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We have utilized the Green’s function method to derive an explicit
solution for the problem of sequential decay involving multiple continua
with constant coupling between adjacent continua. This model system is
applicable for theoretical studies of dynamics of photodissociation, pre-
dissociation and electronic quenching of polyatomic molecules.

Theoretical studies of photochemical fragmentation have considered a
sequential decay process [1, 2], where an initial state is coupled to a manifold
of intermediate levels, which in turn are coupled to a common dissipative
continuum. Problems related to sequential decay involving two continua were
recently explored in some detail [3-5], bringing up interesting manifestations
of interference effects, such as the retardation of the decay rate of the initial
state and the simultaneous population of these continua. Application of the
Green’s function method [5] resulted in a formal solution for the problem of
sequential decay involving multiple unbound continua, all characterized by
constant coupling. This problem is relevant for the elucidation of several
interesting processes in excited electronic states of polyatomic molecules, such as

(a) Dynamics of direct photodissociation of polyatomic molecules [6-8].
One can consider the decay of an initial (zero order) state consisting of the ground
state and a photon wave packet into a (zero photon) manifold of coupled dis-
sociative continua, each corresponding to a different vibrational state of the
fragments.

(b) Predissociation of polyatomic molecules [8]. In this case the ‘initially

excited > zero-order state (resulting from °short-time’ excitation) decays into
a manifold of coupled dissociative continua.

(¢) Electronic quenching of an excited atom by a diatomic molecule [9, 10].
This collision process can be described in terms of an initial (continuum state)

. of the electronically excited atom and the ground-state molecule which is

coupled to a set of continua each corresponding to a different vibrational level
of the molecule and to the ground state of the atom.

(d) Another possible application involves the vibrational excitation of
diatomics by electron impact which proceeds via the formation of an intermediate
negative ion [11].
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The relevant physical observables are -

(1) The distribution of the final vibrational states of the products in experi-
ments (a), (8), (c) and (d). (2) The optical absorption lineshape and cross
sections for ‘ resonance fluorescence ’ [12] in experiments (a) and (6). (3) The
decay rate of the ‘initially excited ’ state in experiment (). (4) Cross sections
for electronic quenching in experiment (c).

The nature of the final vibrational states of the products in experiments (a)
and (c) was considered by Holdy ez al. [7] and by Levine and Bernstein [13] in
terms of a semiclassical * half collision’ model while Shapiro and Levine [14]
have handled experiment (a) by collision theory. We propose a quantum
mechanical model for photodissociation, predissociation, electronic quenching
and vibrational excitation in terms of sequential decay involving multiple
continuua. We consider the case of photodissociation and predissociation of a
triatomic molecule, when rotational effects are disregarded and the vibration of
the diatomic fragment is considered to be harmonic. Then coupling occurs
between dissociative continua where the vibrational levels of the diatomic
fragment differ just by one vibrational quantum number [14]. A similar
situation prevails for electronic quenching of an atom by a harmonic diatomic
molecule. Thus experiments (2) and () for a triatomic molecule and experi-
ment (¢) for a diatomic can be handled in terms of sequential decay process with
coupling between adjacent continua. It is our purpose to present a general
solution to this problem for a simplified but useful model system.
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Figure 1. The coupling scheme. (a) The physical model where the |s> state is coupled
to N continua. (|vl), v=0, 1, ..., N—1), each of which is bound below. ®) A
simplified model neglecting threshold effects.
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The simplest physical model for photodissociation or predissociation of a
triatomic molecule ABC is portrayed in figure 1. The zero-order state s>
(which for photodissociation corresponds to a wave packet of one photon states
(Y, cye| & ke)) while for predissociation is given by a zero photon state [s, vac))
ke

