} which provides the simplest case of direct
photodissociation.

This state of affairs corresponds to ‘elastic’ photon scattering from and into a
single radiative continuum. We can easily extend this picture taking into account
(Figure 11) the role of other radiative channels |gv, ke) corresponding to the vibra-
tionally excited ground state levels. This system will now exhibit both elastic (Rayleigh-

{lgo.ke}

{IL,uoc)}
e
Vgke,s |s,vacy =
5 =
f—
1
lgo> : (1i)
lgo.ke>
|L{MP)
nge,s |s,vach
lLvad) Vi tM
=1
lgop (1))

Figs. li—j. (i) Electronic-vibrational relaxation of a small molecule in a medium. (j) Sequential
and parallel decay of two discrete levels.
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type) and Raman scattering [86]. Another interesting situation involves indirect
photodissociation where a discrete excited state is involved being in turn coupled to
a dissociative continuum [68]. This situation prevails for molecular predissociation.
When the dissociative continuum is devoid of oscillator strength (Figure Im with
Vo kes 1ovae =03) We have a situation which bears close analogy to radiationless
transitions in the statistical limit (Figure 1¢). An interesting state of affairs is encoun-
tered when the dissociative continuum is radiatively coupled (Figure 1m) to |go, ke)
where interference effects will be exhibited. Finally, we consider direct and indirect
photofragmentations of large polyatomic molecules. Here one has to consider (Fig-

{igoked}  {lLcvac))

Vgke,lc=

T

lgo> (1k)

ILe,vacy

Vgo,lc

Vgv,Lc

[T

Vgv,Lc

L

lgv'>

lgv>

lgo> ah

Figs. lk-1. (k) Direct photodissociation. (1) Coupling of dissociative continuum with a manifold
of radiative continua.
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Figs. Im-n. (m) Molecular predissociation. (n) Indirect molecular photofragmentation.

ure In) a set of dissociative continua each corresponding to a given vibrational state
lv;> of the fragments within the framework of the (reasonable) harmonic approxima-
tion coupling occurs only between adjacent continua.

These energy level schemes presented above provide the starting point for the
theoretical study of the evolution of excited molecular states. The nature of the re-
sulting physical information depends, of course, on the details of the experiment. We
shall now proceed to a study of the problems.

4. Time Evolution of Excited Electronic States

We shall now consider excitation and decay processes in a general system consisting
of an isolated single molecule and the radiation field. We shall segregate the eigen-
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states of the system’s zero-order Hamiltonian into molecular excited states, [m, vac),
i.e.|s, vac), {|/, vac)} etc., &{|m, vac)} using the Born—-Oppenheimer representation, or
|n, vac) using the molecular eigenstates picture, and one-photon states |g, ke). In most
general terms we can specify the state of the system ¥ (0) at time # =0 in terms of a
superposition of these zero-order states

¥(0)=Y A4, |m, vac) +kZAk“ lg, ke>. (4.1

The two sets of coefficients {4,,} and {4,.} are referred to as the preparation ampli-
tudes for the system, being determined by the special experimental conditions, which
were not yet specified. Obviously, the state (4.1) is a nonstationary state of the system’s
Hamiltonian # (Equation (3.1)) and will exhibit time evolution. As we have chosen
the Hamiltonian (3.1) in a time-independent representation, the evolution operator
is simply

U(t,0)=exp(— iHt). (4.2)

Thus the state of the system at time ¢ is just
Y(t)=U(t,0) ¥ (0)=exp(—iHt) ¥ (0). 4.3)

Expansion of ¥ (¢) in terms of the complete set of the eigenstates of H, (Equation
(3.2)) results in

Y=Y |m)>d, () + kz lg, ke) dy. (1), (4.4)

where the general time-dependent amplitudes {d ()} of the relevant zero-order states
are
dy(t) = <{m|exp(—iHt)|¥ (0)), (4.5a)

de (1) = <g. ke| exp (— iH1) |¥ (0)) . (4.5b)
The probability p, of the system to be in any excited state at time ¢ is given by

P.(1) =Y [Km, vac| ¥ ()1 =Y Id,, (1)I?, (4.6)

m m

while the probability of the system to be found in any one-photon ground electronic
state is

P!!(’)=ZI<99 ke I b (I)>|2 = Z|dkc (I)iz- (4.7)
ke ke
The normalization condition for ¥ (¢) implies the conservation law
P,(t)+P,(t)=1 (4.8)

for all ¢. Finally, to bring this general treatment down to earth we have to relate these
results to some experimental observables. The photon counting rate which monitors
the number of photons emitted per unit time is just

P,(t)=dP,dt, (4.9)
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which by Equation (4.8) is given by
P (t)=—=P.(t)- (4.9a)
The total number of emitted photons at t = oo provides us with the quantum yield, Y,
Y=P,(0)=1—P,(0). (4.10)

This general description of the time evolution of the system results in very cumber-
some expressions for the time-dependent amplitudes {d (1)} which are explicitly given
in the form:

dm (” — Z Cmm' (") Am’ o Z (1::1. ak'e’ (I) Ak‘e' k]

m* ke

dlae (I) — Z C;}kv, m' Am‘ g Z C_qlu:. ke’ (IJ Ak‘e' ’
ke’

m’

(4.11)

where the time-dependent amplitudes C_,(f) with o and ff =[m, vac) or |g, ke) are
given by

Cup (1) =< U (1,0) | B> = alexp(—iHt)| B . (4.12)

The (time-dependent) matrix elements C,;(1) of the evolution operator between the
zero-order states of H, are referred to as the decay amplitudes of the system. These
include all the molecular information about the decay channels of the system. Thus
the time evolution of the system, described in terms of the time-dependent amplitudes
{d ()} (Equations (4.4) and (4.5)), can be completely specified by a superposition of
products of the preparation amplitudes and of the decay amplitudes. The superposi-
tion (4.11) provides a mental, formal type separation of the initial conditions of the
system (expressed in terms of the {4} amplitudes) from the molecular radiative and
nonradiative decay processes (expressed via the {C}-type amplitudes). Whether one
can consider excitation followed by subsequent decay, or alternatively a single quan-
tum photon scattering process depends on the specific experimental conditions.
However, it should be realized that the formalism developed up to this point is ap-
plicable both for ‘short excitation” and for ‘long excitation’ experiments. From the
point of view of the formal theory we can now proceed to consider separately the
decay amplitudes and the preparation amplitudes. The former are invariant with
respect to the nature of the optical excitation, while the specification of the latter will
determine the nature of the excitation process.

5. Formal Expressions for the Decay Amplitudes

When the evaluation of the decay amplitudes is involved it is more convenient and
practical to express the matrix elements of the evolution operator in terms of the
Fourier transform of the Green operator [87-90]

G(E)=(E—-H+ip)™", (5.1)
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where 7 —0*. Thus all integrations over (5.1) will be performed over a contour which
runs from — oo to oo just above the real E axis. Let us introduce at this point complete
set of eigenfunctions |y ) of the total Hamiltonian H. We realize that these can be
determined in real life only for simple systems, but for the present general argument
their detailed form is immaterial. Thus this basis set satisfies the Schrodinger equation

Hly>=E/lx> (5:2)
and the completeness condition

Yol =1. (5.3)

We now write down immediately the time evolution operator (Equation (4.2)) and the
Green operator (Equation (5.1)) in terms of their spectral representations

exp (— iHt) =) |x> exp (— iE,t) <l (5.4)
x
and
_\ o
G(E)_ZE—EXHn' (5.5)
x

We note that expressions (5.4) and (5.5) are not valid for any arbitrary basis set, but
just for the special basis set | ). Utilizing Equations (5.4) and (5.5) we can formally
recast the time evolution operator in terms of the Fourier transform of the Green’s
function

- +]

exp(— iHt) = 2:“ J. exp(— iEt) G(E)dE, (5.6)

-

where the conventional methods of residue integration have been utilized. Finally,
utilizing the formal representation (5.6) the decay amplitudes (4.12) are explicitly
expressed in the form

o

1
Cu(t)= 571 I G, (E) exp (— iEt) dE (5.7)
of 3
Gy (E)=<al G(E)IB, (5.72)

i.e. the matrix elements of the Green’s function between the zero-order states. Thus
the evaluation of the decay amplitudes boils down to the evaluation of the matrix ele-
ments of the Green’s function.

These general expressions for the decay amplitudes have many attractive features.
From the point of view of general methodology, as we are dealing with a large number
of levels, such general approach is most useful. From the point of view of mathemat-
ical convenience these expressions are quite easy to evaluate. In particular it is a
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simple matter to relate the matrix elements of G (E)= (E—H +in)~" to those of the
corresponding Green’s function for the ‘unperturbed’ zero-order system G°(E)=
=(E—Hy+in)™", where Hy=H —V, via the Dyson operator identity [87]

G(E)=G°(E)+ G°(E) VG(E)=G°(E) + G(E) VG° (E).

Some more formal and powerful techniques for the evaluation of the relevant
matrix elements of the Green’s function are available. We note that these matrix
elements G,; (E) are of three types: (1) <g, ke| G(E) |m, vac), (2) {m, vac]| G(E) x
X |m’, vac), and (3) <{g, ke| G(E) |gk’e’>. We shall now partition the Hilbert space
as follows [88-90]:

P =Y |m,vac) {m, vac|, (5.8)

m

0= kZ lg, ke) {g, ke|, (5.9)

where the subspace P contains the excited zero-photon levels while the subspace 0
contains the one-photon zero-order states. Provided that we disregard the contribution
of zero photon ground state and multiphoton excited states, which will yield only
off-resonance terms, the completeness condition requires that

P+Q=1. (5.10)

We immediately notice that the matrix elements of type (1) combine the 0 subspace
with the P subspace, while the matrix elements of type (2) combine the # subspace
with itself.

Thus, in view of the orthogonality of the subspaces £ and 0, evaluation of matrix
elements of type (1), (2) and (3) requires the operators QGP and PGP and 0GOQ,
respectively. The explicit forms for these operators are [88-90]

OG(E) P = (E— QHoQ +in)™" QR(E) P (E— Hy— PR(E) P)™",
(5.11)
PG(E)P = (E — PH,P — PR(E)P)' P, (5.12)
O0G(E)0=0(E - QHQ +in)™" +
+Q(E—QHQ +in) ' VEG(E)PV (E—QHO +in)™' 0.
(5.13)
Being expressed in terms of the level shift operator

R(E)y=V +VQ(E—-QHQ) ' QV. (5.14)

It is important to notice that the level shift operator consists of two contributions; a
direct coupling, ¥V, and a relaxation contribution.

These general formal expressions are of great value both for practical evaluation of
the matrix elements and, more important, also for the choice of the most convenient
basis set to describe the decay of the system. To conclude this exposition of the math-
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ematical methods we would like to point out that the partitioning (5.8) and (5.9) is
again not unique, as it is common for many intermediate steps in the formal theory.
For some specific systems it will be convenient (see Section 10) to adopt an alternative
partitioning procedure, retaining in subspace P just the discrete excited molecular
states and throwing into subspace Q both the radiative continuum and the molecular
(zero-photon) continua (or quasicontinua).

From the physical point of view the Green’s function method is indeed very clear
and transparent (at least after one has crossed a psychological barrier and became
acquainted with these techniques). We have noted that the poles of the Green’s
function in the |y) representation (see Equation (5.5)) provide us with the energy
spectrum of the system. It is important to note that in this case the poles E=E, are
located on the real E axis, thus the system in an eigenstate of H is characterized by a
real energy and does not exhibit a decay.

When we consider the matrix elements of G (E) between the eigenstates of H, the
poles of G (E) will have imaginary parts of the form E = E,—4il’,. In general a large
number of poles can be exhibited, whose imaginary components I', provide the con-
tributions to the decay rate of the nonstationary state.

6. Time Evolution Resulting from Wave-Packet Excitation

We have now to provide a physically realistic model for the excitation process. The
most natural way to excite the system is to switch on a photon wave packet at the
time ¢ =0, and then utilize the techniques of Section 3 to follow the time evolution of
the system. It is important to note that by this general experiment we have not neces-
sarily ‘prepared’ the system in an initial metastable decaying state, and that this for-
mulation is general, and can be used both for ‘short excitation’ and for ‘long excita-
tion” experiments, as well as for intermediate excitation conditions.

