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In this paper we utilize the 7 matrix formalism of scattering theory for the study of the cross
sections specifying optical absorption, resonance fluorescence elastic photon scattering, resonance
Raman scattering, and photodissociation for molecules undergoing direct photodissociation or
predissociation into a continuum, which carries oscillator strength from the ground state. We have
demonstrated that for the special case of radiative interactions with a single molecular continuum
explicit expressions can be derived for the Green’s function and for the reaction operator,
incorporating radiative interactions with one photon states to infinite order. From the complete
solution for elastic photon scattering from a dissociative continuum we conclude that the direct
radiative corrections are of the order of the “radiative Lamb shift” for the continuum states, and are
negligible. The elastic photon scattering cross sections can be expressed in terms of a complex
Hilbert transform of the Franck—Condon transition density, while the absolute photon scattering
quantum yield is « 10~". This treatment has been extended for the study of resonance Raman
scattering from a dissociative continuum, where the scattering cross sections can be expressed in
terms of absolute squares of complex Hilbert transforms of the product of two Franck~Condon
vibrational overlaps for bound-continuum transitions. No selection rules for the final vibrational state
are exhibited. Finally, we have derived a general solution for photon scattering for a discrete
molecular level coupled to an optically active dissociative continuum. The absorption cross section is
finite at the interference dip, being determined by the interference function for the continuum states.
The quantum yield for resonance fluorescence exhibits a sharp maximum reaching a value of unity
at the interference dip where the quantum yield for dissociation vanishes.

I. INTRODUCTION

Molecular photofragmentation processes proceeding
via direct photodissociation or by predissociation are
amenable to a theoretical description in terms of quan-
tum scattering theory, which has been thoroughly ap-
plied to nuclear reactions, atomic collision processes
and also to photon-induced processes such as autoioniza-
tion and intramolecular electronic relaxation, For
these “long time” optical excitation experiments where
the exciting photon field is characterized by a high re-
solution, the excitation and decay process cannot be
separated and one has to consider resonance scattering
of photons from molecules within the framework of a
single quantum mechanical process. The physically
relevant observables in direct photodissociation and in
indirect photofragmentation (i. e., predissociation) ex-
periments are the cross sections for absorption, for
fluorescence, and for fragmentation, whose ratios re-
sult in the relevant quantum yields,

In molecular photon scattering processes, the the-
oretican’s goal is to relate scattering amplitudes to
matrix elements of radiative and intramolecular cou-
pling, The description of indirect processes such as
predissociation rests on the partitioning of the basis
states into two classes which involve: (o) open and (c)
closed channels. The open channels can be further sub-
divided into two types: (ol) one-photon states involving
the ground molecular electronic level and (02) zero-
photon states involving the dissociative fragments. The
initial state is contained entirely within (01). It was
recently demonstrated! that the general problem can be
solved for a finite number of {c) states provided that
the radiative coupling between (01) and (02) is negligible.
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When the zero-photon continuum states carry oscillator
strength from the ground state we encounter the Fano
problem which was solved for the lineshapes and for
the scattering cross sections incorporating radiative
interactions only to first order.? In the case of photon
scattering by a system which is characterized by a
discrete ground state and an optically active dissocia-
tive continuum, we have to focus attention on photon
scattering between (0l) and (02) where the system does
contain only open channels. Nitzan and Jortner® at-
tempted to handle this problem to low order in the radi-
ative interactions and to the best of our knowledge, a
general solution has not yet been provided.

In this paper we present the results of a theoretical
study of optical absorption cross sections, resonance
fluorescence scattering cross sections, and photodis-
sociation cross sections for molecules undergoing direct
photodissociation or predissociation into an optically

.active continuum, We were able to derive general ex-

pressions for the absorption and for the photon scatter-
ing cross sections including radiative interactions to
infinite order, taking into account zero and one photon
states. These theoretical results are of interest be-
cause of the following reasons:

(1) In the study of predissociation in a molecular
system which involves an optically active dissociative
continuum one encounters interference effects between
resonance and potential scattering. In Fano’s classical
treatment of this problem? the absorption cross section,
which is equal to the sum of all scattering cross sections
to the open channels, vanishes at the reduced energy
which equals the negative value of the line profile index.
As in the case of two overlapping resonances® we expect
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that when radiative interactions will be properly included
the absorption cross section will be small but finite at
this energy. It is interesting to inquire how the inter-
ference effects modify the individual scattering cross
section to the dissociative continuum and for resonance
scattering of photons. The energy dependence of the
quantum yield will provide a dramatic behavior near the
finite “dip” in the line shape, which may be amenable

to experimental detection.

(2) Regarding direct optical photodissociation of di-
atomic and polyatomic molecules it is interesting to in-
quire whether resonance fluroescence, which is equiv-
alent to resonance Raman scattering, can be observed
when a molecule is pumped into the dissociative con-
tinuum, From the experimental point of view, it was
demonstrated that such a resonance fluorescence
(which we identify with resonance Raman scattering) is
exhibited for photodissociative molecular continua, It
is interesting to provide a complete theoretical study of
this effect and to establish the absolute magnitude of the
emission quantum yield and its energy dependence.

Our treatment rests on the application of the 7 matrix
formalism of scattering theory. The present approach
provides a generalization of the problem of sequential
decay which involves intercontinuum interference ef-
fects. It was recently demonstrated? that the matrix
elements of the Green’ s function for the case of a dis-
crete state decaying into coupled continua and the 7" ma-
trix for scattering between one continuum and a set of
coupled continua can be explicitly evaluated for a simple
model system which involves constant coupling between
adjacent unbound continua, We shall demonstrate that
a general solution which includes the energy dependence
of the intercontinuum coupling, and the effect of continua
bound below, can be derived for two problems: (1) scat-
tering from a radiative continuum into an open dis-
sociative channel, which is just the problem of direct
photodissociation, and (2) scattering from a radiative
continuum into a superposition of a discrete level and
an open dissociative channel, which directly pertains to
the problem of predissociation with an optically active
continuum.

Il. PHOTON SCATTERING FORMALISM

We consider the conventional form of the total Hamil-
tonian H for the system including the radiation field

H=Hy+V, (. 1)
Hy=Hpgo + Hp, (IL. 1a)
V=H,,+Hy, (IL 1b)

where Hg is the (zero order) molecular Born-Oppen-
heimer Hamiltonian, Hy is the intramolecular nonadia-
batic coupling, Hy is the Hamiltonian for the free elec-
tromagnetic field, while H,,, is the matter-radiation in-
teraction term. The ground electronic state lg,), of
the molecule is specified in terms of the discrete vi-
bronic levels | g,v), where v corresponds to the vibra-
tional level. These discrete states |g,¢) can be consid-
ered as eignefunctions of Hy as well as of Hy+ V. The
excited states of H, can include in general discrete
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levels which we shall label as |s,), |7, ---etc., and
continuous levels {l/,)}, which for the present discus-
sion correspond to a dissociative state. The eigenfunc-
tions of Hgp will be taken as zero photon states, |vac),
and one photon states |ke), where k and e represent the
wavevector and the polarization vector of a photon, re-
spectively. The eigenstates of H, are labeled as follows:
lg,0,ke) and |g,v,k’e") for the ground electronic state
while for excited electronic states we have |s,, vac) for
discrete states and |[,, vac) for continuum states. In
Fig. 1 we portray the relevant eigenstates of H, for
direct photodissociation and for predissociation together
with the relevant coupling via V [Eq. (II.1))].

