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- In this paper, we consider some experimental implications of a theory [Mol. Phys. 25, 713 (1973)] of
vibrational relaxation of a guest molecule in a host matrix induced by multiphonon processes. We
have explored the dependence of the vibrational relaxation rate on the guest molecular frequency, on
the temperature, on the gross features of the spectrum of a monatomic and a polyatomic host
matrix, and on the presence of molecular impurities. The recent experimental results of Legay,
Abouaf-Marguin, and Dubost on the vibrational relaxation of CO in solid rare gases and of the 970
cm~! vibration of NH, in solid nitrogen are adequately interpreted in terms of the present theory.

. INTRODUCTION

We have recently advanced! a theoretical model for the
vibrational relaxation of a guest molecule in a dense
medium, which rests on the following assumptions!:

(a) The guest molecule is located in an isolated trap-
ping site.

() The nuclear motion of the guest molecule is har-
monic.

(c) The medium is represented in terms of a phonon
bath.

(d) The intramolecular vibrations are not coupled to
each other via their interaction with the phonon bath,
whereupon each molecular oscillator decays. into its
“own’’ phonon bath. '

(e) The molecule-medium interaction is linear in the
intramolecular displacements.

(f) The molecule—medium interaction is represented
in terms of the rotating-wave approximation, 2 neglecting
off-resonance contributions to the coupling.

(g) The medium retains its thermal equilibrium
throughout the relaxation process.

(h) The equations of motion were linearized within
the framework of the random phase approximation. 3

Assumptions (a)~(c) are standard.! Assumptions (d)
and (e) may be dangerous when applied to a polyafomic
molecule. However, they are definitely applicable for
two cases of physical interest: (1) relaxation of a di-
atomic molecule and (2) relaxation of the lowest fre-
quency vibrational excitation of a polyatomic molecule.
These two cases will be explicitly considered in the
present paper. Assumptions (g) and (h) assert that dis-
sipative processes in the medium, originating for exam-
ple from anharmonic interactions, -are fast on the rele-
vant time scale of vibrational relaxation. Finally, as-
sumptions (f) and (h), introduced for the sake of mathe-
matical convenience, are common in a variety of appli-
cations of many-body theory.?3 '
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The Hamiltonian for the system can now be repre-
sented in the general form!

H=hwa'a+) hiw,bib, +3(G,B,a* +G}Bja) , @)
v 14

where the molecular oscillator is characterized interms
of the frequency w, the creation operator ¢*, and the
annihilation operator ¢. The medium is specified in
terms of the phonon frequencies {w,} with the corre-
sponding creation and annihilation operators {b;} and
{s,}, respectively, and the products B,=IL,5, and B}
=II,b. The molecule-medium coupling terms are de-
noted by G,. It is important to notice that Eq. (1) is gen-~
eral, being applicable to both single phonon and multi-
phonon decay. The medium phonons correspond either
to low frequency optical and acoustic phonons in the case
of a monoatomic solid, or to a superposition of low fre-

- quency phonons and high frequency intramolecular “vi-

brons”! in a solid consisting of polyatomic molecules.

The equé.tions of motion for the molecule and for the
medium operators in the Heisenberg picture are

a=-iwa—1i),G,B,, ,
: b (2)
B,=—iw,B, ~in,G}a .

The phonon states are denoted by v={1, 2, -+, N} and
the frequency sum is

Wy =Z> wy - 3
v
The thermally averaged commutator

n,={(By, BiDr ' @)

is expressed in terms of the thermally averaged Boson
occupation numbers of the individual phonon (and vibron)
modes

<nu>T = [exp(ﬁh—wv) - 1]-1 ’ (5)
where 8= (k-'T)'1 and ( ), denotes thermal averaging.