Let us regress for a moment and consider some properties of a photon wave packet.
The molecular system is now absent so that H =H,4. A general representation of
a photon wave packet is '

Z aum;...]____[ |”i! kie|'>’ (6-1}
My, M2 i
where n, is the population number of the photon state |k;e; ) which is characterized by
the energy &;=k; (where in this section we shall use the sloppy units i=c=1).
For moderately weak fields n;=0 or 1 for all i, under these conditions we may

consider an initial state of the field ¥,(t=0) consisting of a wave packet of one-
photon states [90]

¥, (0) = ;ak ke, (6.2)

where a, is the initial amplitude of the state |ke), while the summation ), represents
integration over photon energies, over spatial directions and summation over all
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polarization directions. In what follows we shall use fixed propagation and polariza-
tion directions and sum only over the photon energies. The time evolution of the wave
packet (in the absence of the molecular system) is

¥, (1) =exp(— iHt) [¥(0)) =) a, exp (— ikt) [ke). (6.3)
%

It will be useful to define at this point the Fourier transform, ¢ (t) of the wave-packet
amplitudes

(1) =) a,exp(— ikt), (6.4)
k
which from (6.3) is just
o(t)= ;(k'e | %, (). (6.5)

We shall refer to ¢(t) as the time-dependent field amplitude. The time evolution of
the wave packet is expressed by the function

F()=K¥,0)|¥,(tpI* = ; |a,* exp (- ikt), (6.6)

which just corresponds to the Fourier transform of |a,|?. The power spectrum |a,|? of
the photon wave packet is the (inverse) Fourier transform of F(t)

o

la,|* = ! Idt exp (ikt) F (). (6.7)
27
4]

We shall now present a specific example of a photon wave packet which will be
subsequently utilized in the study of molecular excitation processes. Consider a wave
packet whose amplitudes are given in terms of a coherent Lorentzian distribution [90]

A N

= . 6.8
k — Kk + }iy, (&5

ay
where k is the center of the distribution, ¥, its width and A4, is a normalization factor.
It must be stressed that this choice (6.8) of the energy spread of the wave packet is by
no means unique, and will be used for the sake of mathematical convenience. Other
shapes (i.e. Gaussian) can be used leading to similar results. The field amplitude for
the Lorentzian wave packet is (see Equation (6.4))

27iA, e — ikt =1
(P(I)Z{_HJ‘AN exp(— ikt —4y,1) 1>0 6.9)

0 t<0

while the time evolution of the wave packet (expressed in terms of the Fourier trans-
form of the power spectrum, Equation (6.6)) exhibits a simple exponential decay
2| Ay)?
F(1)= “;z_N_ exp[— 7, l1]. (6.10)

r
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It will be useful at this stage to consider two limiting extreme situations for (6.8).
(a) An ideal ‘long time’ excitation experiment is characterized by a narrow wave

packet
a, = 6(k — k) (6.11)

and consequently
lo(e) =1, (6.12)

In this case the photon wave packet is well defined in energy. Note that this definition
is general and does not depend on the specific form (6.8).

(b) When ‘short time’ excitation conditions are considered we require that ¢ (t)oc
ocd (1) and consequently a, =const. This limit may be obtained by choosing 4 =47y,
in (6.8) and taking large y, values, i.e. y,— oc. Then for the relevant values of k
|k—Kk| <y, and thus a, — 1.

We note in passing that for different purposes we have to choose different normal-
ization conditions for the initial photon wave packet. If we want to obtain the long
time case (a) as a limiting form of a Lorentzian wave-packet excitation we should
normalize the excitation amplitudes

P (6.13)

and then set y,— 0. For case (b) ¢ (¢) should be normalized to a constant, (see Sec-
tion 8) J

¢ (t) dr = const. (6.14)

c:'!—__jg

In order to follow the general time evolution of the system it is often convenient to
normalize as the power spectrum, i.e.

;mkﬁ =1. (6.15)

This latter normalization is adopted later on in this chapter.

We now return to the physical situation of interest and insert back the molecule in
the system. At the time f =0 the photon wave packet is introduced so that the initial
state of the system is

¥ (0) =Y aylg, ke). (6.16)

This representation of the initial conditions is much more simple and physically
transparent than the general expression (4.1) where we have now set for the prepara-
tion amplitudes 4, ,=a, and A4,,=0. The time evolution of the system is now obtained
from Equation (4.3) in the explicit form
b4 (1) = Z Z |"”’ Vac) Cm.;,ikl: (r)ak T Z Z |g's k’e’> C{jk’c’, gke {f) ay . (6 I 6a)
"

k m k
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We can now immediately project out from (6.16a) either the vacuum states |m, vac)
or the one-photon state |g, k’e’>. Thus the probability (4.6) for finding the system in
any excited zero-photon state at time 7 is
P.(f)=Y |}, Coaslt)nl*. (6.17)
m k
While the probability for finding the system at a time 7 in any one-photon ground
electronic state is (Equation (4.7)):

Py(f) =§igcgk'c'.gke (f)ak|2- (618)

which obviously satisfies the conservation law P,(¢) + P,(¢) =1 for all 7. One can ask
and answer at this stage some other more detailed and specific questions, such as what
is the probability of the population of a subset of the |m, vac) levels, which corre-
spond to some specific zero-order molecular states, or what is the population of a
subset of the one-photon states (i.e. characterized by certain energies, or certain spa-
tial or polarization directions). The general theoretical scheme presented above is able
to answer all such questions, however, for the sake of presentation of the general
arguments such extensions are not necessary. Let us reflect at this stage what are the
‘hidden approximations’ in our treatment. First, we have considered only a single
electronic ground state. Second, a wave packet consisting only of one-photon states
was considered to interact with the system. Third, we are averaging over photons spa-
tial and polarization directions. These approximations can be indeed easily relaxed
which will just result in more complex expressions which will not affect the general
argument.

Thus Equations (6.17) and (6.18) provide us with all the pertinent general informa-
tion regarding the experimentally observable time evolution of the system. The prob-
ability and rate of photon emission is expressed in terms of products of the prepara-
tion amplitudes, now given in terms of the wave packet amplitudes and the decay
amplitudes which we had considered in detail in Section 5. We are now in a position
to provide exact criteria for the applicability of the concept of ‘decay of an initially
excited state’ and its range of validity, and also to specify the general conditions for
‘short excitation’ and ‘long excitation’ experiments.

7. Time Dependence of the Population of the Excited States

We shall now proceed to derive explicit theoretical expressions for the probability
function P, (t). For this purpose we have to utilize the formalism outlined in Section 5
for the evaluation of the decay amplitudes of the system. We have chosen to calculate
the function P,(t) (Equation (4.6)) rather than P,(¢) (Equation (4.7)) although the
latter is really related to experimental observables. The reason for that is simply math-
ematical convenience, as the decay amplitudes (or rather the corresponding matrix
elements of the Green’s function) of the form C,, ,.(7) are somewhat easier to eval-
uate than the Cyy -, ke () amplitudes. In any case, once we have evaluated P (1) we
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have P,(t) from the basic conservation relation (4.8). We shall now consider two
relevant physical situations. First, the simplest case where only a single excited level
carries oscillator strength from the ground state. This is a common state of affairs for
many interesting molecular systems which were discussed in Section 2. Second, we
shall focus attention on the general case when an arbitrary number of discrete |m, vac)
levels are radiatively connected to the |g, ke) radiative continuum,

When a single molecular level, say |s, vac), acts as a doorway state we can set for
the radiative coupling matrix elements

<g! kel V|P}'?, VH.C> i (Hinl)ykc,s (S.s',m = Vyl\'e.s (Ss.m L] {7'])

To evaluate the matrix elements of the Green’s function which determine the decay
amplitudes C, . and C,, 4.(m#s) in Equations (6.17), (6.18), we make use of the
Dyson Equation (5.7) and get

G.\‘. gke (E) = Gsa(E) V;'.

1
gke e
E—E,—k+in
|

m gke (b) T3 HI\ (E) V«. gke E A E Sy i ”? 73)

(7.2)

where E, is the energy of the electronic ground state |g), which can be taken as E,=0.
The form for the matrix elements (7.2) and (7.3) is very convenient, as we shall be able
now to relate the probability function P, () to the decay amplitudes C,,(¢) and C,,,(¢)
combining only the excited states. These decay amplitudes now take the form

[ 1

1
Cnr.gke(r) = i J dE Cxp(— .[Ef G"“ (E+) 2ilih 3

11014 7.4
E—k+ iy G

5, gke »

-ch

for all |m) including |s>. Invoking the customary assumption that the radiative cou-
pling matrix elements (7.1) exhibit a weak energy dependence we have

CXP[ —k1

1
Cm.!,lkl‘.' (I) = 2?.“; V5 gke e?(p !'kf)‘[dE G'm (E) — .1\ + H‘f

el : 7.44
Now making use of the trivial identity (7.4)

sapl e Sl -

i (—F)J‘exp[—E(E~A’)r]dr+£|_k, (7.4b)
0

and utilizing again the basic definition (7.4) we get

27 Cy, gy (1) = — iV5, gue €Xp (— ikt) x

o t

X J dE ’.dr exp[— i(E — k) 1] G, (E) + C,, e (0).

.
- 0
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As by definition C,, ,.(0) =0 we get the final result for the decay amplitude
r
Co. ke (1) == iV, peexp(— :‘kf)J. dz exp (ikt) C,5 (7). (7.5)
0

Now utilizing Equation (6.17) for P,(¢) and the definition (6.4) for the (time-dependent)
field amplitudes we obtain

L4

Po(t) = Vo pel? fcp(r — 1) o (2)d| (7.6)

"
0

Equation (7.6) provides us with the final general result for the time dependence of
the population of all the excited electronic states, for the simple case of a single
doorway state. It is important to realize at this stage that the decay characteristics are
determined by the convolution of the decay amplitudes C,,(7) (combining the door-
way state with the other excited states) and the field amplitudes.

It is a simple matter to generalize this result for the case of an arbitrary number of
optically active excited states whereupon {m, vac| H,,, |g, ke) =V, ,,,#0; for several
(or even for all) |m) states. In order to calculate the relevant decay amplitudes we
need the matrix elements G, ;.. (£) which by the Dyson equation take the explicit form

G, gke (E) = S {m,vac| G (E)|m’,vac)-{m’, vac| H, |g, ke) —

E-k+iy
(7.7)
We can now define a generalized doorway states |[N) by the relation
l
[N, vac) = — ) |m, vac) {m, vac| H;, |g, ke)>, (7.8)
T
N m
where
v = 2.9, ke| Hiq Im’, vac) (m', vac| Hy, |g, ke). (7.9)

m’

The definition (7.8) implies a very simple physical interpretation. The generalized
doorway state is just a superposition of the excited molecular states each weighted by
its coupling strength with the electronic ground-state-radiative continuum |g, ke). In
the special case of the single doorway state

| N, vac) = |s, vac). (7.10)

The concept of the generalized doorway state was previously invoked by Nitzan and
Jortner [60, 62] using first order perturbation theory. They wrote [N) =), |m) p,,,
where p is the transition moment operator. Definition (7.8) is more general. Finally,
it is worthwhile noting that the generalized doorway state (7.8) can be expressed in
terms of the projection operators (5.8) and (5.9) whereupon |N, vac) = (1/yy) PH,,, %
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x |g, ke>. As QH;, 0=0, then in view of the completeness condition (5.10), one
gets the compact form

1
'Ns Vac) = JI_fint Iga ke) E] (7.83.)
Y

N

lywl? = <g, ke| H}, g, ke). (7.92)

This definition is very useful being independent of the basis set used to specify the
excited states in the P subspace.

Returning now to the evaluation of the decay amplitudes in the general case, Equa-
tion (7.7) for the matrix elements of the Green’s function now takes the form

1
G, gke (E) = YGi, v (E) i (7.11)

—k+in
It is apparent that Equation (7.11) provides us with a generalization of the simple
relations (7.2) and (7.3) as in the case of a single doorway state Equation (7.10) applies.
Utilizing Equation (7.11) we can immediately obtain a general expression for the
corresponding decay amplitudes following the same methods as applied for the deri-
vation of Equations (7.5) from (7.4). Thus we get

Co gk (1) = — iyy exp (— ikt) f dt exp (ikt) Cpy (1), (7.12)
A :

while the population of the excited state is obtained from Equations (6.17), (6.4) and
(7.12) in the form

m

: 12
P.(1) = 2| f 7 (1= 9) Can () (7.13)
]

where for the sake of clarity we redefine the relevant decay amplitudes
C,.n(t)={m,vac| U(t,0) N, vac) =

= _)] _JdE exp (— iEt) {m, vac| G (E) |N, vac) . (7.14)
2701

Equations (7.13) and (7.14) provide us with the desirable general result for the time
evolution of an excited state consisting of an arbitrary (dense or sparse) level structure
and where an arbitrary number of these levels carry oscillator strength from the ground
state. This general form (7.13) implies that the time evolution P, (¢) is determined by
a sum of amplitudes squared, where each amplitude is determined by the convolution
of the (time-dependent) field amplitude and the decay amplitude, which combines the
generalized doorway state with the various (zero-order) molecular states. We are able
now to discuss the general features of both ‘long time’ and ‘short time’ excitation
experiments as limiting cases of Equation (7.13).
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We shall start with the short excitations. This will be conducted in two stages. First,
we shall provide a rigorous definition of an ‘initially prepared’ state of a physical
system (see Section 8). Subsequently, by introducing the concept of ‘independently
decaying states’ (Section 9) we shall be able to provide explicit expressions for the
time evolution of a system consisting of any number of closely spaced levels at an
arbitrary excitation time scale. This will be accomplished in Section 9.