We shall describe a collision process between a
monochromatic wave train characterized by the energy
E =/ick and the molecule in terms of the 7 matrix for-
malism. We are interested in the evaluation of the
scattering cross sections for the following processes:

(1) Photon scattering cross sections
o,{g,0, ke~ g,v,k'e’), (v=0,1,,..). The cross section
0,(g,0, ke -g,0,k’e’) corresponds to “elastic” scattering
while ¢,(g,0, ke~ g,0,k’e’){p #0) determines the Raman
scattering.

(2) Dissociation cross sections o,{g,0, ke ~1,, vac).

(3)Photon absorption cross section o,(E), determined
at the photon energy E =rikc.

Application of scattering theory leads to the following
expressions for the cross sections®®:

%
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[*] b
[hvae [1,vac)
|ge2. k &
1960, k &> 9el, k &>
lg,0,ke>
Hint 1
' FAANAAAAAAS AP ARS SN
Hint Hv
AN ANP M1
¢ [s>
|1, vac)
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FIG. 1. Coupling schemes for models involving an optically
active continuum. (a) Direct photodissociation involving one
radiative and one dissociative continua. (b) Direct photodisso-
ciation including various vibrational channels of the ground state
(c) Predissociation where the internal continuum carries oscil-

lator strength
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0,(g,0, ke~ g,v,k'e") = (21Q/1c) | (g,0,ke | T(E) | g,u,k'e’) |?
®6(E,, +tikc = E,, - Ak ), (IL. 2)
oilg,0, ke~ 1,,vac)=(21Q/%c) | (g.0,ke | T(E) | 7,, vac) |2
(11, 3)
(IL. 4)

®8(E, +hikc - E,),
0,(g.0,ke)= - (2Q/hc)Im (g,0,ke | T(E) | g,0,ke) .

The T matrix (the reaction operator) is defined by

T(E)= V+ VG(E)V, (11, 5)
where the Green’ s operator is
(E-H+i)'=(E -H)Y, 5~0, (11. 6)

where E"=E +in,

InEgs. (I. 2)-(II. 4) the initial energy is E ,, + k¢ while
the energy of the final state is E,, + ik 'c, where E,,and E,,
correspond to the energies of the molecular states | g,0 Y and
| g.v), respectively, and we can choose the origin of en-
ergy as E,,=0. @ is the volume of the system, ¢ rep-
resents the velocity of light, and E, is the energy of the
| I,,vac) state. Finally, V in Eq. (II.5) is defined in
terms of Eq. (IL 1),

We may now define the total cross section for photon
‘scattering (resulting in the molecular state | g,v)) by
summing Eq. (IL. 2) over final photon states (i.e., energy,
spatial direction, and polarization) followed by averaging
over molecular orientations. This procedure results in
the averaged cross section for scattering of a photon of
energy E =/ikc resulting in a photon of energy E’ =7ikc
- Elu

o2(B)=(2 | @q, (.0, ke~ g,v,K'e) p;(E')> ,

o (IL. 2a)
where () denotes averaging over all molecular orienta-
tions and p: is the density of photon states per unit vol-
ume

prdE=[Q/(21)']dE .

In a similar manner we may define the spatially aver-
aged dissociation cross section

(I 7)

04(E) = (04(g,0,ke~ [,,vac)) (11, 3a)
and the averaged absorption cross section is
0, (E) = (0,(g,0,ke)}. (IL. 4a)

The unitarity relations® for the scattering matrix
result in the optical theorem

—-Im7T,,=(/m 2 ola—b) (1. 8)

b

which leads to the conservation law

0,(E)=2_ 0®(E) +0,(E). (1. 9)

Finally, we can define the quantum yields for photon
scattering into |g,v) by

Y (E)=02(E)/0,(E) (11. 10)
the total emission quantum yield
Y, (E) =2 Y(E) (1. 11)

and the quantum yield for photodissociation

Y, (E)=0,E)/0,(E). (1. 12)

Equations (IL, 2)~(IL. 5) together with (II, 2a)-(II. 4a)
and Eqs. (II.10)-(IL 12) contain all of the relevant phys-
ical information regarding the “long time” excitation
experiments, The physical observables are expressed
in terms of the matrix elements of the I matrix, which
in turn can be recast in terms of the matrix elements
of the perturbation and of the Green’ s function. The
evaluation of the intercontinuum matrix elements of the
Green’ s function was previously accomplished only for
simple model systems involving constant, energy inde-
pendent, coupling between two continua.* We would like
to point out that when the coupling between two continua
(say, {Im)} and {In)}) can be factorized as a product of
two independent functions, each determined by the en-
ergetics of one continuum only, i.e.,

| VI m)= V= Vy(0)Valm)

general explicit expressions can be obtained for the ma-
trix elements of the Green’ s function. The intercon-
tinuum coupling for the problems at hand (see Fig. 1)
involves radiative interactions between the continua
lg,v,ke) and |7,,vac)., These coupling terms can be
factored out into a product of separate contributions
from the two continua. ® This can be easily demonstrated
by considering the explicit form of (II, 1).

Hypy= - (eﬁ/m)E (%)Uz@ke? (b, - e) exp(ikr,) +c. c.)],
(IL. 14)

where a,, is the ke photon annihilation operator and p,
and r; correspond to the j electron momentum and to the
7 electron coordinates, respectively,

(11, 13)

The zero order molecular wavefunctions in the Born-
Oppenheimer approximation are

| g.2) = @, (r, R)x,(R)

|1,) = ,(r, R}y, (R, E,) (I1.15)

where ¢ and x refer to the electronic and nuclear wave-
functions. Thus in the dipole approximation one gets

<le’VaclHintlgevyke>:B’h(kx(pl)ﬂ‘p' € I(pg Xy) »(IL 16)

where
g == (eli/m)@n/Qic)V 2, (1. 17)
nk)=1/Vk (I 18)

and p=7; p, is the electronic momentum operator. In-
voking the Condon approximation we may further factor
out Eq. (II. 16) in the form

(l,, vac| Hy,| g,v,ke) = By oh(k) £,(E,), (I1. 19)
where
FlED = (x| X (11. 20)

is the Franck—Condon overlap integral,
Bsw in Eq. (II. 19) which is given by

The coefficient

Bow) = B {0, pr €| @) (1. 21)

depends explicitely on the molecular orientations with
respect to the photon polarization vector. When spher-
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ical averaging and summation over polarization direc-
tions is performed we can (see Sec, III) replace 8, )
by a constant for a given electronic transition.