The time dependence of ¢ is given by
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a) =ulB)a+ D vD)B, (6)

with the coefficients
u(t) = exp[ - iw +6w)t — vt , ' )]

-G,
lw+dw—w)—v"

()=

x [exp(~ iw,t) — exp[~ iw +5w)t - ¥#]] . (8)
In Egs. (7) and (8), we have defined the level shift
2 .
6w=ppy LG My - ()
y W= Wy

and the vibrational relaxation width .
y=12|G,|2n,6(w - w,) . o (10)
v

It will be useful to express this result incorporating ex-
plicitly the energy conservation implied by the delta
function in (10), so that

y=u Z | G(Vl Izn(v}p(v) ’ . » (11)

where py,, is the compound many-phonon density of
states

pyley-)
(12)
which is expressed in terms of a convolution of single
phonon densities of states {p,(¢)}. The phonon states {v}
in Eqs. (11) and (12) are given by these collections of
phonon states, which obey the energy conservation law

piy = [de, [ de.. [ deyapy(w - €)pale; —€5) - - -

wMEEw,=w . ’ v (13)

In a monatomic solid, {v}={u} where p specifies the low
frequency phonons,  so that for this case

W=23w, 13"

while for a polyatomic solid we segregate the medium
frequencies into low frequency {u} modes and high fre-
quency {n} vibron modes, whereupon .

w:Ewu +Ewn . . ' (13”)
® n .

The experimentally relevant observable for monitoring )

the nonradiative decay rate of a vibrationally excited
state involves the time évolution #(f) of the population of
the molecular oscillator, which is given byt :

n(f) = exp(= 2vtm(0) + [1 ~exp(- 29[}y , -  (14)

where 7(0) is-a pure » state of the oscillator while the
medium is in thermal equilibrium. In real life, such
an experiment can be performed by optical ir excitation
of a molecule embedded in a dense medium. - The vibra-
tionally excited level will decay by parallel infrared
emission (chdaracterized by the lifetime yh!) and vibra-
tional relaxation; the decay rate, ¥, is given by

Y=Yty . (15)

We now proceed to consider some implications and ap-
plications of the general theory.

1I. APPROXIMATE RELATIONS AND A CONJECTURE
ON THE ENERGY GAP LAW FOR VIBRATIONAL
RELAXATION

The general expression for the vibrational relaxation
rate Eqs. (10) and (11) consists in general of a large
number of terms corresponding to higher order multi-

" phonon processes. The total number of phonons con-

tributing to each of these terms is N{v}=%;,)1. The rel-
ative contributions of such terms are determined by the
magnitude of the molecule—~medium coupling terms. It
is reasonable to assume that the |Gy, |? terms decrease
fast with increasing the order of the multiphonon pro-
cess. As Gy, is expected to exhibit a very strong de-
pendence on N{v}, we can select a single term in the

., sum (11) which provides the dominant contribution to the

relaxation rate. This largest term is defermined by the
collection of phonon states {17}= 1, 2, -+, N, where
N=N{7} is the smallest number of phonons that can re-

- sult in a vibrational relaxation process subjected to the

energy conservation (13). The approximate expression
for the vibrational relaxation rate is now

v=1l G P ogms: - ‘ : (16)
For a monatomic lattice we can choose

N=w/w, , - : .17

where w, is of the order of the Debye frequency. In

fact, Eqs. (16) and (17) just correspond to the application
of the Einstein model to the lattice spectrum. Numeri-
cal calculation of spectral line broadening via multipho-
non processes! for impurity states in solids indicate

that such a single frequency approximation is reasonably "
good.

In the case of a polyatomic solid, the minimum num-
ber N, of lattice phonons that can induce vibrational re-

laxatlon is given by

Nu’:w-N(w): . | (18)
Wy

where {w,) is the average vibron frequency, and the most
probable number of vibrons involved is determined from

-"the relation

( >>N >(—>-—1 ) (19)

No theory of the multiphonon coupling terms is avall-'
able. On the basis of qualitative consideration, we pro-
pose that Gz ~A6"'"), where A is a constant and 0<5
<«1. Such a relation together with Eq. (16) implies that
(at constant T) yc$2¥. Thus, for a monatomic lattice,
we have from Eq. (17) Inyx (2w/w,) In6 + const. This
qualitative result implies an energy gap law for vibra-
tional relaxation. Different diatomic molecules in the
same monatomic lattice will exhibit a linear dependence
of Iny on the molecular v1brat10na1 frequency. The re~
laxation will, of course, be more efficient for low fre-
quency vibrations. Finally, we note that for a molecular
host lattice, N,, Eq. (18) is relatively small and fast
vibrational relaxation is expected, relative to that ex-
hibited for the same molecule in a monatomic solid.
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I1l. TEMPERATURE DEPENDENCE OF THE
VIBRATIONAL RELAXATION

The vibrational relaxation rate should exhibit strong
temperature dependence. Assuming that the coupling
parameters Gy, are temperature independent, then the
entire temperature dependence of y originates from the
thermally averaged commutator, Eq. (4). This can be
expressed in one of the following alternative forms:

") ;Z.;(m)T("z)T el (G endp +1) - - (ydp +1), (20)
or, as is easy to show by induction,
v} =H(<nv>T + 1) _H<nv>1' . (21)

Finally, from Egs. (5) and (21), we obtain the simple
expression

— exp(ﬁh—zuwv) -1
"1 11, [exp @i, ) — 1] - #2)
From Eqgs. (11) and (22), the vibrational relaxation rate
is

_ exp(Bfiw) — 1 ‘
v=1% 160l E oo —11 7 > ®9

which incorporates the explicit form of the temperature
dependence.

From the general result, Eq. (23), we conclude that

(a) For a single phonon decay, v is temperature inde-
pendent. This result is compatible with Glauber’s anal-
ysis of single phonon decay.?

(b) For multiphonon processes, the decay rate ex-
hibits temperature dependence. In the low temperature
limit when T— 0 and 7w, > 1 for all the frequencies
which contribute appreciably to 1G,|% the vibrational
relaxation rate is finite. Now Eq. (22) results in n(,; =1,
and Eq. (16) takes the form

7(0)=7T(E)|G(v)|zp{m -0, (24)
i

and from the approximate relation (16) we have

A0) = 7| Gi51| %o (24")
(c) In the high temperature limit,
Briw, < 1 (25)

for all v, whereupon kT exceeds all the low phonon fre-
quencies in a monatomic solid and the high vibron fre-
quencies in a polyatomic solid. - Equation (22) is reduced
to : '

_exp(phiw) —1
Riyy = H(u)(Bh_wu) ’ (26)

so that

- 2 exp(Biv) =1, v
‘)’(T) "(%))'G(V)I Py H(p)(ﬁwu/k) T s (27)

where N{v} (see Sec. II) is the number of phonons con-
tributing to the particular term in (25). Thus, in gen-
eral,” the high temperature limit results in a high power

law in 7, which is characteristic of multiphonon pro- -
cesses. It should be noted that condition (25) is over-
simplified, as it is not expected to be realized for a mo-
lecular host matrix. Two separate cases have to be
congidered: ' '

{c1) In the case of a monatomic solid, Eq. (21) is ex-
pected to be obeyed for all low frequency phonon modes
{w,,}. Making use of the approximate expression, Eq.
(16), we obtain

exp(Bfiw) -1
(ﬁwA/k)N

where N is given by Eq. (17).

y=10) T, (28)

(c2) In the case of a polyatomic solid, it is reason-
able to apply the high temperature condition only for the
lattice modes. Making use of Eq. (16), we have

) exp(Bhiw) — 1
y= ‘)’(0)[ ¥a [exp(Bhiw,) — 1](w,/BY':

121

] T, (29)

where N, is given by Eq. (18). As N, for a molecular
lattice is considerably lower than N for a monatomic
host, a weaker temperature dependence in the former
case is expected.

(d) The most interesting situation involves the inter-

r(T)
0

5 —

| | : |
o] 10 20 30 T{°k)

o

FIG. 1. Model calculations for the temperature dependence
of the vibrational relaxation rate of a guest diatomic molecule
in a monatomic lattice. A: w=1000 cm, wa=100 em-l; B:
=3000 cm~, w,=100 cm™; C: w=1000 cm™, w =50 cm™;

D: w=2000 cm", wy =50 cm‘1; E: w=3000 cm", wy,=50 em-t,
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mediate temperature range, where Eqs. (16) and (22)
result in

___[exp(priw) = 1] '
v/ v(0) —[e ‘(Bh_wA) _ 1](w/wA) (30)
for 2 monatomic lattice and
exp(Biiw) - 1 (31)

7/ Y0) = [ Texp(Bhion) - Lllexp @an) ~ 17

for a molecular lattice. Eq. (30) is of considerable in-
terest, as for reasonable values of w and w, it predicts
(see Fig. 1) the onset of the temperature dependence for
values appreciably lower than the Debye frequency (or
of wA). o

IV. A COMMENT ON IMPURITY ENHANCEMENT
EFFECTS :

~ Addition of diatomic or polyatomic molecular impuri-
ties to a monatomic host lattice may affect the vibra-
tional relaxation rate of a guest molecule. Nearest-
neighbor coupling between the guest molecule and the
impurity will provide a localized high energy vibron,
which together with the lattice phonons will result in an
effective vibrational relaxation channel. Without per-
forming any calculations, we can assert that nearest-
‘neighbor coupling between the guest molecule and an im-
purity molecule in a monatomic lattice will reduce the
order of the multiphonon process, thus resulting in an
enhancement of the vibrational relaxation rate.