8. An ‘Initially Prepared’ Doorway State

The understanding of the nature of the ‘initially prepared’ optically excited state is
crucial for the understanding of any short excitation decay experiment when one wants
to formulate the precise conditions for validity of the separation of the excitation and
decay processes. Early treatments of this problem [34, 83-84] considered the radiative
excitation process to lowest order and accounted for the nonradiative decay occurring
during the excitation process. These formulations of the excitation and nonradiative
decay process were provided by considering the time evolution of excited molecular
eigenstates utilizing the time evolution of the density matrix. The original treatments
[34, 83-84] were grossly oversimplified as they disregarded the radiative decay chan-
nel. Rhodes [91] has demonstrated how to handle the excitation and both radiative
and nonradiative decay using the density matrix formalism and how to follow the
time evolution after the termination of the pulse. He has shown [91] that for long
excitation times the density matrix assumes a partially diagonal form, however [60],
this does not affect the decay characteristics in the statistical limit. In this context
Freed [79] has treated the excitation-decay process by starting from the system at
t =0 in the state |g, ke) and subsequently terminating the photon field after an arbi-
trary time. ¥ (¢=0) in his formalism is precisely defined in energy and thus this ap-
proach is adequate to long time excitations rather than for short excitation experi-
ments. An unsatisfactory feature common to all these treatments mentioned above
involves the termination of the exciting pulse after an arbitrary time. A way out of
this difficulty is using a delta function excitation in time and treating this preparation
process to low order [9, 35-36]. This approach is basically valid for model systems,
although it is esthetically unattractive. The present approach adopted herein provides
a self-consistent general solution to the problem of ‘preparation’ of metastable decay-
ing states.

It should be borne in mind that the definition of an ‘initially excited’ state is essen-
tially a theoretical problem. However, the nature of the time resolved decay pattern
experimentally observed in a short time experiment requires this definition. In order
to provide a meaningful definition for this concept two basic conditions have to be
satisfied: (a) A single state has to be defined which is radiatively coupled to and car-
rying all the oscillator strength from the ground state. (b) The duration of the exciting
pulse is appreciably shorter than all the (radiative and nonradiative) ‘decay times’ of
the excited states. This second condition will be considered in two stages. First we
shall consider excitation by a ‘white’ pulse containing all frequencies. This leads to an
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unrealistic state of affairs, as obviously the system contains also other excited states,
so that such a pulse will excite all states including those which are of no interest to the
experimentalist. We shall thus have to provide a more precise definition of the decay
times for a complicated molecular system.

We consider first the idealized system which involves a small number (say, two) of
excited electronic configurations and these constitute the entire energy spectrum of
excited states. Obviously this system can involve an arbitrary number of vibronic
levels corresponding to these two electronic configurations. This idealized system is
now excited by a light pulse which contains all frequencies, thus the Lorentzian pulse
(6.8) takes the limiting form @, =const. for all k while the field amplitude is given by
¢(t)=¢-56(¢) where ¢ is a normalization factor to be determined later. This delta
excitation function obviously satisfies condition (b). Thus the time evolution of a
general excited state (Equation (7.13)) takes now the simple form

P, (1) = Iyal? |¢JZZ[CmN(f)]Zs (8.1)

m

while for the special case of a single doorway state we have

P, (1) = iynl® 91 X 1Coms (1)1 (8.1a)

Equation (8.1) provides a proper specification of an ‘initially prepared’ state. From
these results we conclude that

(a) Under the extreme conditions of broad band excitation, the time evolution of
the excited states is equivalent to preparing the ¢yy|N, vac) state at ¢ =0 and this
initial state exhibits time evolution. Choosing ¢ =1/yy we obtain the normalized state
|V, vac) at £ =0.

(b) Under these extreme excitation conditions the time evolution of the system is
solely determined by the decay amplitudes, and provides only information concerning
the molecular decay characteristics.

(¢) In this case, the time-dependent amplitudes (4.5) are d,,(t)=C,, y(¢) and
dye (1) = Che n(2). Utilizing the basic definitions (4.6) and (4.7) and the conservation
law (4.8), the population probability of the ground one photon states is now

Pﬂ (t) = kz Ecgl&c, N (I)iz ] (8.2)
e
or for the special case of a single doorway state

P, (1) = 1‘ZJCg.m.s(r)F- (8.2a)

(d) It will be useful to provide an alternative expression for the population of the
ground state (Equation (8.2)), expressing it in terms of the diagonal decay amplitudes
Cyn (1) (or of C(r) for a single doorway state). We shall thus be able to relate the
photon counting rate to the probability of the survival of the ‘initially prepared’
excited state at time . Let us consider first the simple situation of the single doorway
state.
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In analogy with (7.5) we have

t
Core,s (1) = — iV, sexp(— ikt) J dt exp (ikt) Cy (7). (8.3)
0

Inserting this result into Equation (8.2a) results in

4 t

P,(1)= l‘Z|V!’,ke, |* J‘ dr J. dr’ exp (ik (t — ©') Cy (1) C5 (7). 8.4)

0 0

The summation in Equation (7.4) implies after averaging on polarization derections

Y = f o, (E) dk, (8.5)

ke

where g, (E) is the density of photon states at the energy E =k. We shall further define
the radiative width of the |s) state by the common relation

r.\' (E) = 2?1 | nge,si z Qr (E) . (8'6)

Assuming that it is a slowly varying function of the energy around E=E; and we
set I',(E) =I"y(E,) =T,. Equation (8.4) takes the form

P, (1) = ;;jdtjdr'Jdk exp(ik (1 — 1)) Ci (v) Cyo (7') =
o o 0

2 stdflcss (Oi*, (8.7)

0

and the photon counting rate for a single doorway state is just
Py(t) = I,|Ce (1)1 (8.7a)

Equation (8.7a) was previously derived using the Wigner-Weisskopf method [39, 47].
Turning now to the case of the generalized doorway state we utilize the basic def-
initions (7.8) to write

?Ncﬂke. N (I) = Z Cﬁkl.“ " (I) Vm,gkc » (88)

and from Equation (7.11) we have

r

iCpye,m (1) = yn Xp (— ikt) f dt exp (ikt) Cyp (7). (8.9)
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Thus

2

P&' (I) = f dr €Xp (Ikt) Nm (T) m, gke|

Le m

| 2

dr exp (ikt) Cyy (7) . (8.10)

|?’N| Z

‘Making use of Equation (8.5) and performing the integration over k we get

t

P, () = I f |Ca ()12 d @.11)
0
and

Py (1) =T |Cux (117 (8.11a)

In the derivation of (8.10), (8.11) we have neglected the weak k dependence of y, and
we have defined

ry® =2nlyyl* o, (8.11b)

and g, is the density of the radiation field states around the relevant energy. In analogy
with (8.7) we see that I'{*® is the radiative width of the | V') state. The simple- -compact
form of Equation (8.11) should not mislead us, as this expression involves a large
number of cross terms. These concise expressions ((8.7 and (8.11)) will be invoked
again to relate the decay rate of the system (i.e. photon counting rate) to optical ab-
sorption line shape (see Section 17).

Up to this point we have been concerned with a single ground molecular state |g).
Any real molecule is characterized by a vibrational manifold {|gv)} (where v=0, 1,...
correspond to the collection of vibrational quantum numbers) in the ground state
and for certain applications we have to consider radiative decay processes to different
radiative continua {|gv, ke)} (v=0, 1,...). For the case of a single molecular resonance
in a large molecule (see Section 13) this extension is of little interest. However, in the
case of internal conversion [47, 51] from a highly excited singlet state (see Figure 1g)
the |/, vac) states are radiatively coupled to |gv, ke) levels characterized by high v val-
ues, and such an extension of the theory is pertinent. The initially excited doorway
state is now

1
|No, vac) = —H,;, |go, ke)>. (8.12)

No

We can subsequently define a whole set of discrete states

1
IN,, vac) = — H,, |gv, ke>, (8.13)

Ne
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where
lyne | % = {gv, ke| Hiyy " Hig | gv, Ke) . (8.14)

In the ideal short time experiment, where the |N,)> state is initially excited, the
probability P, (¢) for population of the |gv) ground state level at time 7 is given by

13
P, (t) = i f ICh,, no ()17 dr, (8.15)
0

where
rg® =2zlyy,|* o, (8.16)

The different radiative decay channels to different v states (or groups of v states) can
be separated experimentally by monitoring the energy resolved decay spectrum. We
have to distinguish at this point between the doorway state |Ny> and the ‘escaping’
states |V, (all v). In the simplest case there is only a single escape state | Ny». In more
complicated situations there is a whole manifold of scape states. Under the latter
circumstances the decay probabilities P; () will be characterized by a different time
dependence for different v values.

We were able to obtain a general formal picture for the decay of an initially excited
state prepared by a delta function field excitation amplitudes. These general results are
not entirely satisfactory because of two reasons. First, the expressions obtained for
the general time evolution of the system and for the case of the decay-of initially
prepared state are formal. To account for any real life situation we have to provide
explicit expressions for the decay amplitudes. Second, the description of the excitation
process is suitable only for the model system consisting of two electronic configura-
tions. When the experimentalist will hit a real molecule by an extremely broad pulse
including all frequencies, he will excite a multitude of electronic states, and the exper-
imentally monitored photon counting rate will not be very informative. One has to
find some weaker conditions than the delta function excitation to specify the decay
of the excited states. We have stated in condition (b) that the pulse duration should
not exceed the relevant ‘decay times’ of the system. We have thus to provide a proper
description of these characteristic decay times, or rather decay widths, of the general
molecular system. For a bunch of closely spaced levels the resulting decay pattern is
complex, exhibiting several decay times and/or oscillatory interference terms. Sub-
sequently we shall be able to define a short time experiment by the condition that the
width of the wave packet exceeds all these characteristic widths. We now proceed to
provide the necessary parameters which determine the molecular decay amplitudes.

9. An Effective Hamiltonian for Independently Radiatively Decaying Levels

In order to apply the general theory outlined above we shall introduce and explore an
effective Hamiltonian which specifies the time evolution of the excited molecular
states in the presence of the radiation field. The use of such effective Hamiltonians is



174 JOSHUA JORTNER AND SHAUL MUKAMEL

common in fields such as magnetic resonance, where in handling relaxation problems
one considers the time evolution of a small part of the system. In our problem we shall
consider the time evolution of the subpart {|m, vac}} consisting of all discrete zero
photon electronically excited states.

Radiationless transitions in a hypothetical system, in the absence of radiative decay,
can be adequately described in terms of the molecular eigenstates which diagonalize
the electronic Hamiltonian H,,. However, for a real physical system of closely spaced
levels, the molecular eigenstates lose their general physical utility. Adopting the gen-
eralized Wigner—Weisskopf approximation, Bixon ef al. [38] have demonstrated that
the time evolution of the excited molecular states can be described in terms of an
effective Hamiltonian. The same argument was provided by Freed and Jortner [41] in
terms of the Green’s function formalism.

The definition of the effective Hamiltonian for the excited states rests on the fol-
lowing observations:

(1) The Hilbert space is partitioned into the subspaces P and Q (see Equations
(5.8)-(5.10)).

(2) The general time evolution of the excited states Equation (7.13) or Equation
(7.6), is determined by decay amplitudes combining levels in the # subspace.

(3) Thus, the evaluation of the relevant decay amplitudes requires the matrix ele-
ments of PGP between excited states.

(4) The operator PGP (Equation (5.12)) will be rewritten in the form

PG(E)P = P(E — Hey +in)~' P, e

where the effective Hamiltonian in the £ subspace is
Hye=P(Hy+R)P. (9.2)
(5) The evolution operator in the P subspace can be formally represented uti-

lizing Equation (5.6)

+ o

PU(1,0)P = f dE exp (— iEt) PG(E) P. (9.3)

Now, making use of (9.2) we get

s . . exp(— iEt) & o
PU(1,0)P= |dEP —— - P= —iP(H R)Pt| P =
(.02 = [a£p Z2="0 b expl- i (iHo + R) 1]

P

exp[— iH qt] P. (9.3a)

(6) A set of states {| j, vac)} defined in the P subspace which diagonalize the ef-
fective Hamiltonian can be then used for the spectral representation of PGP and of

the evolution operator (9.3a) in the P subspace.
Let us now proceed to explore the general form of the effective Hamiltonian (9.1).
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Utilizing the definition of the level shift operator (Equation (5.13)) we have

g - 1 = -
H.e = H4+VQ) ————0V ) P. 9.4
g ( QE_QHQH”Q) (9.4)
As P (H,4+H,,) P=0and PVQ= f’Hi,nQ we obtain the formal result
HI:IT_ (H'W ot H;le Q T A QHmt) (9'5)
The effective Hamiltonian can be thus recast in the matrix form
Hcﬁ‘-—H\,f‘{'A‘_ ')J' F (96)

where it is understood that H,; combines only |m, vac) states in the P subspace. The
explicit forms for the level shift matrix 4 and for the decay matrix I' are obtained
from the relaxation contribution of the level shift operator Equation (5.14) to Equa-
tion (9.5).
A (E) - : r()= Zi’_{‘"‘.l_g‘.kiiq.’_k.el‘ .H‘"‘. =
2 E—-E,—k+in

ke

Hinl igke> <gke| ‘Hinl
= —— g, (k) dk, 9.7
ZI E—k+in e, (k) 0.7
where we have applied Equation (8.5) and set E,=0. Utilizing the well-known relation
f(k) f(k)
- dk = PP —inf(E), 9,
F—Frin e inf(E) 9.8)

where PP represents the Cauchy principal part of the integral, we obtain

a(e)=pp y [P R g 1) ok, ©9)
F(E) =203 [ 40 Hiulgke) 2,(8) <akel Ho. ©.10)

The matrix elements of the level shift matrix are

<m, vac| Hi lg. ey (g, kel HiuInr', vac) (k)
B -
(9.11)

This is a generalization of the concept of the ordinary level shift of a single resonance
(i.e. single level interacting with a continuum). The elements of the (real) level shift
matrix (9.9) diverge when the integration over k is performed to infinity, as g, (k) ock?.
This well-known difficulty [92] of quantum electrodynamics is resolved by a renor-
malization procedure as is done in the theory of the Lamb shift. The diagonal and off-
diagonal matrix elements of 4 are expected to be of the order of [86] 4~ L"/n where

Amm' = PP Z
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L¥~1072 cm™" is the hydrogenic Lamb shift, and # is the number of effectively cou-
pled levels. Then 4 varies from 1072 cm™! for a small number of coupled levels to
107% cm™" for a dense distribution. These terms will result in shifts of the (real part)
of H.x and they are of minor practical interest.
Of crucial importance is the damping matrix (9.11) which is explicitly given in the
form
Fps =21 ), f dQ<m, vac| H;, |g, ke) (g, ke| H,, |m’, vacd o,. (9.12)
e

The following features of the damping matrix should be noted:

(a) I' provides a generalization of the Fermi golden rule. For the decay of a single
resonance, the resonance width (or the reciprocal decay time) is given by I

(b) I is, in general, nondiagonal.