Thus Eq. (IIL. 19) can be factorized into a product of
a function 4(k) which is solely determined by the energy
levels in the photon continuum, the Franck-Condon vi-
brational overlap f,(E,) which exclusively depends on
the energy levels in the dissociative continuum and a
“nonseparable” contribution 8, which is determined by
the molecular orientation with respect to e. The last
tactor does not depend on the energy levels of the two
continua, and we shall demonstrate in (Sec. III) that for
the interaction (II. 19) an exact solution can be obtained
for the matrix elements of the Green’s function and
for the T matrix as is the case for the general interac-
tion of the form (II.13), The solution for the coupling
between a radiative and a dissociative continuum (where
some other discrete molecular states can be also pre-
sent) can be derived in two entirely equivalent ways.
One can calculate the matrix elements of the Green’ s
function using the level shift operator. This will be
done in Secs. II and IV for the problem of photon scat-
tering from a dissociative continuum, Alternatively,
we may seek a direct solution for the matrix elements
of the T matrix., This approach will be adopted 1n Sec,
V for the Fano problem.

I1l. ELASTIC PHOTON SCATTERING FROM A
DISSOCIATIVE CONTINUUM

We shall now consider the simplest realistic example
for direct photodissociation. The eigenstates of the
molecular Hamiltonian, which in this case can be taken
as either Hy,, neglecting the mixing by H,, or as
Hyo+ H,, are taken to consist of a single discrete ground
state |g,0) and the continuum |7,). The photon scatter-
ing process

| g,0,ke)~ | g,0,k’e") (L. 1)

involves V=H,,, so that Hy=H—- H,.
We shall now proceed to the calculation of the matrix

elements of the T matrix. To simplify the notation,
we shall denote

|9 =|g.0.ke), |g')=]|g,0k'e)
and {[,vac)=1{l). Thus, the sums over one photon
states are 3, ,=7, and those over zero photon molec-
ular states will be designated by »,. The relevant
matrix elements of the reaction operator [Eq. (IL 5)]
which determine the cross sections (II. 2)-(II.4) are:

(g,0,K'e'| T(E)| g,0,ke) = Tp0, =21 20 V1o Gyoy Vi, (1L 2)
[ o

(L, vac| T(E)|g,0,K&) = T}y = V;y + 2220 VigeGyoyo Vi
gl l'
(111. 3)

Thus the matrix elements T,.,, and T;, are determined
by G;.; and by G,.;., respectively. The matrix elements
of the Green’ s function can be expressed in terms of

the level shift operator’
R=V+VO(E - OHO) QV, (111. 4)

where the projection operator 6} over the | g,0,ke) sub-

space
Q=2 | g.0,ke) ke, g0 |=2 | g){g | (I11. 5a)
ke e
is complementary to
P=2. 1, vac)(l,, vac| =2, | 1) (IIL. 5b)
1

so that using this partitioning P+ @=1. The total
Hamiltonian is prediagonalized within each subspace P

and @ A cursory examination of the operator identities’

PGP = PGP+ PGPRPG P (I11. 6)
QGP=(E' - QH\Q)"' QRP(E" - H,- PRP), (IIL. 7)

where Gy=(E* - Hy)™, reveals that G,., [which deter-
mines T,., via Eq. (IIL 2)] can be expressed in terms of
R,s, while the matrix elements G,., [which determine
T,, via Eq. (III, 3)] are given in terms of R,,. These
matrix elements of the level shift operator are

1 viggl VID

= 4 =
Ry =('IRID) ? F-E , (IIL. 8)
where E, =fikc, and
R, =(g|R|)=(g| V| ) . (I11. 8a)

Up to this point the results are general and formal.
We now utilize the explicit form of the radiative coupling
matrix elements [Eq. (I1.19)] for V,, and proceed to the
evaluation of the Green’s function. To calculate G,.,
we recast Eq. (III, 8) in the form

Ry = | B %o (Ey) fH(E A%

where | 8% is an averaged value of 4, which is given by

[8]2=2 8% ‘@il p| 00| ? .

This averaged value is obtained (see Appendix A) by
spatial integration and summation over polarization
directions of (III. 8), The (complex) level shift function
of the zero photon states 17,, vac) is

(111. 8b)

(111. 8¢)

A"(E)=Zt [ h(e)| 2/ (E* - RHC)] . (I11. 9)
From Egs. (III. 8) and (III. 8b) we get
Gy =[6(E,— E)/(E' - E )]
+| B 2A* [ folE)/(E = Ey)ay (111, 10)
where
a; :?;' FFE )Gy, (I 11)

An explicit solution for the auxiliary function (III.11)
can be readily obtained by multiplying Eq. (III. 10) by
f&(E,.) followed by summation over I’, resulting in

a,=[f#E)/(E' - E)]+| 8| 2A%A%q, , (I11. 12)

where the (complex) level shift function of the one pho-
ton states |g) is

ANE) =20 [| folEye) (111, 13)
”

2/(E* - Ep)].

From Eqs. (III. 10) and (III. 12) we obtain

8(E, - E;.) | BI2A%(E) fo(Ey0) fE(E))

T E-E, (E-EJE-E)N1- 18IPATE)ANE)]
(I11. 14)

G, (E)
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To evaluate G,; we make use of Egs. (IIL. 7) and (1. 8a),
which results in

G E)=(E* = EN' 2 VoG (I11. 15)
l'

and from Eqgs. (III.14) and (0I. 15) we get

o[ rrettwrm) T 5E-w)
Ca B | T TR A A B E-E)E - E)

(111. 18)
Finally, we can utilize Eqs. (III. 14) and (IIL. 16) to ex-
press the matrix elements of the 7 matrix [Eqs. (III. 2)
and (II1, 3)] in the explicit form

B.B% E'/Rc)ME/H c)ANE)
£e” 11 81245(E)ANE) ’

T, = Befn(E;)h(E/ﬁC)
€ 1-181%4%(E)A'(E)

Equations (III, 17) and (III, 18) together with the defini-
tions (I1. 19), (11.17), (1. 18), and (II. 21) can be imme-
diately applied for the calculation of the (spatially and
polarization averaged) scattering cross sections (II. 2a)-
(I, 4a).® As we consider elastic photon scatting, we

can set k=% (i.e., E=E’). It will also be useful to
recast the proportionality factor in Eqs. (II. 2)-(11.4)
[and (11. 2a)~(1I.4a)] in the form

2Q/ic =p,(EZ:=p, (E'N'?,

T

(111, 17)

(I1L. 18)