is coupled to a set of continua which we label {|vl)}. Here v is the vibrational
quantum number of the diatomic fragments while [ labels the relative transla-
tional energy in the dissociative mode. |s> and {|vl)} correspond to the eigen-
states of a zero-order hamiltonian H, Assuming a collinear fragmentation
process, we may choose the reduced distances R, g and Ry [14 b] as our internal
coordinates for nuclear motion. Our zeroth-order hamiltonian, H,, may be
defined as follows :
H,=H ! > H 1

v=Hpo+  op—aRag T e (1a)
where Hpg is the Born-Oppenheimer hamiltonian for the molecule, H,,q4 is the
hamiltonian for the free radiation field and m is a reduced mass parameter intro-
duced by Secret and Johnson [15] m=(mmc)/[mp(ms+mg+ mg)].

The total hamiltonian, H, specifying the nuclear motion is given by [14 b]

H=H,+V, (1 b)

where

1 02

V=~ RipoRae

+Had+Hint' (1 c)

Here H,, is the usual non-adiabatic term resembling deviations from the Born-
Oppenheimer approximation and Hj, is the interaction term between the
molecule and the radiation field. For the sake of convenience we define a
kinetic energy term

1 02

Hy= = 3RopRye

(1d)

which involves the product of the momenta in the internal and the relative
coordinates of the fragments. Thus we have

V=Hk+H&d+Hint' (1 e)

The coupling matrix elements (s|V|v,> =V, ,; corresponds to (s|Hing |0
in experiment (a) and to {s|H,4|vl) in experiment (5). This matrix element
can be taken to' be proportional to the Franck-Condon vibrational overlap
integral, FC, in the internal mode :

V, u=8FC(s, v). )

The matrix elements for intercontinuum coupling can be factorized into a
contribution of the internal mode and the translational states of the fragments

(-vl| Vie'l'>= <‘Ul|Hkl'v'l'> =0 OG5, g+ a13"8y, pr 41> (3)

whereupon coupling occurs only between adjacent continua.
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The time evolution of the system is now handled by the Green’s function
method [16]. The time-dependent state of the system is represented by the
superposition

‘/’(t)= Cs(t)ls> + ; Zt C’vl(t)'vl> (4)

with C(0)=1. The amplitudes in equation (4) are given by the Fourier trans-
forms of the Green’s function

1 = .
Co(t)=5 I exp (-iE1)G,*(E) dE,

©)
Cult) =5 §_ exp (~iE1)Gyy, *(E) dE,

where the Green’s operator is G+(E)=lim (E— H+iy)L. The probability to
7—>0+
find the system in the initial state is
Py(t)=|C(t)|% (6)

while the probability of decay into the v continuum is obtained by summation
over all the states in this continuum

Byt)= X |Cult)]* )

Application of the Dyson equation results in the general form of the matrix
elements

Gt

1 1
= +
E—'Es+in+E—Es+in; IZ Ve, otlFors (8)

and

1

— + 9
+E_Eul+i7] Vvl, aG.ss ( )

1
Gty s=———— Vo, v1:Gtorrr

vl, s E—E,vl-l'—l‘f];; vl, vl v, s
for eachvand /. In order to obtain manageable results the following approxima-
tions are introduced :

(A) The coupling matrix elements V, ,; between the ‘initial’ state |s)
and each of the continua are independent of the translational state, so that
&;=4¢ in equation (2) and V, ,,=V, ..

(B) The number, (N) of the continua is determined by the highest continuum
accessible by resonance coupling from |s) (see figure 1).

(C) The matrix elements between adjacent continua (equation (3)) are
constant and we set V,; ¢,41),- =V, being independent both of / and I’ and of .

(D) The continua are unbounded.