(¢) I' is Hermitian.

(d) I is a slowly varying function of the energy in the range of interest.

(e) The offdiagonal matrix elements of I' represent coupling between the |m, vac)
states via the one-photon states,

[m, vac) — |g, ke) — |m’, vac) .

These off-diagonal contributions will be important only in the case of near degeneracy
when these terms are comparable to the energy spacing between the energy levels, i.e.

rmm’ e |Em e Em’[ . (9‘]3)

To be more specific let us now provide some simple examples for the effective
Hamiltonian (9.6) in different representations, neglecting the (small) contribution of
the level shift matrix. Consider first the Born-Oppenheimer basis [s) and {|/>} E|m)
where |5} is the single doorway state. Then the effective Hamiltonian is

Es e %"rv (Hv)si (hrv)sl’ es
Hyp={( (H), E, 1 (9.14)
(H,)r, 0 E,

so that the electronic Hamiltonian is off-diagonal, while the damping matrix is diag-
onal, with a single finite diagonal term given by (7.7). In the molecular eigenstates
representation {|ny} E{|m)} where the molecular eigenstates {|n)} are characterized
by the energies E,, E,, ..., E, etc. The effective Hamiltonian assumes the form

EI _,é_“l"]] _%”—12
Hcﬂ—= _%-ll.rzl EZ_'Jz'f)r‘zz... . {9.]5)

Thus the electronic Hamiltonian is diagonal, but we pay the price by having an off-
diagonal damping matrix.

We shall now proceed to explore the general properties of the effective Hamilto-
nian (9.6):
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(1) The effective Hamiltonian is nonhermitian. This can be rationalized by noting
that we consider only a subspace of the Hilbert space consisting of the (discrete) zero-
photon manifold. In fact, from the basic definition (9.6) and from the hermitian
property of I we conclude that Hg is in general a sum of a Hermitian matrix Hy, and
an antihermitian matrix, —4il".

(2) When the effective Hamiltonian is nondiagonal within a given basis of zero-
photon states, these states cannot be considered to decay independently, in view of
the appearance of off-diagonal terms in H,g. Thus the evolution operator (9.3a) in
the P subspace will contain such off-diagonal contributions.

(3) One can find, in principle, for the general case and in practice for simple model
systems, a basis of zero-photon states {| j, vac)} which diagonalize the effective Ham-
iltonian. This basis set is obtained by the transformation:

Ji, vac my, vac
Jasvac ) =D | m,, vac |. (9.16)

(4) The effective Hamiltonian is diagonalized by the transformation
DH;D '=4, (9.17)

where A is diagonal, A;;= A;;5;;. As H.y is a sum of Hermitian matrix H), and an
antihermitian matrix —4I', D is nonunitary matrix. When we use a basis set |m) of
real functions, H,q is a complex symmetric matrix and it can be always diagonalized
using an orthogonal (nonunitary) transformation matrix D. '

(5) The matrix elements of the diagonal matrix 4 (9.17) are in general complex

(6) The effective Hamiltonian matrix in the | j, vac) representation is not given by
the usual scheme suitable for orthogonal basis sets, i.e.

Ajp # (s vacl Helj', vacy = (Ejp — 4il ;) (j, vac|j’, vac). (9.19)

(7) The new basis set | j, vac) which diagonalizes H,y is characterized by complex
energies E;—%il";. It is natural to assign the real part of (9.19) to the energies of these
states, i.e. Re A;;=E; while the imaginary parts Im A;;=1I; corresponds to the
characteristic widths of the system in the presence of the radiation field.

(8) The diagonal sum rule applies to the transformation (9.17). Thus

Re [Tr A] = Re [Tr H.q] = Tr [H,,], (9.20)

Im[Trd] =Im[Tr Hy]=—4[TrI"]. (9.21)
Equation (9.20) implies that

YE;=YE,, (9.22)

J

m

which is the conventional diagonal sum rule, whereupon the sum of the real energies
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of the | j, vac) states is equal to the sum of the energies of any other basis states
|m, vac). From Equation (9.21) we have the more interesting result

YTi=% Tom- (9.23)
J m

Thus the sum of the widths of the | j, vac) states is equal to the sum of the diagonal
elements of the (nondiagonal) I' matrix in any |m, vac) representation.

(9) The | j, vac) basis set is not orthogonal. This is a consequence of the antiher-
mitian property of 4iI" which causes the non-unitarity of D.

(10) In order to expand # in terms of diagonalized projections we shall now define
the complementary basis set | j, vac) by the relation:

| ji, vac) |m,, vac)
(ljz, vac)) =(D~")t (|mz, vac)) : (9.24a)

In the special case when the |m, vac) basis set has a real representation the trans-
formation is orthogonal, i.e. D~'=D, and we get

(D™")t = D*, (9.24b)

so that in this special case |, vac) = | j*, vac).
We can write for the general case

P =73 |j, vacy (j, vac|, . (9:25)
J
where | j, vac) are obtained from the transformation (9.24). This relation is the con-
sequence of the orthogonality of {| j>} and {|>}, i.e.
{Jj,vac| j', vacy = ;.

Finally we can derive a form of £ in terms of the | j, vac) basis. From Equations
(9.24) and (9.25) we get

|j, vac) = Z[(D")‘r D™1;p 14, vac) (9.26)
=
and
P=Y|j,vac) [(D~")t D" 15 <J'» vac]. 9.27)
i’
In the special case when we use a real basis set,
(D)t =D,
9.28
(D) = b1 o2
and we get
P= ZJ: |j, vacy (DD1);;. (', vac|. (9.29)
J

(I1) We shall now explore the most important feature of the basis sets. The time
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evolution operator (Equation (9.3a)) is
PU(t,0)P=Pexp(— iH.qt) P =3 |j, vac) exp[ — id;t] {J, vac| =
7

= ) 1j, vac) exp [— iE;t — 31 ;1] <, vac]. (9.30)
4

This general result implies that the decay amplitudes combining any pair of |m, vac)
states will be expressed as a superposition of terms of the form exp [ -3t —iE;t],
i.e. a sum of independently decaying exponentials. Thus the basis set | j, vac) can be
considered as the set of independently decaying levels characterizing the molecular
system.

(12) To conclude this formal discussion we shall recast the Green’s function in the P
subspace in the spectral representation of the independently decaying levels | j, vac).
Making use of Equations (9.1), (9.19) and (9.25) we get

pG(E)ﬁ=ZE-;%, (9.31)
7 J 5

which is of course nothing but the inverse Fourier transform of (9.30). Equation (9.31)
will be useful in the study of optical lineshapes of a system with a large number of
closely spaced levels (see Section 17).

10. Theoret’ 1 Results for Time Evolution of Excited Molecular States

We are now able to provide explicit expressions for the general time evolution of an
excited molecular state. The decay amplitude (7.14) which describes the time evolution
of the excited state with the aid of (9.30) takes the form

Con (t) =Y <{m, vac | j, vacy exp [ — iE;t — 4I' ;7] (J, vac | N, vac).
4 (10.1)

Thus Equation (7.13) is

P (1) = I}'N|2 Z

fd'r(p (t—1)Y <{m,vac|j, vacy-exp[— iEjt — 4 ;7] %
0 J
2
x {j,vac| N, vac)| . (10.2)
I

We now note that J|j, vac) =0 for each |j, vac) whereupon Equation (10.2) can be
further simplified and recast to include only matrix elements of the |N, vac) state
and the | j, vac) basis
t i
P.(1)= f dr f di'o(t—r)e*(1—7')Y Aj exp[— iEjr — 4 7] %
iF
4]

]
x exp[iEpt — 4],  (10.3)
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where
Ajy=(NIT, vacy <, vacl j, vacy {j, vac| N, vac)- | yy| 2. (10.42)

Utilizing the general formal definition (7.8a) of the doorway state we can express the
coefficients 4., in (10.3) in terms of the radiative coupling matrix elements with the
ground state

Aj’j e <g) k0| HimIJr‘! Vac) <J'”a VaClj, Vac) <J'-’ VHC] Hint]gs ke> (]0'4b)
Equation (10.3) may be rewritten in the following manner:
Po(t) =3, AjiF* (1) FF (1) = Y A |F7 ()] + 2Re X Ay FiX(n) Fo (1),
r J J>j (10’5)

where
Fi(t) = f dro(t —t)exp(—iEj)exp(—4ly7). (10.6)

We note that ¢(7)=0; and C;;(7)=0 for 1<0. Thus the integral (10.6) can be
rewritten as [Z, dte (¢ —7) C;;(z). Utilizing the convolution theorem for Fourier
transforms we get

Fo(f) =i f dE exp (= iEt) G, (E) a, (E). (10.7)

To bring Equation (10.3) into a more tractable form let us utilize the Lorentzian
photon wave packet (6.8) @, = Ay/(k—k +14iy,) for optical excitation. Thus we obtain
exp[— iE;t] exp[— 4I';t] — exp[— ikt] exp [ — y,1]

k—E;+%i(l;—v,)

3

F2(1) = 2ndy

(10.8)
and the photon counting rate is

b= = ft [Z 2 ApFi () F; (r)] (10.9)

Equations (10.5), (10.8) together with the definition (10.4) provide us with the desired
general results concerning the time evolution of the excited state. From these results
we can immediately draw some general conclusions for the time evolution of a system
of closely spaced levels:

(a) The time evolution of the excited states is expressed in terms of cross products
of the functions F} (¢). It is important to notice that the matrix Aj; (Equation (10.4))
is not diagonal in view of the nonorthogonality of the basis set | /, vac).

(b) Each of the functions F(¢) incorporates dual information. It contains the
molecular energies £; and widths I'; of the independently decaying levels, together
with relevant energy parameters k and y, which characterize the energy maximum and
the width of the exciting pulse.
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(c) The time-independent denominators of F} provide the attenuation factor for
absorption of the pulse energy by the | j, vac) level.

(d) In the mathematical limit t - oo, F} (t)— 0 for all j irrespective of the relation
between y, and {I';}. This implies that P,(c0)=0. Thus for a physical system char-
acterized by a discrete spectrum of excited states the total photon emission yield at
t =co will be unity, i.e. P;(co)=1. It is important to stress at this point that the proce-
dure which led to the definition of the | j, vac) basis and the derivation of Equation
(10.4) considered a discrete molecular spectrum. When the spectrum of Hy, (when
the Born-Oppenheimer molecular basis is employed) or of H,, (when the molecular
eigenstates are used) contains continuum states we should not incorporate them in the
P subspace. Under these more complicated circumstances we have to include the zero
photon continuum molecular states in the Q subspace while the P subspace will
contain only discrete levels. Under these conditions the probability of the system to be
in the (extended) @ space at t =oo will be still unity, however, the photon emission
yield at  =c0 may be lower than unity due to the branching between the radiative
channels and the nonradiative continuum channels. It should be finally pointed out that
these results do by no means contradict the idea of electronic relaxation (internal
conversion or intersystem crossing) in an isolated molecule, where the concept of the
statistical limit rests on the notion of (a) practical irreversibility at a time scale short
relative to the (exceedingly long) Poincaré recurrence time and (b) the occurrence of
sequential decay processes in the dense intramolecular manifold.

(e) In the limit of high energy resolution of the exciting pulse, y,<I"; and the con-
tribution to the F/(¢) functions originating from the molecular lifetimes I'; will be
masked out by the long decay time of the pulse. Under these circumstances the time
resolved photon counting rate will not result in any relevant information regarding the
‘molecular’ widths. This situation corresponds to the ‘long time’ excitation experiment.

(f) In the limit of a broad excitation pulse we encounter the ‘short excitation’
experiment and the time resolved decay pattern provides us with pertinent informa-
tion regarding the molecular decay widths.