(I11. 19)

where x=2n/k (or A =27/F’) corresponds to the wave-

length of the photon, and where
o, (E)= [ pl &k =4nQk?/ (27)%c (111. 19b)

corresponds to the spatially integrated density of states
u|

Resonance fluorescence 231

per unit energy in the ratiation field, In Eq. (II.19b),
k is a unit vector in the k direction. The cross sections
(11. 2a)-(I1. 4a) take the form

m2 | B4 R(E/ )| | AN E) | 20%(E)

olB)= "5 T 1 [pArRA BN T ,  (01.202)
m2 18121 fo(E) 2| h(E/Ac)1?
olE)= 51 T pranm AT e E)
(111, 20b)
2 1
oE) = - X 6| E/0)| 0. ) Im e ey
(I11. 20c)

where p,(E) corresponds to the density of states in the
dissociative continuum at the energy E. To express
Eq. (II1.20) in a more transparent form we now separate
the functions Af(E) and A*(E) into their real and ima-
ginary parts

A*(E) = o (E) - inp, (E)| n(E/RC) |, (1L, 21)

where
~ 7 2 14

oF(E)=pp ) | h(E /Eﬁf)'E pelE]) 4 (TIL 22)
and

AYE)= &' (E) - imp, (E)] fo(B)| 2, (1m. 23)
where

a'(E)=ppJ lf"(}%)lzﬁ (E,)dE, (111, 24)

- L

PP in Egs. (III.22) and (II1. 24) corresponds to the prin-
cipal part of the integral. The cross sections (III. 20)
take the final form

_ N2 1813 WE/m)N [n(1+ N (E) folE)1 %0, (E) + oM (E)8(E)] p, (E)
UG(E)" 2

(1+N(E)F+5% (E)

o(E) = m21 B4 h(E/rc) ¥ o (E) - inl fo(E)|2p, (B) I *pZ(E)

2 A +N"(E) +6%(E)
(&)= m2 1812 fo(E) 2 h(E/Hc) p, (B)p, (E)
Oa 2 (1+ N (E)F+62(E) ’

where we have defined

N'(E) = | 8| *[7*| n(E/BC)| 2| folE)| 20, (E)p, (E) - o (E)a! (E)]

(111, 26)
and
8(E)=1| B %[| fo(E)|%p,(E)ef (B) + | R(E/RC)| 0, (E) (B)] .
(111, 27)

The quantum yields for resonance scattering [Eq.
{I1. 10)] and for photodissociation are given from (III. 25)
in the form

71 8121 n(E/Hic) 1 2, (E)| & (E) - in| fo(E)I %0, ()1

0 —
Y ) = N N £B)1 % py (B) + 5(F) & (B)

(111. 28)
) 7l fol E) %p, (E)
71+ NT(ENI £o(E)%0,(E) + & (E)5(E) ~

We note in passing that Eq. (III.25) and Eq. (III. 28)
obey, of course, the conservation laws

Y, (E)

b

(I11. 25)
r
0,(E)=0,(E) +a,(E) (T11. 29a)
and
vl+v,=1, (111. 29b)

Equations (111, 25) and (III, 28) provide the general solu-
tion for resonance photon scattering from a dissociative
continuum, where radiative interactions (with one pho-
ton states) have been incorporated to infinite order.
Thus interference effects between the continuum states
are included to infinite order. The only hidden approxi-
mation involves the neglect of one photon states |7,,ke)
and zero photon states | g,0,vac). However incorporat-
ing these states in the eigenstates of Hy=H - H;;, will
lead to “off-resonance” interactions which are of minor
importance, To reduce our results into a manageable
form we shall proceed at two levels of sophistication.
First, a crude approximation will be invoked to obtain
order of magnitude estimates for the cross sections
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neglecting the real part of the level shifts. Second, we
shall provide a reliable estimate for the physical quan-
tities from a detailed consideration of the level shifts.

For the sake of a crude order of magnitude estimates
we neglect the (real) level shifts (III, 22) and (III. 24)
setting @' ~0 and of ~0. This approximation is some-
what more general than the common assumption of en-
ergy independent coupling between two unbound con-
tinua. In this case we get

¥ NE)
%(E) 5 ToN®
2 2
o,(E)~—;—”[1+—NN(%F , (1. 30)
(E)_ﬁ N(E)
0= o T+ NE)F
where
N(E) =177 8| %] folE)| 2] n(E /5ic)| %0, (E)p, (E)
=2r2 (| vy, [2) p,(E)p, (E) . (IT1. 31)

The parameter N corresponds to the product of the
“radiative width” of the ([, vac) states and the density
of states, An analogous interference function was pre-
viously encountered in the study of sequential decay in-
volving two coupled continua or quasicontinua.* From
the approximate relations (III. 30) we can readily obtain
an estimate for N from experimental absorption cross
sections for molecular photodissociation, which are
typically ¢, ~ 10™'" ¢cm? for diatomic. Hence taking
A=2000 A results in N~o¢,/32=10", 0,~A*N, o, ~2?N?,
and o,~»®N, Thus the quantum yield for resonance
scattering ¥,"~ N~ 107 which concurs with the estimate
of Nitzan and Jortner,®

In order to derive a more complete and reliable the-
oretical expression for the cross sections we have to
estimate the level shifts in detail, We consider first
the (complex) level shift term A’ [Eq. (I, 13)], and its
real part of [Eq. (IIL. 24)], which originate from virtual
coupling of one photon states | g,0,ke) via zero photon
states |1,,vac). Utilizing the molecular wavefunctions
in the Born-Oppenheimer approximation in [Eqs.

(I1. 15)]. We get

o' (E)=PP [ dE, [| (xo| x| 20, (E))/(E- E,)] (1L 32)
ImA’ = | {xo| x)| %01 - (111. 33)

We may conclude that except for exceptional energy
values where o' =0 (i.e., at the maximum of a sym-
metric distribution ImA’) we have o' ~ImA* and con-
sequently the level shift o cannot be neglected in the
evaluation of the cross sections.