It should be noted that the constant coupling assumption (C), for-different
states in v and in the v+ 1 continua is consistent with assumption (D) and will
result in the vanishing of level shift terms.
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Equations (8) and (9) now take the form

1 —
Gy, s=m [V; (GF s, 3+G+(v—1)l’. ot Vv, sGss+] )
' v=0..N-1; —oo<l<o, (10)
1
+ o= +
G 88 E—Es+i7) (1+ g EI Vs, vG »l, s)' (11)

Performing an integration Y, —f dE,p, (where p; in the density of states in the
continua) equation (10) res1l11ts in '

Gy =By — B — o3 v=0,1, ..., N-1 (12)

G, t=(E—E,+i)*(1 +; Vs, o80)s (13)

where the auxiliary functions for the sum of the matrix elements are

a,= ZI G+ul, s=j dElPlG+'vl, s (14)

with a_;=ay=0.
We have also defined

')’v=i77Vv, sPles+ (15)

and the reduced intercontinuum coupling parameter

B=—inVp; (16)

The general set of N+1 (equations (12), (13) (for a . .. an and Gg*)
can be readily solved. We shall consider herein the simple case of *initial’
coupling to a single continuum {|kl>}, whereupon V, =V, ¥, ke

The solutions of equation (12) can be recast in the form

a,=—F(v, k). v ' (17)
where the auxiliary .function |
F(v, k)=.9_2&"’—1——’°ﬁk~v; v<k, (18 a)
On
Flo, k)=9ﬁa—'¥”°<—ﬁ*)v—k; vsk (18 b)

is expressed in terms of the polynomials ©,,”which are given by the recurrence
formulae : '

‘QO=QI=1)
Qo1= Oy + lﬂlzgv-—la v>0. (19)
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The matrix elements of the Green’s function are explicitly expressed using
equations (10), (11)and (17) in the form

Gyut=—7 (20)
which is characterized by the width
T =ToF(k k); T,0=2|Vil? (21)
and
F(v, )V, o

(22)

le, s+= lr .
(E—E,;+1n) (E—E,,+—2—")

Equations (20)—(22) together with the general relations (5)—(7) determine the
time evolution of the system. The decay of the *initial * state is exponential,
being characterized by the decay rate I',/# (equation (21)), which is given by
the zero-order width I',° multiplied by the diagonal element F(k, k)= (0:ONn—1-x/
Oy). The population of the {|ol»} continuum at ¢ 0o is obtained from equa-
tions (7) and (22) in the form

F(o, BV, ,J?
Pv(00)= zl: (Ell_(_vEs)z)_}_,z'l"s‘/Z)z: |F(v’ k)lz (23)

We note in passing that the matrix F(, k) (equation (18)) obeys the unitary
relation Y |F(v, k)|?=1 and contains all the relevant information regarding the

vibrational partitioning of the fragments. 'This matrix is related to the level
shift operator R, by R, ,=F(v, k)V}, . Itisimportant to notice that a general
form of equation (22) is

va,_s
(E—E,+in)(E— E,— Dy(E)+iT(E)/2)

Gty o= (22 a)

(where D(E) is the real part of Ry,(E)). This result is independent of assump-
tions (A)~(D), being the consequence of the partitioning of Hilbert space into
P+0=1, where P=|s> <s|, contains a single state [16]. Equation (22 a)
together with equation (5) imply that all the continua are simultaneously

populated.
The predictions of the present model can be summarized as follows :

(1) In the case of weak intercontinuum coupling, |B| <1, the vibrational
distribution is a smoothly varying function of v, as demonstrated in figure 2
for k=0. This is evident from equations (18) and (19) as for |B|<1 the
polynomials Q, are close to unity for all v.

(2) In the limit of strong intercontinuum coupling when |B|>1 the final
vibrational distribution, P,(c0), exhibits a steplike structure (figure 2). This
effect originates from the significant contribution of the Q, polynomials to
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equation (18). As is evident from equation (19) these polynomials include
even powers of ||, being of the same degree in |B| for Oy, and for Qyy ., (Where
n< NJ2 is an integer). The increase in an even power of |B| for every second
polynomial results in the * oscillatory * distribution in the strong coupling situa-
tion.
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Figure 2. 'The product distribution P,(0) for various coupling strengths |B]. N=15,

(3) The k dependence of the distribution in the weak coupling situation
exhibits a maximum at v=F followed by a sharp decrease (as |B[2*~¥|, for
increasing |o—k&|. In the strong coupling case the distribution is less regular.