11. ‘Initially Prepared’ Decaying State, Revisited

As we have already pointed cut in Section 8 the description of an ‘initially prepared’
decaying state excited by a delta function field amplitude (6.16) has to be modified.
We can now provide a less stringent realistic condition for the ‘preparation’ process
by requiring that the energetic spread y, of the photon wave packet considerably
exceeds the characteristic widths I'; for all the independently decaying levels, i.e.

v, > (11.1)
for all j. Under these circumstances the functions {10.8) take the form

—iE; E [y g
F (1) . r(:xp[ I'EJ."} exp[ 3__11'1‘ 12
J'{ ’IJ\ B ( )
E; —k + tiy,
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Using Equations (10.4) and (11.2) the time evolution of the excited states resulting
from the realistic ‘short time’ excitation experiment can be now written as follows

A;;
P.(1) = Z (_E_;W—i_(?p)z exp(—I';t) +

+2Rezz&_exp[f(5j.—Ej)!-—ﬁ(r,_--krj.)r:[, (113)

[E; — & + 4iy,] [E; — k — 4iy,]
where we have defined
A ;=41 |Ay|* A; ;= 4n? |A4)2 (N, vac| j, vac) x
x {j’, vac | j, vac) j, vac | N, vac) [yxl?. (11.3a)

Separating the mixed coefficients Equation (11.3) into their real and imaginary parts

a7 - = R;.; exp[ig;;] (11.3b)
[E; =k + 4y, [Ey —k—4iy,] 74 *PLss '

P.(t) = Z Ay exp (-]

we get

(E; — &) + 4}

+2 Z Rpjexp[—4(F;+Tp)]t cos[(E; — E;)t + ¢;,].
= (11.3c)

This result provides us with the proper description of the time evolution of the
discrete excited states resulting from a realistic short time excitation.

Thus the time evolution of the excited state is solely determined by the molecular
parameters £; and I';. This result differs from that obtained in Section 8 for the ex-
tremely broad excitation condition (i.e. ¥»— o0) only by the introduction of the time-
independent numerical factors [(E;—k) +4iy,] " in the denominators of all the
terms in Equation (I1.3). These attenuation factors account for the absorption
strength of the exciting pulse by the various independently decaying levels | j, vac).

We can now introduce a second condition for the pulse width

. > |E; — K| (11.4)

for all E; which implies that the pulse width exceeds the energy spread of | j, vac).
When both conditions (11.1) and (11.4) are simultaneously satisfied we get

e o :
P.(1) =},2 Z Ajpjexpli(Ep — E;)1 = 3(I; + r;)d, (11.5)
P
which corresponds to the extremely broad excitation condition. Thus Equation (11.1)

provides the necessary condition for a realistic broad band excitation. This condition
is useful for the study of a sparse distribution of strongly coupled levels as is the case
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for interstate coupling in small molecules. The combination of conditions (11.1) and
(11.4) provides us with the circumstances equivalent to a delta function excitation in
time, which are useful for the study of systems of closely spaced levels, i.e. a dense
level structure in the excited states of large molecules.

The time evolution, Equation (11.3), consists of two contributions: (a) a sum of
decaying exponentials; (b) a sum of cross terms, which contain oscillatory contribu-
tions for the time evolution of the excited states. These oscillatory terms characterized
by the periods /#(E;—E; )™' may lead to the observation of quantum beats in the
radiative decay.

When we consider the excitation of the system by a single pulse, disregarding more
sophisticated techniques such as double resonance methods, the experimental infor-
mation regarding the decay features originates from the photon counting rate. When
only condition (11.1) is satisfied we get from Equation (11.3) for the realistic short
time excitation experiment:

: F sl iexp(—T;t)
PQ(I)Z_-Pe'(!)__-Z(Ej__g)z_}_(f,?p)z+

[(E E)- r;“}
B = am, e —F— 1]

xexp[:(EJ-.—Ej)t]exp[—%(Fj+Fj.)£]. : (11.6)

Now, for a system of densely spaced excited leveis, we can invoke the additional con-
dition (11.4) whereupon Equation (11.6) is simplified to read

P,(1)= ;z Z/‘L*;B‘(r; + )+ i(Ep—E;)] x
x exp[i(Ey — E)flexp[— 3(I; + ;) 1], (11.7)

where the coefficients /i}.j are given by (10.4) and (11.3a). Equation (11.7) could have
been alternatively derived from the expression (8.11a) utilizing the form of the evolu-
tion operator (9.30) in the | j> representation

Pg ()=2n |'}'N|2 2, 1Cxx (l‘)|2 =
=ZZBJ'J'GXP[_E(EJ_EJ')f_i‘(F;-FF,-')l], (11.8)
J s

where
By =2n|yl? @, KNI JY G| NY AN | T G| N (11.9)

In the short excitation limit we choose Ay=iy,/4nyy (in order to obtain ¢(7) =
= (1/yy) 8(2), see Section 8). Hence, the equivalence of Equations (11.7) and (11.8)
implies that

A =8, (11.10)



184 JOSHUA JORTNER AND SHAUL MUKAMEL

where

Ap;=<J' | i Ui (B — Ep) + 3(T; + T)] (11.10a)
and

By =<(N| j><J' | Ny 2zlywl? e, - (11.10b)

This equality (11.10) can be easily proved by utilizing the general properties of H .
We have
Ap;=i[{J| Heg 1J> — G H 1] (11.11)

Separating H.y into Hermitian and an antihermitian parts i.e. Ha=H,— (i/2) T,
where H,, and I' are obviously Hermitian, we get

Ay =i [{J'|Hy = iT1j> — * | Hy +iC1j"*y =2 T1jy. (11.11a)
Using the definition of I' (Equation (9.10)), we get from (11.11a)
Ayy=2nlyl* en<J' | N> XN | > = By, (11.12)

We note in passing that the equivalence of Equations (11.7) and (11.8) implies that
for the extreme case of short time excitation, the generalized doorway state obeys the
relation

B,(1)= g—,[w@)l N (1)1 = 2xlyal? ¢, IKN (0) | N (0312, (11.13)

From these results we conclude that the radiative decay rate of a system of discrete
excited levels exhibits the following features:

(a) The photon counting rate can be in general recast in terms of linear superposi-
tion of a sum of direct exponentials and of a sum of oscillatory terms.

(b) The feasibility of the observation of the oscillatory pattern of the decay is
crucially determined by the nature of the physical system.

(c) When the spacings between the | j> levels considerably exceed their radiative
widths, i.e. I';,, I';<|E;—Ej/| for all | j> and | ") the oscillatory term will exhibit
extremely fast oscillations on the time scale I'; ' or I';:' which will average out to
zero. Thus for a system of coarsely spaced | j) levels no oscillatory contributions to
the decay in (11.6) or (11.7) will be exhibited and the radiative decay rate will be
determined by the first sum in (11.6), i.e. a linear superposition of decaying expo-
nentials. This situation prevails for strong coupling between a sparse distribution of
levels in a small molecule.

(d) Consider now the opposite extreme case of a dense level distribution with a
single (zero-order) |s) level acting as a doorway state, as is the situation in a large
isolated statistical molecule. In this case there is a large number of cross terms in
Equation (11.6) or rather in (11.7). These oscillatory terms will lead to a destructive
interference effect resulting in shortening of the radiative decay time on the experi-
mentally relevant time scale (see Section 13).

(e) Interference effects, i.e. quantum beats in the radiative decay of an isolated
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molecule can be experimentally observed only for a system characterized by a small
number of closely spaced | j, vac) levels, where I';, I';~ |E; —E;|. This situation
requires effective coupling between a small number of zero order molecular levels
corresponding to two electronic configurations. In real life it may be possible [47] to .
observe quantum beats in the decay of an excited state of a large molecule which cor-
responds to the intermediate level structure (see Figure 1e and discussion in Section 15).

(f) From the point of view of general methodology it is important to notice that the
oscillatory terms which may result in observable quantum beats are exhibited both in
the probability for population of the excited state, P,(t), and of the ground state,
P,(t). Thus the phenomenon of quantum beats in the radiative decay rate originates
from the oscillations of the system between its electronically excited zero-photon
levels. An attempt was made [93] to consider ‘recurrence oscillations’ in the excited
state as distinguished from quantum beats in the radiative decay. The general treat-
ment presented herein demonstrates that such a distinction is not acceptable.

12. Parallel Decay of Metastable States

We have demonstrated in Section 10 that for a discrete spectrum of zero-order excited
states (which result in a discrete manifold | j, vac)), P,(¢)—0 and P,(¢)— 1, in the
mathematical limit r — co, whereupon the quantum yield for emission at t =c0 is
unity and no discrete excited levels are populated at the distant future. The situation
is drastically different when the excited molecular states contain a continuum |/¢, vac)
characterized by the density of states g, for example, a dissociative intramolecular
continuum in the case of predissociation. We shall consider now the simplest physical
common situation where the radiative continuum |g, ke)> and the molecular zero
photon continuum |/e, vac) are not directly coupled, i.e.

{g, ke| V|i., vac) =0, (12.1)

We shall partition the Hilbert space as follows: the £ subspace will contain the dis-
crete zero photon excited states, as before

P= Zlm, vac) (m, vac|, (12.2)

m

while the Q subspace will contain the two continua, that is

0, = RZ g, ke) <g, ke|, (12.3)

0, =Y |lc, vac) (e, vac|.
e

Under the conditions of short-time excitation satisfying conditions (11.1) and (11.4)
together with (12.1) the initially excited state is still |V, vac) (Equation (7.8)) the time
evolution of the discrete levels is geven by (8.1) while the rate of photon counting
is (8.11a). For most practical purposes we can consider the decay amplitudes which
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combine only the (discrete) states in the P subspace. Now the relevant coupling
matrix elements combining the P and ( subspaces are (g, ke| H;,Im, vac) and
l., vac| H,|m, vac). We can again define a generalized effective Hamiltonian for the
P subspace which will incorporate the effects of both radiative decay into |g, ke) and
nonradiative decay into the dissipative continuum |/, vac). Equation (9.4) is still
applicable however now the dissipative part of the level shift operator includes two
contributions for parallel decay:

5 n 1 i = 1
ch:P(HM+HilerE—Q,HQ OH; + HO, E Q"A Qf )
(12.4)

Thus the effective Hamiltonian takes the explicit form, which is a generalization
of (9.6)
Hg=F (Hy + 6 — Liy) P, (12.3)

where ¢ and y are the generalized level shift and decay matrices, now given in the
explicit form

Y PR LR A LT PIUAL S
E—k
) H,ll,, les H,|m', . (E

+pp [ dE, {m, vac| H |l vac)> ¢ va;_] . [m’, vac) o, (E)) (12.6)

E . EIc
and
Ywm: = 2n Z J. d9<ﬂ?, Vacl Him ]gs ke> <ga ke! Hint |J'?'.', VaC) or +
+ 2n {m, vac| H, |/, vac) {I_, vac| H,|m’, vac) g.. (12.7)

We can proceed as in Section 9 to find the basis set |J, vac) which diagonalizes the
effective Hamiltonian (12.5), i.e.

Heg)sy = (Ey = iys) 04y, (12.8a)
while for the complementary basis set |J, vac) we have
(H:W)JJ‘ = (E; + %iy;) 055 - (12.8b)

Now the decay widths of the independently decaying levels |J, vac) contain both
radiative and nonradiative contributions. Finally, the evolution operator in the P
subspace is

PU(1,0) =3 |J, vac) exp [ — iE,t — y,1] {J, vac]. (12.9)
J

It is a simple matter to extend the formalism presented in Sections 10 and 11 to include
the role of the additional decay channel. To obtain the time evolution of the discrete
states one has just to replace E; by E; and the radiative widths I'; by the total widths
v; in Equations (10.3)-(10.6) for the general excitation and in Equations (11.3)-(11.7)
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for the ‘short time’ excitation. It is important to realize that P,(r) represents the time-
dependent population of the excited discrete states and not of all excited states, so that
P,(1)# —P,(t) but rather P,(1)=—P,(t) —P.(t) where P_(t) is the occupation
probability of the {|/.>} continuum. To gain some insight into the nature of the
medification introduced by the presence of additional intramolecular decay channels
let us write the photon counting rate for the excitation which satisfies both conditions
(11.1) and (11.4). From Equations (8.11) and (10.9) we have

Pg (1) = g JZ By expli(E, — Ej) t]exp[— 3 (ys + v, 1], (12.10)

where
Byy =N |IDLKT|NYLN | Ty | N2zl e (12.11)

From these results we conclude that for the simplest case of parallel radiative and
nonradiative decay:

(a) The time-dependent decay pattern is determined by the total widths y, of the
independently decaying states. When the effective Hamiltonian (12.4) is nondiagonal
thesz total widths have to be obtained from the general procedure outlined herein.

(b) Interference effects in the time evolution and in the photon counting rate of a
system consisting of a small number of discrete coupled zero order excited states
undergoing parallel decay may be exhibited. Quantum beats will be observed pro-
vided that the spacings between the small number of |/, vac) levels are comparable to
their total widths, i.e.

Vs Vur ~ |Ey — Ep

for all J and J’. Quantum beats will not be observed for (1) a dense manifold of a large
number of levels; (2) for extremely broadened levels manifold where

Vs Va2 | Ey—Epl.

(c) For a system of a small number of levels undergoing parallel decay it may be
possible to vary continuously the y; widths via external pertubations and conse-
quently modify the decay into the nonradiative relaxation channel [50]. Then inter-
ference effects will be exhibited for a narrow range of y; values.