The complex Lamb shift function Af(E) [Eq. (IIL.9)]
and its real part of(E) originate from virtual transitions
between any zero photon state 117, vac) and itself via
one photon states 1g,0, ke), which is identical with the
second order coupling which yields the radiative level
shift. Performing the integration } ,~ [ prd"k over
(I11. 9) and utilizing (III. 19) we have

_kdk
E
j B (I11. 34)

Resonance fluorescence

This integral diverges linearly resulting in an infinite
level shift of. In Appendix B we apply the elementary
theory of the Lamb shift, performing mass renormaliza-~
tion and performing the integration up to the limit
K=mc?/fic. Subsequently the renomalized level shift
function should be taken in the form:

+ i‘n]

Agrenormnlizad 47TQ Et K ficdk Q E ln_;zK_c
@nycy), E, - kiic 2n2(mc)? ™ E,
(111. 35)
which has the common form obtained in the theory of the
hydrogen Lamb shift,® AEf. In Appendix B we pre-

sent a reasonable, order of magnitude estimate of the
parameters N' and 5 which results in

|N'|~ |8l ~aEf /W, (I11. 36)

where W corresponds to the width of the absorption
band.*® Taking AEF ~3x10"% cm™ and W=10* cm™!
we obtain

|N'|~|8] ~1070«<1, (L. 37)

Condition (III. 37) results in a considerable simplifica-
tion of Eqs. (III.25) for the cross sections, where we
can safely neglect N’ and § in the denominators and
N' and 60’ in the numerator for o,(E). We thus obtain

0,(E) = Eg—zl 8% n(E/mc)|?] folB)| *p,(E)p, (B)[1+0(N")],

(111, 38)

0,(E)= ”—gzl B]*| n(E/rc)| *pE(E)| &} (E) - in| folE)| %p,(E)|
><[ 1+o( N, (I11. 39)

o E) = ]B' B n(E/me)| | folB)| 20, (E)p, (B)[1+ 0N,
(I11. 40)

where in view of (III. 37) the terms O(N') in (III. 38),

(111, 39), and (IIL. 40) are negligible, From Egs. (II1.19b),
(11. 15), (11.16), (11.33), and (III. 38), the absorption
Ccross sectlon takes the conventional form

0,(E) = |<¢glpl o 2l ol X0 (E) | %0, (B)

(111 41)
Finally it will be useful to relate the photon scattering
cross section and the photodissociation cross section
to the absorption cross section. Egs. (III.39) and
(I11. 40) can be rewritten in terms of Eq. (III, 41) in the
final form:

E'g,(E')dE" | ,
o (E)= (2m)® (ﬁc)2 g E —E [l+on7)] (1 42)
0, (E)=0,(E)1+0WN")]. (II1. 43)

Finally the quantum yield (III. 28) for resonance elastic
scattering is

_|[E0(E")AE'/(E*-E")|?
Y = = e Fou(B) :

From these results we conclude that

(I11. 44)

(a) The photon scattering cross section (III. 42) and
the corresponding quanturmn yield (III, 44) are determined
by the (complex) Hilbert transform of the line shape
function. This conclusion was reached before by Nitzan
and Jortner® on the basis of a somewhat complicated
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low order perturbation treatment. Our results were
recast in a somewhat more transparent form.

(b) The energy dependence of the scattering cross
section and of the quantum yield can be explicitly ob-
tained in the form

0, (E)= UPPf G- E ’|2-E'2+772|0a(E)|2]
(111, 45)
2 [E? E'c(E"dE|? 2 ]
Y,(E)= W[%(E) PPf &= ) +7o0,(E) | .
(111. 46)

Thus from the known experimental bell shape function
of the photodissociation spectrum one can evaluate the
scattering cross section. As on order of magnitude
estimates we can take

2 (10717\2
0,(E)~(@) ~<1%_5 > ~10% cm?

and

Y (E)~0,(E)/»2~107"

(c) Thus resonance fluorescence from a dissociative
continuum is amenable to experimental detection.

{d) The numerical relation (IIl. 37) provides us with
the ideological justification for neglecting high order
radiative interaction in the calculation of the cross sec-
tion 0, (E), o,(E), and ¢,(E). Thus the overwhelming
contribution to the photon scattering processes involves
the single path |g,0,ke)~17,,vac) ~| g,0,k’e’) and higher
order photon multiple scattering processes can be dis-
regarded. This result is of considerable practical
value for the theoretical treatment of inelastic, Raman
type scattering from a dissociative continuum, where
a number of radiative continua | g,v, ke) should be con-
sidered. On the basis of the complete solution of the
elastic scattering problem, the Raman scattering prob-
lem can be now easily handled by treating radiative
interactions to low order,

IV. RAMAN SCATTERING FROM A DISSOCIATIVE
CONTINUUM

We shall now extend the treatment of photon scatter-
ing from a dissociative molecular continuum to include
the role of the vibrational levels of the ground state
and consider inelastic Raman type photon scattering to
final channels | g,v,ke) (all v). The physical situation
is that portrayed in Fig. 1 where the eigenstates of H,
are now (g,v,ke) (p=0, 1, 2, ...}and Ii,,vac), To
avoid unnecessary complications we assume that the
molecular system is in the distant past in the 1 g,0)

state., This restriction will be removed later. We then
consider the photon scattering processes
lgéoyke>"]gel’yk,e’> (IVo 1)

to all the vibrational levels of the ground state, The
perturbation is again V=H,.

In view of the results obtained in Sec. III we can
safely neglect the role of high order radiative interac-
tions. We shall consider only single scattering events

Resonance fluorescence 233

lgo.ke) = |1, vac) ~ | g,v,k’e’), while multiple photon
scattering processes will be disregarded. The T ma-
trix can be expanded in a perturbation series

T=V+ VGV + VG VGV + VG VG VG "V + - (1v.2)

where only even terms in V contribute to photon scatter-
ing. The second term on the rhs of Eq. (IV.2) involves
a single scattering path while higher terms in V rep-
resent multiple scattering. In order to calculate the
relevant cross sections up to the order 1+0(N") [the
magnitude of N is estimated in (III. 37)], it is sufficient
to take

T=V+ VGV (Iv.2a)
The calculation of the matrix elements of {IV. 2a) is
straightforward, resulting in

(g,0,k"e’'| T|g,0, ke)

-5 (g0, ke 1VID{|Vig,0,ke)

V.3
! E'-E, v.3)

(L, vac |T|g,0, ke)=(1,,vac |V | g,0,ke) . (1v.4)

Making use of Eqs. (II.15) and (II. 16) for the radiative
coupling matrix elements we obtain

(g,v,k'e | T|g,0, ke)=B,B% n(k)nlk")

IE—f—%—I%E—(IIE—‘) (Iv.5)

(1, vac | T| go, ke) = pn(k) f(E,) . (1v.6)
The cross sections (II. 2a )-(II. 4a) take the form

0,(E) = "" |12 R /70 |?] £olE ) [20:E) p,B) , V. T)

o (E)=TX lﬁl \R(E/7C)|?] folE) |2 piE) p,(E) , UIV.B)

”(E)— IB\ |r(E/BC)|® pB(
ff* fo(Ez)Pz( z)dEz lz
E'-E,
A FlEDfEE,) pydE ’
= 5 [BlolE prf T
+|7fo(E) FX(E) p,(E) J (Iv.9)

These results are, of course, valid to order (1+0O(®").
It is an easy matter to extend the treatment (see Ap-
pendix C) to include the radiative corrections up to the
order O(N"?). This result is of minor importance for
the interaction between a radiative and a purely dissoci-
ative continuum considered herein. However, when we
consider photon scattering from a discrete state plus a
dissociative continuum (see Sec. V) the correction O(N’)
is crucial near the interference dip.