V. COMPARISON WITH EXPERIMENTAL RESULTS

The predictions of our theory can be summarized as
follows:

1. The vibrational relaxation rate of a guest mblecule
in a host lattice depends crucially on the order of the
multiphonon process.

2. For a monatomic rare gas lattice where w, =50

~ em™, then for typical values of molecular frequencies

w =1000~3000 ¢m™, the vibrational relaxation rate will
be low, as it is determined by a multiphonon process of
the order of N=~20—-60. This qualitative conclusion con-
curs with the experimental results of Tinti and Robin-
son® for the vibrational relaxation of the *y, state of N,
in solid rare gases. "

3. For a polyatomic host lattice, the order of the
multiphonon process can be considerably reduced,
whereupon the vibrational relaxation rate is considerably
increased relative to that for a monatomic lattice.

4, Vibrational relaxation processes are expected to
exhibit an enérgy gap law. For a monatomic lattice, we
expect that Iny=(w/w, )¢ +¢, while for a polyatomic host
Iny=(w - N{w,)/ws )¢ +€’ where @, ¢, ¢, and €’ are
temperature dependent constants. Thus, the dependence
of the vibrational relaxation rate on the molecular fre-
quency will be much more pronounced for a monatomic
lattice.

5. Vibrational relaxation rates in a monatomic host
are expected to exhibit a dramatic temperature depen-
dence [see Egs. (31) and (28)]. For typical values of
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N=20-60, the onset of the temperature effect will oc- -

cur at low temperatures (~10 °K), where Bhiw <1, so
that for Eq. (30) we have ¥{(T)=1(0)[1 - exp(— Bhiw, )] “/“4.
It is also important to notice that the onset of the tem-
perature dependence and the temperature coefficient in-
creases with the molecular frequency. Thus, low fre-
quency vibrations characterized by a higher absolute

‘relaxation rate will exhibit a weaker T dependence.

6. Ina polyatomic lattice, the onset of the tempera-
ture dependence will be higher and the temperature co-
efficient of ¥ will be appreciably lower than in a mon-
atomic lattice.

7. Molecular impurities introduced into a monatomic
lattice and characterized by frequencies lower than w
will result in an enhancement of the vibrational relaxa-
tion rate. '

The best systems for which the present theory is ap- -
plicable involve the vibrational relaxation of a diatomic
molecule or the lowest vibrational frequency of a poly-
atomic molecule, where medium induced scrambling of
intramolecular vibrations is not encountered. Recent
experimental studies by Legay, Abouaf-Marguin, and
Dubost™™® provide a conclusive test for the validity of
the present theory. Legay ef al. have studied the vibra-
tional relaxation of CO in solid rare gases and of NH; in
solid nitrogen in the temperature region 4 °K-20 °K.
These experiments monitor the total decay rate of the
v=1 level of CO"? and of the v=1 state of the lowest
W=970 cm™ frequency of NH,, which according to the
present theory are given by Eq. (15). Utilizing the
known radiative decay rates y,.,” Legay ef al. evaluated
the vibrational relaxation rates. The experimental re-
sults of Legay et al.”® can be summarized as f6llows

(a) The vibrational relaxation time of the 2170 cm™
vibration of CO in solid Ar at 8 °K, which corresponds
to the lowest temperature achieved, is ¥1=13.6 msec.

(b) The vibrational relaxation rate of the w= 970 em™
vibration of NH, in solid N, at 8 °K is y"1=2 pusec.

(c) The vibrational relaxation rate of CO in solid Ar
exhibits a strong temperature dependence at low tem-
peratures (see Fig. 2) increasing by a factor of ~3 in
the temperature range 8 °K-20 °K.

(d) The vibrational relaxation rate of the 970 em™
vibration of NH, at low temperatures exhibits a relative-
ly weak temperature dependence.

{e) Addition of molecular impurities (i.e., 0,, CO,,
H,0, NH,) to CO/Ar mixtures enhances the vibrational
relaxation rate of CO.