(d) The total emission yield at =00 can be obtained by integrating Equation
(12.10), which results in the occupation probability of the radiative continuum in the

distant future.
B
P,(c0) = ZZ = (12.12)
"(EJ EJ)+l(?J+)‘1)

As for =0 the initially excited [N, vac) state is normalized to unity thus P,(0)
represents the emission quantum yield. The yield for decaying into the nonradiative
continuum is

P (0)=1—P,(c0). (12.13)
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To lay the foundation for the discussion of the statistical limit we shall consider the
simplest situation where a single level |5, vac) exhibits parallel decay into a radiative
and a nonradiative continua. Now P =|s, vac) s, vac| while 0 is given by (12.3).
There is a single state in the |J, vac) manifold, i.e. |J, vac) = |s, vac). The time evolu-
tion of the excited state under the general conditions of wave-packet excitation is
obtained from Equation (7.13) in the form

t "
P (1) = lynl? U o (t = 1) Cy(1) . (12.14)
. .
C,(t) is the Fourier transform of

st (E) e (]215)

where the total width of the [s, vac) state is the sum of the radiative and nonradiative
widths

vo=T,+ I (12.16a)

Iy =2n|<s, vac| H,|l., vac)|? g, (12.16b)
so that

Ci(t) =exp[— iE;T — Ly,1). (12.17)
Thus we get

P, (1) = 4n* |Ay]? Iyi® x
o XP (= 751) + exp (= 7,1) — 2 exp(— 4 (1, + 7,) 1) cos (E, — k) 1

(Es— k) + 40y, — 1)

From this result we conclude that (I) the only molecular information originating
from the time evolution of this system is the resonance width y,. Excitation character-
ized by different wave-packet widths (i.e. different excitation times) will not result in
new information. (2) The trigonometric factor cos(E,—k)¢ in (12.18) represents a
‘ringing effect” between the field and the molecular system. (3) When ¥p3> 75 WE en-
counter the ‘short excitation’ condition,

P.(t)ocexp(—yd).

(12.18)

When both conditions (11.1) and (11.4) are obeyed the photon counting rate con-
tains a single exponential decay

P, (1) =T exp(— p¢). (12.19)

Finally, the emission quantum yield is just the branching ratio between the radiative
and the total width,

Y =Ty =I5+ T3). (12.20)
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13. The Statistical Limit

When the background density of the vibronic levels in a large molecule is exceedingly
high (see Figures la, ¢) one should enquire under what circumstances this intramolec-
ular quasicontinuum can act as a practical decay channel. This question is central for
understanding of electronic relaxation (i.e. internal conversion and intersystem cros-
sing) in an isolated large molecule. This interesting problem imposes some conceptual
difficulties. We have demonstrated that for a general discrete spectrum of the excited
states the probability of the system to be in a discrete excited state is zero at t =c0
Only when the system contains a real continuum the emission quantum yield is
smaller than unity at # =co, i.e. the intramolecular continuum acts as a legitimate
dissipative channel. However, we should note that the distinction between a ‘real’
(dissociative or ionization) continuum and an intramolecular dense quasicontinuum
is not physical, as one can convert any ‘real’ continuum into a quasicontinuum by
enclosing the system in a box. The experimental observables are not affected by the
mathematical boundary conditions imposed on the system. We should now enquire
what conditions should a quasicontinuum satisfy, to act, for all practical purposes, as
a dissipative continuum [34, 78, 84].

Bixon and Jortner [34] have introduced the notion of practical irreversibility for
the simple model of Figure la. In the absence of radiative decay the molecular eigen-
states are adequate for the spectral representation of the Green’s function,

) <n
G (E)y=) F——, 13.1
() E*+E, 12D
so that the time evolution of the doorway state |s) is
+
s|U (L, 0)|s>= J exp (— iEt) G, (E)dE =
{s [ !1‘) (n | s)
. dE [Et
Zf expif= ey E — E + in
=3 [{s | nd|? exp(— iE,1). (13.2)

Thus the time evolution is described in terms of a Fourier sum which exhibits an
oscillatory behavior. It was demonstrated that for the simple model system char-
acterized by equal {|/>} level spacing (1/g,) and constant V,; coupling, the Fourier
sum (13.2) exhibits an exponential decay on a time scale, f, which satisfies the con-
dition

<1, =hg. (13.3)

Thus Equation (13.3) establishes the time scale for the occurrence of an effective relax-
ation into a quasicontinuum. ty corresponds to the recurrence time for the intramo-
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lecular nonradiative decay. This definition introduces the notion of a Poincaré recur-
rence cycle for the decay process. For excited states of large molecules characterized
by a large electronic energy gap, /ig, is exceedingly long compared to all relevant decay
times.

In real life an ‘isolated” large molecule cannot wait long enough to pass a Poincaré
cycle. Under any realistic experimental conditions in the laboratory the population
of the {|/>} manifold will be relaxed due to ‘trivial’ quenching processes such as wall
collisions or kinetic collisions. Finally, it is important to realize that even an isolated
large molecule in the outer space, in the absence of ‘trivial’ quenching mechanisms,
will not exhibit a Poincaré cycle. We have focused attention just on the simple level
scheme la or lc. In a real molecule the {|//)>} manifold will exhibit subsequent decay
mechanisms such as: (a) Infrared emission to lower vibrational levels [34] as was
indeed already observed by Drent and Kommandeur [85]. (b) Radiative decay to the
highly vibrationally excited ground state levels in the case of internal conversion [41,
79] between high excited states. Thus, strictly speaking, all electronic relaxation pro-
cesses in a large molecule involve noninterfering sequential decay (see qualitative dis-
cussion in Section 3). It is a simple matter to provide the time evolution for the physical
systems portrayed in Figures 1f, g. The theory of noninterfering sequential decay for
such level schemes was provided by Freed, Nitzan and Jortner [41, 64]. For a doorway
state |s, vac) coupled in parallel to the radiative continuum |g, ke) and to a quasi-
continuum |/, vac), which in turn is coupled to a continuum {|/,, vac)} one gets [64]

Gss(E)=[E—-ES_A.\:_A:"F'!.";(F::"'F:P(E)) _l: ’ (13.4)
where 4, is the radiative level shift, 47" is a nonradiative level shift function

VU 2(E-E) IV

w Ll (13.5a)
L (E—E) +3r7
and
8 Viiel® (13.5b)
E,=E +pp) —=—. '
] ! E_ Eu—

Ie

I'; is the radiative width of the doorway state while finally, and most important

I\Vif?

L1 LY — 13.6
(E—E)* + 3} {20
7

r(E)=
where the width I',; of each {|/)} level due to its coupling with the {|/.>} continuum is
I'y=2=m|V, :c|2 Qic (El) . (13.7)

The time evolution of a general system specified in terms of (13.4) may be very com-
plex, as the Green’s function may be characterized by a large number of poles. When
the widths of the {|/>} levels considerably exceed their spacing, i.e.

I»|E —E;ql o’ (13.8)
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The function I'y" (E£') (Equation (13.6)) is weakly varying with energy and can be con-
sidered to be constant. Only under these circumstances G, has a single pole at

E=E+ 4,4+ A7 —Li(Fy+ 1Y), (13.9)
and the time evolution of the excited states is characterized by the total width
v, =L, +T; . (13.10)

Conditions (13.3) and (13.8) provide us with the physical basis for the definition of
the statistical limit in a large molecule. Each of these relations yields an independent
necessary and sufficient condition for treating the intramolecular quasicontinuum as
a legitimate dissipative continuum.

When condition (13.3) is satisfied and the widths I, are very small (originating from
infrared decay, as will be the case for intersystem crossing) we can set I'; — 0 (in (13.6))
whereupon

I =2ny |Vl* 6 (E,— E) = 2rIVul® 0, (13.11)
1

which is the conventional expression for the nonradiative decay probability into a
continuum [34] (note that the manifold of the delta functions, which enters as a book-
keeping device, has to be extremely dense). When only condition (13.8) is satisfied, as
may be the case for internal conversion (or for electronic-vibrational relaxation of a
small molecule in a medium) Equation (13.6) has to be used.

We have established the physical criteria for treating intramolecular quasicontinuum
as a dissipative intramolecular channel. In the statistical limit we can factor the Hilbert
space as follows

P =|s) (sl (13.12)
for the discrete subspace and

0 =Y lg, ke) g, ke| + Y_|1, vac) I, vac| (13.13)
ke 1

for the continuous part. The physical situation is that of parallel decay of a single
discrete level into two noninteracting channels. Using the results of Section 11 we
notice that in this case it is easy to satisfy the condition (11.1). When also condition
(11.4) is obeyed we have for the photon counting rate

Py(t) =T exp(— ), (13.14)
where 7, is given by (12.16) and for the quantum yield

I

Voo 13.15
Y i (13.13)

The major experimental characteristics of the statistical limit can be summarized
as follows:
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(1) Shortening of the radiative decay time. As y,>T, the experimental radiative
decay time is shorter than expected on the basis of the integrated oscillator strength,
which yields I'.

(2) The decay resulting from short time excitation is a pure exponential.

(3) Reduction of the emission quantum yield, i.e. ¥ <1. That implies that for any
practical purpose the intramolecular quasicontinuum acts as a continuum.

(4) An inert medium will not in general modify the decay characteristics of a sta-
tistical molecule. Medium-induced vibrational relaxation will introduce a new con-
tribution to the widths I",. When I'}"(E) is already a slowly varying function of the
energy in the isolated molecule, this additional sequential decay is of minor importance.

(5) As the physical situation in the statistical limit is equivalent to that of a single
discrete level exhibiting parallel decay into two continua, the only pertinent informa-
tion is the resonance width y,. We cannot give new information about the decay char-
acteristics of the system by changing the energetic width 7, (or the duration) of the
exciting photon wave packet,

14 Interstate Coupling in Small Molecules

In the small molecule limit [40-41] the interstate coupling matrix elements V,, between
the Born-Oppenheimer states are large while the density of states in the background
manifold is low (see Figures 1b, d). The {|/>} levels are coarsely spaced, relative to
their radiative widths. The sparse {|/>} manifold cannot act as a dissipative channel
(in the isolated molecule) and we are encountered with the problem of the radiative
decay of a set of discrete coupled levels, i.e. |s, vac) and {|/, vac)}. In this case the
molecular eigenstates basis, |n, vac) which diagonalizes H,,, is of great utility. The
level distribution of |n, vac) is sufficiently sparse so that in the absence of accidental
degeneracies we expect the off-diagonal matrix elements of the radiative decay matrix
to be negligible compared to the level spacings, i.e.

rnn’é[En_En‘l' ([4-])

So that H.y in the [n, vac) representation (Section 3) is diagonal. Under these cir-
cumstances the molecular eigenstates are expected to provide a good description of
the independently decaying levels | j, vac) (see Section 9). The corresponding complex
energies are

(Hew)m' = (En = 4iV4) Opn'» (14.2)
where the radiative widths of the molecular eigenstates are
I, = I,|<s, vac | n, vac)|?, (14.3)

and T’ is the radiative width of the ‘doorway state’ (Section 7). We note in passing
that for accidental degeneracies we have to diagonalize H,; for these states. In this
interference effects may be exhibited.
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In view of the diagonal sum rule (9.23)

D=3 (14.4)

thus I, < I for all n. The overlap factors [(s, vac | n, vacy| ™2 are of the order of the
number of effectively coupled levels in the {|/>} manifold. We have thus provided an
explanation for the anomalously long radiative decay times (as compared to what is
expected on the basis of the integrated oscillator strength) of small molecules, re-
ported by Douglas [80] (see Table II). The occurrence of interstate coupling in small
molecules which results from the distribution of the absorption intensity of the door-
way state and the dilution of its decay time among the molecular eigenstates, each of
which is active in absorption and in emission. We also note that in this case of a dis-
crete molecular spectrum we expect that ¥ =1.

TABLE 11

Long radiative lifetimes of small molecules®

Molecule Transition z(exp.) r(integrated f)

s5€C sec

NO2 18s-14; 44 % 10-5 0.3 x 10-6
4300 A

S0: 1B1-14; 42 % 106 0.2 x 10-6
3000 A

CS2 1315 15 x 10-8 3% 108
1§y ARy
3200 A

© Experimental results for z(exp.) from Douglas [80].

The detailed decay mode is determined by the pulse characteristics. We can easily
satisfy condition (11.1) but not condition (11.4) in view of the large energy spread of
the |#) levels. The decay law will now be (see Equation (11.6))

r"
P,(t)cc Z F—E) +Gr) exp(— I',t). (14.5)

Thus the decay mode is in general a superposition of exponentials. The constant
coefficients in (14.5) just express the absorption strength of the wavepacket by the in-
dividual molecular eigenstates.

To conclude this discussion we would like to emphasize that as the small molecule
case corresponds essentially to excitation and decay from the molecular eigenstates it
is meaningless to consider nonradiative relaxation from |s) to {|/>} in the isolated
small molecule. Only when such a small molecule is embedded in a medium, electronic-
medium induced vibrational relaxation may result in non-radiative relaxation of the
doorway state [65] (see Figure 1i).
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15. Intermediate Level Structure

The statistical and the small molecule limits represent well defined, observable physical
cases. Another potentially interesting situation involves the intermediate case when a
small electronic energy gap exists between two electronic states of a large molecule [47].
It should be noted that now it is unjustified to use ‘coarse graining’ procedures em-
ployed in the statistical limit, which disregards the details of the variation of the inter-
state coupling terms and the level distribution in the background {|/>} manifold.
These features have to be considered in detail for the intermediate case. The physical
situation is closely related to the problem of intermediate structure in nuclear reac-
tions [82] where the density of nuclear excitations is low and fine structure is exhibited
in the nuclear scattering process.