Returning to Eqs. (IV.7)-({V.9) we expect that con-
servation law (II. 8) is obeyed up to

0,(E) = [0,(E) + ZovE)]A + O . (1v. 10)
v

Equations (IV.7) and (IV. 8) are identical up to OWN") to

those obtained for the elastic scattering case [Fgs.

(I11. 25)], as expected. Our new result involves the

Raman scattering cross section (IV. 9) to different vi-
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234 S. Mukamel and J. Jortner: Resonance fluorescence

brational levels |g,v) of the ground electronic state.
From Egq. (II. 20) it is evident that £,(E,) is equal to the
vibrational overlap Franck—Condon nuclear integral
{x,!x;(E)). Thus the Raman scattering cross sections
are determined by the (complex) Hilbert transforms of
the product of the Franck—Condon integrals (x| x,(E,)
{(x(E))Ix,. Finallywe canrelatethese scattering cross
sections to the absorption cross sections (from | g,0)) ,

1 E'o (") f,(E")/fo(E")*dE

7r= (217)3(;1-6‘)2 E*-E'
=(2/7T7k2)|: b j E'g, (&’ )[];')(EE),/ID "*dE' 2E_2
+7T2 l Ua(E) fu(E)/ﬁJ(E) ,z:] (IV.].].)

The emission quantum yields are just given by

¥ (&) - (z/m{ [1/E %,(5)]

J’ E'o(E")fE")/fo\E")] *aE’
E-E

X pp)
+120,(E) | £LE)/foE) |2 } . (1Iv.12)

The functional dependence of the Raman scattering
from a dissociative continuum was recently derived by
Berjot, Jacon, and Bernard!® and by Williams and Rous-
seau'! within low order in the radiative interactions.

We believe that the present derivation, which rests on
the results of the complete analysis of the simple model
system of Sec. III, is more transparent. In order to
apply these results to a real life situation we have to
consider again the hidden approximations involved in the
present treatment.

(1) The two electronic level system lg, and |17,) has
to be extended to include all excited states. It is a sim-
ple matter to include the off resonance contributions of
other molecular levels in the calculation of the matrix
elements of T [Eq. (IV.2a)]. This off-resonance term
will involve only a small correction to the scattering
cross section, and the major contribution originates
from the continuum states.

(2) The situation is more complex when resonance
photon scattering occurs from two overlapping dissocia-
tive continua which correspond to different electronic
configurations. To quote a specific and relevant exam-
ple, in the case of I, the 37ru continuum (which corre-
sponds to the continuum levels of an attractive potential
curve) overlaps the 7, dissociative continuum (which
originates from a purely repulsive potential curve. %13
We assert that even in the simple case when non adia-
batic coupling between the two cintinua is negligible, the
scattering cross section does not involve an additive
contribution from the two continua, but rather involves
“interference type” contributions from the two continua.
Denoting the parameters of the two continua by the indices
(a) and (b), respectively, the scattering cross sectionis

oXE)="2 |h(E/Ec 14 p2(E)

X| !B | ff((]a)(El)f*(a)(EE)lpgu)(E )dE;

2

‘B l[fob)(E f*(b)(E) (b)( ;)dE;

EoE, 1v.13)

Separation of the integrals in Eq. (IV.11) into their
real and imaginary parts and evaluation of their square
modulus will result in mixed contributions from the two
continua. This straightforward extension of the theory
will have to be applied for a quantitative study of specif-
ic systems.

(3) As in Sec. III we have disregarded two-photon
states such as |7,, ke, k’e’) single scattering contribu-
tion via two-photon states of the form |g,0, ke)

-1, kek'e’)~ Ig,v,k'e’) will result in an additional
contribution to 7 [Eq. (IV. 2a)]. However, these are

high order contributions which are expected to be small.
The role of higher (three-photon etc.) states is also neg-
ligibly small.

(4) We have assumed that the thermal population of
the higher vibrational components of the ground state is
small. The extension of the formalism to handle a real
life situation is trivial, as one has just to perform a
Boltzmann type average (of the initial states |g,v )
over the cross sections o}(E).

We thus conclude that Eqs. (IV.10) and (IV. 11) pro-
vide a satisfactory theory of Raman scattering from a
single dissociative continuum. As the scattering cross
sections are determined by the (complex) Hilbert trans-
form of the product of the vibrational overlap factors
for the bound-continuum transition, there are no selec-
tion rules for the final vibrational state reached by reso-
nance Raman scattering from a continuum. To provide
a visual demonstration of this result we portray in Figs.
2 and 3 the results of a simple numerical calculation of
photon scattering from a “diatomic molecule” charac-
terized by a harmonic ground state and a linear repul-
sive excited state, when the Franck-Condon overlap
factors were estimated by the reflection method. The
details of the calculation are outlined in Appendix D.
The vibrational distribution of the final |g,v) states ex-
hibits a marked dependence on the reduced energy pa-
rameter € (see Appendix D), where € corresponds to
the maximum of the (Gaussian) absorption line shape
from v =0, while the corresponding absorption half-line-
width is €;,,=0.83. As is evident from Figs. 2 and 3
the two individual contributions to o, [Egs. (IV.9)] fluc-
tuate wildly with changing v, while their sum is a
smooth function of the final vibrational state. From
Fig. 3 it is apparent that for € <2¢,,, a long vibrational
progression is expected to be revealed, while for 6)261,2
the intensity of the higher overtones is diminished.
Thus, in many cases of interest one expects a long vi-
brational progression in the Raman spectrum. The ap-
pearance of a large number of overtones in the reso-
nance Raman spectrum from the dissociative continuum
of I, was indeed experimentally observed. 14

V. INTERFERENCE OF A DISCRETE STATE WITH AN
OPTICALLY ACTIVE DISSOCIATIVE CONTINUUM

We shall now consider the cross sections for absorp-
tion, resonance fluorescence and photodissociation for
a system characterized by a discrete excited state in-
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FIG. 2. Raman scattering cross sections from a dissociative
continuum characterized by a Gaussian absorption line shape.
Plots of the relative populations of the final | g,v) molecular
states which are given by

I Ay 2= T a, (&) 2+ 1, ()| 2

and expressed as a function of the reduced energy parameter €.
The details of the calculation are given in Appendix D. (a) €=0,
(b) e=1.

teracting with a molecular dissociative continuum via
nonadiabatic intramolecular coupling. The molecular
continuum carries oscillator strength from the ground
state. This physical situation prevails for some cases

of molecular predissociation and this formalism is also
directly applicable for autoionization and for some cases
of electronic relaxation to an intramolecular quasicon~
tinuum.® The last case is of lesser experimental inter-
est, as the quasicontinuum does not carry appreciable
oscillator strength from the ground state. The absorp-
tion cross sections were originally handled in the clas-
sical work of Fano? who has demonstrated the role of
interference between resonance and potential scattering
which results in a dip of ¢,(E). Fano has incorporated
radiative interactions to low order, so that o,(E;)=0

at the dip energy E,. Nitzan and Jortner have treated
the cross sections for resonance fluorescence in the
Fano problem, again within low order perutrbation the-
ory for radiative interactions.® As realized by these
authors such an approach is invalid for energies close
to the interference dip, where the approximate quantum
yield will exhibit an unphysical divergence. We shall
now present a general treatment of this problem includ-
ing radiative interactions between one photon and zero
photon states to infinite order. This problem is of in-
trinsic theoretical interest, as we shall be able to el~-
lucidate the nature of interference in the Fano model
system. From the experimental point of view the pres-
ent results are relevant to establish the nature of the ad-
ditional information which will result from resonance
photon scattering experiments from some predissociating
molecular systems.

| Av,o|?