(4) The dependence of P,(00) on N is weak for |8| <1 (when v is not too
close to N) and also for |B|>1 for either even or for odd N values. However,
- changing N by unity in the strong. coupling case shifts the maxima and the
minima in P,(c0) from v to v+1 (see figure 3). In this case the average
(P,¥Y o)+ P,Vt1)(0))/2 is a smooth function of v (see figure 3). This
averaged distribution exhibits a weak dependence on N.

(5) The width T, of the initial state decreases with increasing |B] (figures 4
and 5) and exhibits oscillations with & for |g[>1. Note that for the present
mode! of constant, v independent, coupling, equations (18) and (21) imply that
I(k)=T,(N—1-k). From equation (21) it is evident that T’y —>T? for |8| >0
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and I'; >0 for |B] =o0. The decrease of I'; with increasing the inter-continuum
couphng strength exhibits a retardation effect on the decay of the internal state
due to interference effects?.
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, Figure 3. Oscillations of the distribution Py(c0) in the strong coupling limit |8| =6, k=0.
! The dashed curve is the average of the N=14 and N=15 curves.
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' Figure 4. The dependence of T'; on the coupling strength. N= 14, k=0.

'I' Conclusxon (5) is valid for the case of predissociation, while for direct photddlssocxatlon
a proper averaging over the plioton wave packet has to be performed.
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Figure 5. The dependence of I's on the initially populated level % in the weak and in the
strong coupling limits, N=13.

The present results obtained for a simple model system provide us with
guidelines for the understanding of some interesting photofragmentation and
electronic quenching processes. Before applying this model to a real life situa-
tion several modifications have to be introduced :

(1) We have explicitly considered the |s) state coupled to a single {|kl>}
continuum. It is a straightforward matter to extend this formalism to include
the coupling of |s) to all continua. These results will be presented elsewhere
[17].

(2) The coupling matrix elements between adjacent continua were taken to
be independent of the vibrational quantum number v. It can be demonstrated
p . . . -q
[17] that the coefficients in equation (2) can be factored out as

= (o) (). (25)

We have solved the problem incorporating the v dependence of the matrix
elements, which resulted only in a qualitative modification of the results. In
the weak coupling limit P,(c0)oc(k!/o!)|1/B|2*~*) for v <k and

P,(c0)oc(v![k!)|B|2)

for v >k, which is reminiscent of, but quantitatively different from a Poissonian
distribution obtained from the semi classical model [7]. In the strong coupling
situation the oscillating behaviour of the distribution is retained.

(3) The assumption regarding the independence of the intercontinuum
coupling on the quantum numbers [ and I’ (i.e. f(J, /') =const in equation (25)
and the related assumption which disregards the effect of the lower bound of
the continua involve gross oversimplifications of the problem. Simple models
for the continua indicate that resonance coupling around the energy
E,~E, ~E, , will decrease with increasing v. In the weak coupling situation
the general features of the solution are not expected to be grossly modified.
On the other hand, the oscillations exhibited for P,(c0) in the strong coupling
limit will be considerably damped.
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In conclusion, we would like to point out that the results of the present
quantum mechanical model considerably differ from the predictions of the semi-
classical ¢ half collision’ approach. The experimental data for direct photo-
dissociation [8] and for predissociation from Rydberg states [8] of XCN molecules
results in P,(c0) distributions of CN(B2X) where high v values are populated.
This result is incompatible with a Poisson type distribution but concurs with
predictions of our model. The occurrence of a non smooth distribution of
P,(0) versus o of the vibrational levels resulting from electronic quenching was
observed [10] in the case of Hg(3P,)+HF, which is in qualitative agreement
with our model for |B|> L.
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