As in the statistical limit, we can consider a single doorway state |s, vac) (see Fig-
ure le). In view of simple symmetry arguments, not all the states in the {|/>} manifold
are coupled to |s) with the same efficiency. When the total density of the former states
is relatively low, for small electronic energy gaps, say 10°-10* cm™" [9], only few of
these levels will be effectively coupled to [s). We shall partition the {|/>} manifold
into a small subset {|/,>} of effectively coupled levels and another subset {|/,>} which
contains the majority of the levels, which are weakly coupled to |s). The {|/,>} mani-
fold may be considered as a statistical dissipative channel which leads to irreversible
intramolecular decay on the relevant time scale. We should also incorporate in prin-
ciple, other intramolecular statistical decay channels which correspond.to dense
vibronic manifold of even lower electronic configurations |c, vac) and of the ground
state. This is a simple extension which was previously considered.

The subset of discrete states in the Born-Oppenheimer representation corresponds
to the projection operator

P = s, vac) (s, vac| + Y |1,> <I.| (15.1)
Ia

and the projection into the remainder of the Hilbert space is

0= ; 115> <ol + X le, vac) e, vae| + kZ]y, ke) <g, ke|. (15.2)

The states in £ constitute a sparse manifold of discrete levels, which bears a close
analogy to the small molecule case, apart from the possibility of accidental degener-
acies. We can now write the effective Hamiltonian H.z= PH,P + PRP for (15.1).
Subsequently, it will be convenient to find the molecular eigenstates which diago-
nalize PH,P.

The effective Hamiltonian Equation (9.4) is then

(‘”(.-IT = En(snn’ - .!ef‘}'rm" (]54)
where
Yo = Lo + T (15.5)

P =21 f dQ {n, vac| H;,,lg, ke) (g, ke| H,, |n’, vac) o, (15.6)
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Iy = 2nn, vac| H |1, vac) (I, vac| H,|n") g, +
+ 2 {n, vac| H,|c, vac) {c, vac| H,|#’, vac) g., (15.7)

where ¢,, and g, correspond to the densities of states in the intramolecular {|/,>} and
{lc)} manifolds. Radiative and non-radiative level shifts were neglected in (15.4). The
physical situation corresponds to a parallel decay of a discrete manifold into radiative
and nonradiative continua.

Two cases of increasing complexity will be considered:

(1) The molecular eigenstates in P are well separated relative to their total widths,

1.€.
Yo' € |Ey — Ey/| (15.8)

for all n and »’. The situation is equivalent to that encountered in the small molecule
case. The effective Hamiltonian is diagonal in the |n, vac) representation and the
characteristic decay widths of the independently decaying levels are

Yane = (s, vac | n, vac)|? ([, + I'Y), (15.9)

where the radiative width I', and nonradiative widths 'y of the doorway state are
obtained from (15.6) and (15.7) by replacing both » and »’ by s.

The photon counting rate resulting from an excitation by a Lorentzian pulse is given
by

?ﬂﬂ
P,(1)cc Z (E—HIE)Z @) exp (= Yunl)» (15.10)

which is analogous to Equation (11.6) except that the radiative widths I', are replaced
by the total widths vy,,.

As |<s, vac | n, vacy| <1 for all # then provided that I'}" ~I'; we expect that y,, < y,.
The experimental decay width of the excited states |, vac) now accessible by optical
excitation will be reduced relative to the radiative width of the zero-order state ob-
tained from the integrated oscillator strength. We expect a lengthening of the radiative
decay times of a large molecule which corresponds to the intermediate case [47].

(2) When some of the molecular eigenstates in P are closely spaced relative to their
total widths interference effects will be exhibited in the radiative decay [47]. The ef-
fective Hamiltonian (15.4) has to be diagonalized resulting in the | j, vac) states. The
rate of radiative decay will be given by Equation (11.6).

The following experimental and theoretical features of the intermediate case have
to be considered:

(a) Lenthening of the radiative decay times relative to those estimated from the in-
tegrated oscillator strength. Thus a state of a large molecule which corresponds to the
intermediate level structure will exhibit the decay characteristics of a small molecule.
This theoretical prediction was experimentally confirmed by Pertzepis et al. [95-97]
(see Table III).
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TABLE 111

Anomalously long radiative decay times of some excited electronic states
of large molecules #

Molecule Transition Energy gap z{exp.) t(integrated f)
cm™?! sec sec
3, 4Benzopyrene Sz —+ 5o 3800 7 x 10-8 I = 10-%
(52— 81)
Naphthalene S2— 8o 3500 4% 108 1 x10-8
(52— 51
Benzophenone 51—+ 8o 3000 1 %105 1x10-8
(81— T71)

& Data from [95-97].

(b) The time resolved decay mode in case (1) above may exhibit a superposition of
exponential decays (see Equation (15.10)) and vary with the mean excitation energy
(if the exciting pulse sufficiently broad, i.e. y,» y,,).

(c) The {|/,>} manifold is nondissipative. The strong interstate coupling between
|s»> and {|/,>} does not provide a pathway for electronic relaxation in the isolated
molecule.

(d) When the molecule is perturbed by an external medium a new relaxation channel
is added to the |s) state: |s> — {|/,>} = {|/,>}. Consecutive relaxation will occur as
collisions or phonon coupling provide a vibrational relaxation decay channel. To
provide a verification of these conclusions we note that the |s)> state of the benzo-
phenone molecule which is separated by 2800 cm™' from 7, and which does not
exhibit fluorescence in solution [98] fluorescences in the low pressure gas phase [97].

16. ‘Long Time’ Excitation Experimental Observables

Up to this point we have been concerned with the interesting physical information
which can be extracted from ‘short time’ excitation experiments exploring the con-
ditions for and the consequences of separation between the preparation and the decay
processes. The time has come to consider the second extreme situation of a ‘long time’
excitation where one has to consider photon scattering from large molecules as a
single quantum-mechanical process. The exciting photon field can be now character-
ized by high energy resolution and we shall proceed to study the relevant cross sections
(see Section 2) resulting from scattering of photons having the energy E =fck. We
shall first follow the work of Nitzan and Jortner [62] and focus attention on the phys-
ical information which can be extracted from such ‘long excitation” processes in a
large molecule where the only nonradiative decay channel involves an intramolecular
statistical quasicontinuum.

Scattering theory provides a powerful tool for the understanding of the interaction
of a molecular system with the radiation field which is responsible for the absorption
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line shape and photon scattering processes. Nitzan and Jortner [62] proposed that ‘long
excitation’ experimental observables pertaining to electronic relaxation in large mole-
cules can be handled by considering a “collision process’ between a monochromatic
wave train and the ‘isolated” molecule within the framework of the Lippman—Schwin-
ger equation, expressed in terms of the 7 matrix formalism, as was previously done
for atomic autoionization [99]. At the distant past, the molecule is in the continuum
state |a)=|go, ke) characterized by the energy E,. The final (continuum) states
resulting from photon scattering will be denoted by |6) =|gv, k e,> characterized by
the energy E,. Let us define [92] the transition probability per unit time from a conti-
nuum state |@) to a continuum state |b) as the increase (per unit time) of the probabil-
ity that a system initially in the state |a) is found at time ¢ to be in the state |b), i.e.

Woa = lim a-beU(fo, 1) lay|*. (16.1)

o= =

The probability W,, is independent of 7. To prove that assertion we quote here a result
of scattering theory [92]

2 2
Woa=6(b—a)ImT,, + :a(E,,mEa)m‘,F, (16.2)
1 1

where the T matrix (the reaction operator) is defined by

T=V+VG(ET) V. (16.3)
Here we use the notation
E* = E+in, (16.3a)
n—=0+

with V' =Hy, +H,;,. Equations (16.1) and (16.2) are the generalization of Fermi’s
golden rule, where the delta function insures energy conservation. The physically
meaningful concept involved in Equation (16.1) is a transition to a group of final
states within the energy interval dE,, so that when this equation is integrated over the
final states one gets the familiar density of states g, in the final expression. The
cross section for the process a— b, o(a—b), is obtained by dividing the transition
probability by the photon flux F=¢/Q, where ¢ is the velocity of light and Q repre-
sents the volume, and we use box normalization for the radiation field. Thus, the
cross section is:

2nQ
o(a—b)=""FIT,* 6 (E, - E,). (164)

The second general result we require is the rate of disappearance, W,, of the initial
state |a>, which is given by the optical theorem of scattering theory

d 2
”'1; . df|<al U (IOa I) Ial>i2 =- lm( tm) (165)

o= —w
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while the absorption cross section o, is given again by dividing (16.5) by the flux
20
O, =— . ImT,. (16.6)

We can immediately apply these results by setting for the initial energy E,=
=E(|go, ke))=E,,+ E where E,, is the energy of the ground state vibrationless level
and E =khc is the incident photon energy, whereupon the absorption cross section is
obtained from (16.6) in the form

2
g, (E)=— ;‘;_g Im{go, ke| T |go, ke)> =

20 +
— Im {go, ke| VG(E™) V |go, ke>. (16.6a)
ic

Strictly speaking Equation (16.6) represents the absorption cross section at zero tem-
perature. At finite temperatures a proper thermal average has to be performed.

Consider now the cross section for resonance fluorescence. We focus attention on the
photon scattering process |go, ke) — |gv, ke.>, which takes place between the initial
state |go, ke) characterized by the energy E,,+E = E,,+khc and the final states
lgv, kye > characterized by the energy E,,+E = E,, + k hc (where by E,, we denote
the energy of the state |gv) and where the emitted photon which is characterized by
the polarization e, and momentum Kk, is scattered into the spherical angle Q,—
— (Q4,+dQ, ). Equation (16.4) results in

2nQ
o(go, ke — gv, kee,) = r X
x 6(E, + E; — E;, — E) [{gv, kse,| T |go, keD|?. (16.7)

The density of final states in the radiation field is

drk?
o (kp) = (ZT’;;O‘ (16.8)

and one has to take k,c=E,,— E,,—kc to insure energy conservation. The resonance
scattering cross section ¢, (E) into the final molecular state |gv) will be obtained by
summing up Equation (16.7) over all final spatial directions and polarization directions.
This scattering cross section depends on the energy E of the initial photon. We con-
sider a sample of randomly oriented (noninteracting) molecules, and provided that
we are not interested in polarization measurements, then averaging over the initial
polarization directions e, results in

oL (E) = <Z dQ;, o (go, ke — gv, kfef)> ’ (16.9)
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where { > denotes averaging over molecular orientations with respect to photon
polarization.

The total cross section for resonance fluorescence is obtained by monitoring all the
emitted photons resulting from scattering into all the final molecular states |gv}

o, (E) = Yot (E). (16.10)

In a similar manner we can define a cross section o, (E) for effective scattering into
the quasicontinuum {|/, vac)}, which we consider to be an operational continuum.
This is given by

2nQ
o (E) = (-fic ) [<go, ke| T (E) |1, vac)|” g, (E). (16.11)
The unitarity relations for the scattering matrix result in the optical theorem [99]
1
——ImT,= Y |T,* 6(E,— E,), (16.12)
b allb

which leads to the conservation law

o,(E) = Y o} (E) + o, (E). (16.13)

The (energy-dependent) quantum yield resulting from absorption of a photon of
energy E leading to the molecular state |gv) is given by the ratio of the resonance
scattering cross section Equation (16.9) and the absorption cross section Equation
(16.6)

Y*(E) = 0! (E)/o, (E). (16.14)

If the ground state energy levels are well spaced the different channels can be resolved.
Finally, the total quantum yield for emission is given by

Y(E)=) Y"(E)=o0,(E)/o,(E). (16.15)
In a similar way the quantum yield for electronic relaxation in a statistical molecule is

Ym‘(E) = anr (E)r’(aﬂ(E)’ (i6‘]6)
and Equation (16.13) implies that

Y(E)+ Y, (E)=1. (16.17)

The general expressions for the absorption cross sections, for the resonance fluo-
rescence cross sections and for the emission quantum yields in the ‘statistical’ molec-
ular case will involve as ‘open channels’ not only the radiation continuum but also
the intramolecular quasicontinuum {|/)} which for all practical purposes can be con-
sidered as an ‘open’ decay channel. In this case the unitarity relations for the scat-
tering matrix do not imply that Y (E) is equal to unity as intramolecular decay
channels have to be considered, as is evident from Equation (16.13).
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17. Relation between ‘Short Excitation’ and ‘Long Excitation’ Experiments

At first sight it may appear to the uninitiated reader that there is no direct relation
between the theoretical treatment based on the time evolution of the molecular system
resulting from wave-packet excitation (Sections 6-7) and the study of photon scattering
exposed in Section 16. We have now to establish the connection between observables
obtained under ‘short time’ and ‘long time’ excitation conditions. This treatment will
result in a general useful definition of the emission quantum yields and to a new in-
sight into the physical interpretation of the absorption line-shape function.

The reaction matrix, 7, containing all the relevant information regarding ‘long
time’ experiments can be obtained from time-dependent scattering formalism by
taking appropriate limits for the evolution operator from the distant past to the far
future. Formally, we can define the scattering matrix S [92]:

S= lim U'(¢", 1), (17.1)

'=—w
"= 4w

where the evolution operator U’ (1", t') in the interaction representation is

U'(t", 1"y =exp (iHot") U (1", t") exp (— iH,t"). (17.2)
The S and T matrices are related by [99]
S=1I-2nié(E;-E[)T, (17.3)

when 7 is the unity matrix.