0

1073 -

| S B B 1 1 v
0 2 4 6 8 10 2 14

FIG. 3. Plots of the Raman intensities for scattering from a
dissociative continuum (see Appendix D). Plots are given for
various values of the reduced energy parameter e.
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The physical system considered herein is portrayed
in Fig. 1(c). The eigenstates of the zero order Hamilto-
nian Hy=Hyo+ Hooq [Eq. (1.1a)] are Ig)=1g,0,ke); |s)
=|s,,vac) and 11)=1],,vac). The zero order energies
are E,=E  +#ikc,E =E  and E, =FE,;,. The perturbation
is V=H,,,+Hy. The radiative coupling matrix elements
can be rewritten utilizing Eqs. (II. 15) and (II. 19) in the
form

Ve =(g,0, ke ‘Hint ‘ 1,,vac) = By h(k)ﬁ;(E,) (v.1)

and

Vgs:@eo, ke |H1nt ;Se; vac) = a gk (k)= ah(k)coss,
(v.2)
where

ago = el /m)2r/Qic) % (g, 0lp-els,)=a cos()V 22)
¢ is the angle between e and the transition moment.
The nonadiabatic coupling terms

VlsE<le|Hv‘se> (v.3)

vary only with the states 17,).

The energy level system for this problem [Fig. 1(c)]
is analogous to that previously considered for sequential
decay involving a pair of coupled continua, which was
solved invoking simplifying assumptions of constant cou-
pling between unbounded continua.® In view of the spe-
cial form of the matrix elements (V.1)-(V. 3) where the
separate energetic contribution of thetwo continua canbe
factorized, we are able to provide a general solution to
the problem. We shall now demonstrate that explicit
general expressions can be obtained for the matrix ele-
ments of the T matrix which determine the cross sec-
tions.

Utilizing an alternative form of Eq. (II.5):

T=V+VG,T (V.4)

The matrix elements of the operator combining the ei-
genstates of H; are

Ve
Tee=(alo, K| Tlg,0ke) = F25= T,
+EV E-E)T,, , (v.5)
,gE(le,vac]ngeo,l«:e>=V,g+V,S E-EJ)'T,
(v.6)

+ Z} V'KI(E+ —Egl)-l Tg’g B
o
T,=(s,, vac| T|g.0,ke)= Vet 2V g (E —E)? Tie
1

+ E Vo (E* = Eg) Ty v.7)
The relevant matrix elements which determine the cross
sections (II. 2)-(II. 4) can be recast utilizing Egs. (V.2)-
(V.4) together with the definition B, 4, =8, =8 coss,

J

T Boﬁ e'h(k)h(k')A‘(E E& As) + [ ers T ﬁ.,

ENASNV,, + B.k(k)A‘s]

Resonance fluorescence

Tpe=[Vp/(E~E)]T, +Buh(E/ic)d (v.8)

T,g=V,g+[V,s/( EQ T+ B foE)a* (v.9)
where we have defined

a'=ad'(E)= ‘lzj [fHENE ~E)IT,, (v.10)
and

af=af EM”—" T, cOSO., (v.11)

gl E+ E '

We have now to find algebraic equations for af, o',
and T,. To express these equations in a trans-
parent form we shall utilize the definitions of the (com-
plex) level shifts A% [Eq. (I.9)], A’ [Eq. (II1.13)] and
further define the (complex) level shift functions origi-
nating from intramolecular coupling

AE) = L[[Val*/ " - B,)] (v.12)
and the “mixed” level shift function
=§[V;3f3‘(E,)/(E*—E,)] (v.13)
and
A’S(E)=§)[V§‘ folE)/(E*-E))] (V.13a)

Multiplication of Eq. (V.8) by h(k')/(E* - E,)cosé followed
by summation over the |g’) photon continuum results in

a® -% B*A%a' - [2a/3(E - E AT, =0; (v.14)

In a similar manner multiplying Eq. (V.9) by f¥(&,)/
(E*-E,) and summing over the {I7)} states yields

BAaf —a' +[AT/(E-E)]T, = - Bh(R)A. (v.15)
Then from Egs. (V.6) and (V.7) we obtain
(BA™ +a*)a® + T, [ANE - E,)' - 1]
=~ B (kAP -V, (V. 16)

Equations (V. 14)-(V.16) can now be solved for the
weighted sums a*(E) and af(E) and for T,, resulting in
_ [st+ BeAzsh(k)](E 'Es)

Tw= " F_F,-& -&

(V.17a)

(a+/3 Als)(@* +BA")
~ | gl2A%Af

A* = (2)AF (V.17p)

¢ 181%4%() cos9+( N@+B*AY)T (E-E )‘1
“ | BIZATAF
(V17c)

' B,h(k)A’+[A”+( YaBAfAMT, (E - E,)™
¢ — [ BIZATAF

Finally, the matrix elements (V. 8) and (V. 9) take the
form

(V.17d)

£e (I =1 BIPATAR)(E - E, — A® - A%)

Als s
7, = YisUlogt BRRIA) + (E - B, - A)Y,, . 19)

€7 (|- | BI2A'A)(E ~ E, — A® - A%)

(v.18)

r
The absorption cross section can be expressed from
(I1. 4) and (V. 18) in the general form:
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0,(E)=~ (2Q/Fic)Im T,, . (I14. a)
To recast these general results in a more familiar form
we now separate the complex level shifts (II. 9),
(I.13), (v.12), and (V.13) into their real and imagi-
nary parts

A =Re(d’) -iIm(4’); j=g,1,s, (Is) (v.20)
and define the Fano reduced energy € and line profile in~
dex ¢ in the conventional form

€=[E~E,- Re(A®)}/Im(4%) (V.21a)

q=[a+pARe(A™)]/BIm(A") . (V.21b)
We further assume that ¢ is real and that the interfering
bound—bound and bound—continuum transitions are char-
acterized by parallel dipole moments. The matrix ele-
ments T,., [Eq. (V.18)] which determine the absorption
and the photon scattering cross sections can be rewritten
in terms of a linear superposition of resonance continu-
um and bound state scattering.