To confront these experimental results with theory,
we first notice that for the relaxation experiment of NHy
in solid N,, the molecular frequency w =970 cm™ is
considerably lower than the intramolecular frequency of
the host N, molecules w =2360 ¢m™, whereupon the in-
tramolecular vibrons of this solid cannot participate in
the vibrational relaxation. Thus, the NHy/N, system

" studied by Legay et al. corresponds to vibrational re-

laxation in an effective monoatomic solid. The enhance-
ment of the low temperature vibrational relaxation rate
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y (arbitrary units)

l | | L
5 10 15 T(ox) 20

FIG. 2. The temperature dependence of the vibrational relaxa-
tion rate of CO in solid Ar, e: Experimental data of Legay,
Abouaf-Marguin, and Dubost [Refs, (7—9)]. These relative
values can be converted into absolute values taking y=73 sec!
at T=9°K; —: Theoretical curve from Eq. (30), with w=2170
cem-! and wy=50 em-l,

by a factor of 5000 for NH; relative to CO is consistent
with the energy gap law for vibrational relaxation. In
the case of solid Ar, we take w=50 em™? (slightly lower
than the Debye frequency w, =65 cm™), while for solid
N,, w=100cm™.'° Thus, N=43 for CO/Ar and N=10
for NHy/N,, resulting ina dramatic increase of y for
the latter case. The strong temperature dependence of
y for the CO/Ar system is adequately accounted for in
terms of our theory. In Fig. 2, we present the analysis
of the experimental results of Legay et al. 9 in terms of
Eq. (30); the fit of the theory to the experimental data
is as good as may be expected. The weak temperature
dependence of y for the NH,/N, system at low tempera-
tures is compatible with the relatively low N =10 value
for this system. Finally, we note that the effect of ad-
dition of molecular impurities characterized by fre-
quencies w,$w to the CO/Ar system concurs with our
qualitative considerations regarding impurity enhance-
ment effects. ' T

Vi, DISCUSSION

1t is gratifying that our theory provides a semiquanti-
tative deseription of a variety of interesting experimental
data. At present, our ignorance of the explicit form of
the multiphonon coupling constants Gt,, prohibits us from
obtaining detailed theoretical information regarding the
absolute values of the vibrational relaxation rates. Ex-
tension of the present theory for the explicit evaluation
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of the molecule—medium coupling will be of interest for
the elucidation of the details of vibrational relaxation in
a dense medium, medium-~induced intramolecular vibra-
tional energy redistribution in polyatomic molecules,
and coupled electronic—vibrational relaxation processes
in large molecules. )

The physical picture for vibrational relaxation ad-
vanced herein rests on the dissipation of the internal
vibrational energy of a harmonic oscillator into N medi-
um phonons, providing an example for a multiphonon
relaxation process. Another important class of multi-
phonon relaxation phenomena involves electronic radia-
tionless transitions between electronically excited states
of a large “statistical” molecule'*™** or of an impurity
center (i.e., an ion or an F center in solids. 16719 Such
radiationless processes correspond to the dissipation of
electronic energy into a manifold of “phonon levels” of a
lower electronic configuration. For a large statistical
molecule!!™15 these phonon levels correspond to a quasi-
continuum of intramolecular vibrational states, while
for an impurity center these are just the lattice pho-
nons.¢~1° The latter case bears a close analogy to the
vibrational relaxation problem as far as the dissipative
phonon channel is considered. Electronic relaxation in
a two electronic levels system, which is characterized
by displaced adiabatic potential surfaces, 18-16,16=20 oqp

be specified in terms of the Hamiltonian'® 2

H=AEd'd+2 Fw,b}b,
"

+{Z,§C§bdlul em[_% A —bu)]%(b; —b,,)+hc} , (32)

where AE is the electronic energy gap between the ori~-
gins of the electronic states la) and |b), d* and d corre-
spond to the electronic creation and annihilation oper-
ators, i.e., d*la)=1b), dlb)=1a)and d'1b)=dlay=0. The
index p specifies all the phonon modes, while the index
« corresponds to the subset of promoting phonon modes.
C;, is the interstate electronic coupling matrix element
induced by the x mode. Finally, A, represents the re-
duced displacement of the two adiabatic potential sur-
faces for the uth mode, and for simplicity, we have
taken A, =0 for all k. Itis important to notice that the
exponential Franck—Condon displacement operator'®®
exp[-(a,/v2)(B;, - b,)] in Eq. (32) involves all multipho-
non processes for electronic relaxation.