In the description of time evolution of excited states we have utilized the evolution
operator U (z,0). However, as U (1", t")=U (t"—t’, 0), we can use the equivalent
expression

U@,0)=U(®31, —41). (17.4)

Thus the scattering matrix (17.1) can be obtained by a single rather than a double
limiting process [90]
S = lim U'(3t, — 41). (17.5)

[ A
Making use of (17.4) we have
S=lim U'(t,0) (17.6)

=
or making use of the relation (5.6) we get a relation between the S matrix and the
Green'’s function

- -]

1
S= == lim exp (iHot) | dEG(E™)exp(— iEt). (17.7)

This relation enables us to consider the relation between the decay of a ‘prepared’
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state at the finite time 7 =0 and photon scattering, while the conventional formulation
would have required a state of affairs where the excited states is ‘prepared’ at f = — o0
whereas one could not utilize the Green’s function formalism to describe its time
evolution. Equations (17.7) and (17.3) establish the formal connection between ‘long’
and ‘short’ excitation experiments.

The quantum yield (Section 16) in a given exit channel is defined in a general way as
the number of photons or molecules scattered into that channel divided by the number
of absorbed photons. The system contains as effective exit channels, the radiative
continua |gv, k,e,)> and the intramolecular quasicontinuum.

We proceed to calculate the probability for finding the system in the exit channels
at t =oo. Taking the initial state (6.2) and utilizing the form (17.7) for the S matrix
we have

Y(o)=S¥Y(0)= 3 > Z lgv, ke, > (gv, ke, S |go, ke) a, +

krey v

+ 3 > |1, vac) <, vac| S |go, ke) a, +
T %

+ 3 Y |m, vac) (m, vac| S |go, ke) a,. (17.8)

m k

The probability of the system decaying radiatively into the final states {|gv, ke >}
resulting in the molecular ground state |gv) at t =c0 is

2
P; (o) = kz ;ak {gv, kse,| S |go, ke)! ; (17.9)
fef i

Making use of Equation (17.3) (and performing spatial integration and summation
over polarization directions as in Section 16) we get

Pi(0)=4n* Y ¥ |a)? IKgv, kse,| T |go, ked|* 8 (E — k). (17.10)

krer k

In an analogous manner we obtain the probability for the population of the quasi-
continuum at f =co

P(0)=4r*Y Y |a,? I<I, vac| T |go, ked|? 5 (E — E,). (17.11)
!k
Thus the quantum yield for emission into |gv) is
Y’ = Pi( oo)/(z P (oo)+P,(oo)) (17.12)

and the total emission quantum yield

Yous ¥ 19 (17.12a)

The denominator of Equation (17.12) represents just the total probability of pop-
ulating all the decay channels, which is just the probability of photon absorption.
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From Equations (17.11) and (17.10) we have

P/(0)+ Y Pi(0) = 41:2; la,|? [Z [<gv,ke,| T |go, ke)|* S (E — k) +

kres

+ Y K1, vac| T |go, ke)lzé(E—EI)]. (17.13)
!

Making use of the optical theorem (Equation (16.12)) we obtain

Pi(c0) + Y Py(0) =—Y |a,* Im{go, ke| T |go, ke)-4x. (17.13a)
k

The emission quantum yields (17.12a) and (17.12) can be recast with the help of Equa-
tions (16.6), (16.7), (16.9) and (17.12a) into the final form

> lail® o7 (E) f la (E)I* o} (E) dE

_ APITRTS A — (17.14)
k f la (E))* a, (E)dE

v

and

f a (E) o, (E) dE |
y=°2__ (17.15)

f ja (E) o, (E) dE

In a similar way the yield for nonradiative decay is

j a (E)? g, (E) dE

Y, (E)= (17.16)

f @ (E)? 0, (E) dE

where we have set a,=a(E).

Equations (17.14)-(17.16) constitute the general expressions for the quantum yields,
which can be expressed as the ratio of integrals involving the products of the relevant
cross sections and the power spectrum of the exciting light pulse. These results are
valid for all excitation conditions. Although for short time experiments one can evalu-
ate P, (o) directly, the present method is more general and useful. From these results
we conclude that:

(a) The quantum yields are determined in general by both the characteristics of the
molecular system, expressed in terms of the cross sections o} (E), o,,(E) and o, (E)
and by the features of the source.
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(b) Regarding the source characteristics we notice that the quantum yields are
determined by the power spectrum of the source, |a(E)|?, the only relevant feature is
the energetic spread. Unlike the time-resolved decay pattern which is determined by
the excitation amplitudes (Equation (7.13)) and thus possibly by phases of the radia-
tion field, the quantum yields are just determined by the energetic spread of the pulse.

(¢) In the ‘long excitation’ limit |a,|* is sharply peaked around k and ¢%(E) and
6,(E) vary slowly in the range where the power spectrum is finite. Then the quantum
yields are obtained in terms of Equations (16.14)—(16.15).

(d) For the ‘short excitation’ limit |a,|? is a slowly varying function of the energy,
thus the emission quantum yields become

oo o

Y”=faf(E)dE/f 6, (E) dE. (717

0 0

(¢) Only in the long excitation and short excitation limits the quantum yields are
solely determined by the molecular parameters.

(f) Only when both cross sections o (£) and o, (E ) exhibit the same dependence on
the energy, E, the quantum yields will be independent of the pulse width being iden-
tical for long and for short excitation conditions as well as for intermediate situations.
This situation is encountered in the simple case of a single molecular resonance
where both cross sections are characterized by a Lorentzian energy dependence.

(g) In general, when interference effects are exhibited, the quantum yield differs
for different energy conditions. Nitzan and Jortner [62, 50] have demonstrated this
effect for the case of two overlapping resonances, which was applied to provide the
only available interpretation for the decay characteristics of the S, state of biacetyl.

To pursue further the relation between short excitation and long excitation exper-
iments we shall establish the relation between the scattering cross sections ¢! (E) and
c,(E) and the independently decaying discrete molecular states (see Sections 9-12).
As we are interested in parallel coupling of the discrete levels |m, vac) to radiative
and nonradiative channels we shall consider the effective Hamiltonian H,; (Equation
(12.4)) characterized by the eigenstates |/, vac). The cross sections are determined by
matrix elements of T involving one-photon states, so that V =H,,, which combines
only states within the Q and P subspaces (see Equation (12.4)). Furthermore, we have
just to evaluate the matrix elements of H,, PG PH,,, between one-photon states. Thus
we get, apart from irrelevant numerical factors,

. \ <gv, kse,| Hyp |J, vac) {J, vac| Hy,, |go, ked|?
g!' E 0:. S Sl Ao =l B : A o w
- (E) |Z E — E; + }iy,
J

% 0, (ks) 0 (Egy — Egy + hke — hkyc),  (17.18)

o, (E)oc) Im ——— 17.19
(E) ; E—E, + iy, ( )
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where y; are the total widths of the independently decaying states. These results
exhibit some interesting features. The photon scattering cross section o} (E) will defi-
nitely involve interference effects provided that |E; — E;.| <y, y,.. This is the analogue
for long-time experiments of the quantum beats expected under these circumstances
for short-time excitation experiments. The expression for the absorption cross
section reveals formally a superposition of Lorentzians. This feature should not mis-
lead us, as one has to bear in mind that the states |/, vac) and their complementary
states |J, vac) are characterized by complex expansion coefficients of |m, vac), where-
upon the single sum (17.19) will exhibit interference effects of the absorption line
shape for closely spaced (relative to y,) levels.

Finally we shall consider some features of the optical absorption line shape. The
basic form (16.6a) for o,(E) and the definition of the generalized doorway states
[N, vac) (Equation (7.8)) imply that

20

r_) [y51* Im N, vac| G (E*) N, vac). (17.20)
1c

an,(E)=~(

The decay rate of the “initially prepared” doorway state | N in the short excitation
limit (Equation (8.11a)), as monitored by the photon counting rate is

+ a0
2

. |
P, (1) =2z |yx* o, s .[ dE exp (— iEt) {N, vac| G(E*) |N, vac)l y
T i

=0

(17.21)

Making use of the dispersion relation [87]

- 4]

1 Im N, G(E') N, vac) dE’
(N, vac| G(E*)|N, vac) = — - J T dH, yacl Gl EalI, yac)
T

E—E +in

E'—E—in
(17.22)
we get for 1 >0
o J dE{N, vac| G(E™) |N, vac) exp (— iEt) =
!
i | ) T Im {N, vac| G(E’) [N,
=— JA dE J. dE’ T vac[. --( )| --V—ac>exp(—iEr)=
2nin

o

1
= f dE"Im (N, vac| G(E’) [N, vac) exp (— iE't). (17.23)
n
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Equations (17.20)-(17.23) result in

; 2 (ke o T 2
Py({)=}t-(2_Q) EC;TZ j dE exp (— iEt) 0, (E)| . (17.24)

—@m

The same result can be obtained by taking the Fourier transform of o,(E) expressed
in the |J, vac) representation, Equation (17.19).

Equation (17.24) provides us with a general result relating the decay rate of any
excited state to the Fourier transform of the absorption line-shape function. This
result was often derived and utilized for the simple case of a single resonance, where
the lineshape is Lorentzian and the decay rate being exponential. The present dis-
cussion provides a proof which is valid for any level structure in the excited state.

18. Concluding Remarks

In this paper we have presented a unified theoretical scheme for the description of the
diverse decay channels of excited electronic states of polyatomic molecules. We have
focused attention on the dissipative channels in small, intermediate type and large
molecules, bearing in mind that the same techniques utilized for electronic relaxation
are applicable for direct and indirect photodissociation. We have made a conscientious
attempt to focus attention on general theoretical schemes, rather than on specific
applications, as many of the latter were already published.

Many applications of the theory were aimed towards the understanding of the decay
characteristics in the statistical limit. As pointed out by Lin and Bersohn [100] and
subsequently by Englman, Freed and Jortner [43-44], the nonradiative widths (13.6)
can be considered as multiphonon processes displaying the transition probability as
a Fourier transform of a generating function. Explicit solutions for a harmonic mole-
cule were provided, which are amenable to numerical calculations and to analytic
approximations. Two limiting cases were considered. The strong electron-phonon
coupling limit, which corresponds to the Teller model [101] for crossing of potential
surfaces and which reduces at high temperatures to an activated rate equation. The
weak electron-phonon coupling situation which corresponds to most cases of internal
conversion and intersystem crossing exhibits the energy gap law [43, 102] and the
well-known deuterium isotope effect [103]. These calculations pertain to a ‘harmonic’
model molecule, and obviously unharmonicity corrections are important from the
quantitative point of view. Unfortunately, in spite of recent efforts by Fisher et al.
[104] there is no satisfactory way for handling unharmonicity corrections. This can
be handled by displaying the Fourier integral in terms of a convolution, factoring out
a small number of strongly unharmonic modes. These studies rested on the evaluation
of the thermally averaged transition probability. An interesting related problem in-
volves the optical selection studies [48, 54] where the nonradiative decay of a single
zero-order vibronic level with excess vibrational energy above the electronic origin is
considered.
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The elegant Feynman operator technique can be applied for this problem, although
brute force methods [105] resulted in somewhat more detailed information. Unfor-
tunately, for molecules larger than the benzene molecule, sequence congestion effects
[58] are important, so that the isolated molecule preserves the memory of the ground
state Boltzmann population in the excited states, and a single vibronic level cannot
be excited. Finally, when a molecule is externally perturbed, coupling between elec-
tronic and vibrational relaxation may be exhibited. Such processes are of cardinal
importance for the understanding of some experimental results of picosecond spectro-
scopy [98] for ultrafast electronic relaxation in solution.

The statistical limit is well understood, and many of the theoretical results concur
with experimental observations. The situation is different for the theory of interference
effects in the radiative decay of large molecules, where the experimental information
is meager. Three classes of interference effects can be distinguished:

(1) Interference between a small number of closely spaced levels (see Sections
[14-15]). In spite of extensive experimental effort no conclusive evidence was yet
obtained for the occurrence of this effect in excited states of large molecules which
correspond to the intermediate case [95-97]. It is possible that sectroscopic sequence
congestion effects mask this interesting feature of the decay.

(2) Interference between a zero-order discrete state and a dissociative continuum
both of which are coupled to the radiative field. This problem originally solved by
Fano [1] for o,(E), may be of considerable interest for some molecular predissocia-
tion processes. We have recently derived [86] a general solution for the absorption,
photon scattering and dissociation cross sections for the Fano problem incorporating
radiative interactions to infinite order and elucidating the nature of interference effects
between resonance and potential scattering.

(3) Interference between continua. The problem of sequential decay with interference
was recently handled utilizing simple model systems [67]. We have recently provided
a complete general solution for the coupling between the radiative continuum and a
dissociative continuum [86]. This problem is central for the theoretical study of mo-
lecular photodissociation processes.

From the foregoing discussion of interference effects it is evident that classes (2)
and (3) are relevant for a profound theoretical understanding of a variety of processes
such as the dynamics of direct photofragmentation and indirect predissociation in
large molecules. The same theoretical techniques are also directly applicable to the
study of inverse radiative processes such as radiative recombination and inverse pre-
dissociation.

We hope that the present unified approach to the decay of excited states will be of
general applicability for the elucidation of a variety of interesting photophysical
processes.
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