The detailed form of the Hamiltonians (1) and (32)
specifying vibrational and electronic relaxation, respec-
tively, differs in two important aspects: (a) The oper-
ators 4" and d in (32) span a two level system, while the
operators ¢ and a in Eq. (1) define an infinite discrete
spectrum. (b) The perturbation Hamiltonian, i.e., the
third term in Eqs. (1) and (32) is, of course, different.
1t is interesting to compare the general features char-
acteristic of electronic and vibrational multiphonon re-
laxation processes, although the physical models and
consequently the detailed form of the Hamiltonians are
different. First, we notice that the heuristic expression
for the phonon coupling G{v}=As""" in Sec. II, which
results in the energy gap law for vibrational relaxation,

J. Chem. Phys., Vol. 60, No. 10, 15 May 1974 .



3934

is analogous to the energy gap law for electronic radia-
tionless processes.!371%1""1% Second, it will be useful
to consider the temperature dependence of the two
classes of multiphonon relaxation processes, which will
bring up an interesting difference resulting from the
level structure of the zero order Hamiltonians. The
temperature dependence of the electronic relaxation
probability, W(7), in low order can be recast by apply-
ing the generating function method to the “Golden Rule”
rate expression and handling the resulting Fourier inte-
gral by the steepest descent approximation. This treat-
ment results in the approximate relation!3™1518

W(T) = w(0)1 +(n,)r Y exp(— Blny)r) ,

. where the index m specifies an effective mode of fre-
quency w,, and degeneracy L,, Which probably lies close
to the maximum phonon frequency, (n,); is the thermal-
ly averaged occupation number of this mode [see Eq.

(5)], p=AE/hw, corresponds to the normalized elec-
tronic energy gap, while B= L,(A%/2) represents the ef-
fective electron—phonon coupling. The temperature ef-
fect in Eq. (33) originates from two contributions, a

(33)

spontaneous and stimulated process involving the emis- -

sion of p phonons resulting in (1 +{n,);) and the expo-
nential term exp(— B{n,)r), Which involves the usual
Debye-Weller factor. '*"15:18 For a weak electron-—
phonon coupling situation, B<1 and the first contribu-
tion dominates the temperature dependence. Indeed,
an early simplified treatment!” utilized the expression
w(T)/ W(0) = (1 +{n,)r ¥ for a proper fit of the tempera-
ture dependence of electronic relaxation of rare earth
jons in ionic crystals. Now, for vibrational relaxation
in a monatomic lattice, assuming the role of a single
‘phonon mode w,, we have from Eq. (21)

AUT) = H0){(L +(npp)¥ = )"} .

Only at moderately low temperatures (i.e., (#,)r,
{n,)r «<1) and for large p and N, Eqgs. (33) and (34) ex-
hibit identical formal temperature dependence,

w(T)/ W(0)=1+(p ~ B) exp(~ Bliwy) ,
and
ATV 0} =1+ Nexp(~ hw, ),

while at higher temperatures the qualitative features of
the two multiphonon relaxation processes with regard to
the temperature dependence are different. In particular,
we note the appearance of the negative contribution (n,)"
due to a phonon absorption process in Eq. (34) that is
absent from Eq. (33). To consider an interesting special
case, the single phonon p=1 electronic relaxation prd—
cess exhibits temperature dependence (although the ap-
proximations underlying calculations such as the saddle
point integration that lead to Eq. (33) are somewhat
doubtful in this case), while the single phonon vibrational
. relaxation N=1 probability is temperature independent.
Our result for the N=1 vibrational relaxation is com-
patible with the study of the harmonic oscillator para-
dox.? The interaction of a harmonic oscillator with a

(34)

N>1,

Nitzan, Mukamel, and Jortner: Vibrational relaxation of a diatomic molecule

phonon bath results both in excitation and deactivation of
the internal degrees of freedom. The vibrational re-
laxation problem corresponds to a multilevel molecular
system with equidistant level spacing rather thanto a
two internal levels system encountered in the basic
model for electronic relaxation. This basic difference
results in the different dependence of these two multi-
phonon processes on the equilibrium population of the
phonon field. This is also the reason that second order
perturbation theory is adequate for the study of elec-

" tronic relaxation, while the vibrational relaxation prob-

lem was handled! by a many body method.
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