Tyg= T [1+1,AHA) M9 - (e +i)']F (v.22)
where
7o, - BBER(EHC)M(E/Rc)ANE) v.23)

1-181%AY(E)A%(E)

represents the T matrix for scattering from an optically
active continuum (in the absence of the [s,) state) which
is of course identical with Eq. (II.17); while

F=[l - 18124 ImAY (| - | BI2A%A") (9 —49)2(e +i) ]t
(V. 24)

constitutes of the radiative correction to the bound state
scattering term. We note in passing that when radiative
interactions are incorporated only to first order, Eq.
(V.22) will result in the well known Fano equations®
for o,(E) and for the expression derived by Nitzan
and Jortner® for o.(E).

Equations (V. 22)-(V. 24) together with the basic defi-
nitions (II. 2)-(II. 4) result in general expressions for the
absorption and for the resonance fluorescence cross
sections including radiative interactions and incorpor-
ating the energy dependence of the absorption cross sec-
tion to the zero order continuum states. The resulting
expressions obtained by straightforward algebraic man-
ipulations are cumbersome and not very informative.
They will become useful for numerical applications for
specific systems when detailed experimental results for
a predissociating state coupled to an optically active
continuum will become available. We shall thus consid-
er a somewhat simplified model system neglecting the
real parts of the radiative level shift A% and the real
part of the continuum level shift A, From the analysis
presented in Sec. III we can conclude that the radiative
Lamb shift can always be neglected. Neglecting the mo-
lecular continuum level shift Re A’ eliminates some of
the fine details of the energy dependence of the cross
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sections. As we are interested in the behavior of the
cross sections in a narrow energy region this approxi-
mation is reasonable. Setting ReA®=0 and ReA4’'=0in
Egs. (V.18) and (V.19) and utilizing Eqs. (II.2)-(I. 4)
we obtain after simple algebraic manipulations

M NE)  Pa+(e+r)e+2g)

O'a(E) —217 1+N(E) (€+7‘)2+A2 s (V25)
_f_ NE(E) g+ (e +2¢)?

O'r(E) —'2" (1+N(E))2 <(€+’V) LA > 3 (V. 26)
¥ NB) (g+¢)?

Ud~(E) 27 (1 +N(E)TZ((€+T)2+A2) ’ (v.27)

where N(E) is the (first order) transition density to the
continuum given by (III. 31), and where we have defined
two auxiliary parameters

y=2¢N/(1+N) (V.28a)

and

A=(Ng®+1)/(L+N) . (V. 28b)

Equations (V.25)-(V.27) together with the definitions
(v.21a), (Vv.21b), and (V.28) constitute our final re-
sults for the Fano problem. In Figs. 4 and 5 we pre-
sent some typical forms for the energy dependence of
the cross sections and the fluorescence quantum yield.
From these results it is apparent that:

(1) When the level shifts Re(4%) and Re(4') are ne-
glected, the relavent cross sections are expressed in
terms of a product of the corresponding cross section
for a dissociative (or ionization) continuum [Eqgs.

(. 30)] and a correction function which contains the in-
terference effects.

(2) The cross sections obey the conservation law
04(E) =0,(E) + 04(E) for all E, which provides just a con-
venient consistency check.

(3) To study the features of the absorption line shape
we define

e'=(e+7)/A
Q=q/AQ1+N)=g/(Ng%+1) . (v.29)
Now Eq. (V.25) assumes the form
n_ M N(e") (€' +QP+y J
UQ(E)—_Z—T[_ 1+N(€’) [ 1+€r2 5 (V.30)
where )

¢ _ ¢ _ NPiNAe) |
X=a T AEAsNRE A+NWNE+1) ’

Thus the absorption cross section does not vanish over
the entire energy range, for any value of ¢ and N#0,

To study the behavior of ¢, near the interference dip
we recast (V. 25) in an alternative form
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o,(E)

}

V. 25a)

eyl

which at g =- € is just
0u(=q) =[X2/2m)N3(g* + A [1 + N¥(g* + ¢*) + 1t (v.31)

We note that o,(- ¢) ~22N? being reduced by a factor of
N~107° at the interference dip.

(d) The photon scattering cross section is of the or-
der of ~ x2N? throughout the whole energy region (see
Figs. 4 and 5). At the interference dip Eq. (V. 26)
yields

: Resonance fluorescence

tor 16 or (o)
0.8 8
12—
0.6 6
(=]
O =]
- b gl °
> ~ o
b b
0.4 4t
4
0.2 2
0.0% o Ob====x
L1 4 1
10 8 6 4
FIG. 4. Cross sections for predissociation where the internal

continuum carries oscillator strength. ¢, (E)—total absorption
cross section. o,(E)—elastic photon scattering cross section.
¥, {E)—The radiative quantum yield. (a) g=1, (b)g=2, (c) g=3.

o,(=q) =[*/2mN3(g* + ) [1+ N¥(g* + ¢B) + 2] (V. 32)
so that

o,(-q)=0,(-¢q) . (v.33)

{(e) The quantum yield for resonance fluorescence

[Eq. (I.10)]
) [ q ]

is slowly varying throughout the energy regions removed
from the interference dip, being of the order ~N. At
€=-q,Y(-¢)=1 as is evident from Eq. (V.33). We thus
expect the occurrence of a sharp maximum in the quan-
tum yield rising from ¥, =N to ¥, =1 in the vicinity of
the dip. The half widths of Y,(E) curve near €=—gq is
21q1v1+¢q® VN . This is evident from Fig. 5. A sim-
ilar maximum in the region of destructive interference
was obtained from the numerical calculations of Nitzan
and Jortner for the case of two overlapping resonances.?
From the physical point of view this effect originates
from the fact that at the interference dip the cross sec-
tions and quantum yield for dissociation vanish identical-
ly [see section (f)]. This interesting effect provides a
new experimental criterion for the identification of in-
terference effects. With the advent of tunable high en-
ergy lasers such effects may become amenable to ex-
perimental observation. This will be extremely diffi-
cult to get in view of the low absorption cross section

in the vicinity of the interference dip.

q4+(€+2q)2
A+ {e+7)(e+29)

N(E)

TiNGE (v.34)

Y (E)=
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FIG. 5. Dependence of v,(¢) for predissociation where the in-
ternal continuum carries oscillator strengths near the inter-
ference dip. The different curves refer fo-various ¢ values
(0.5, 2, 3, 5).
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(f) The photodissociation cross section o, (V.217)
vanishes at €= - ¢ (up to the order O(N').® This is the
real physical significance of interference between reso-
nance and potential scattering.

VI. CONCLUDING REMARKS

The present theoretical study of absorption, reso-
nance fluorescence, and photodissociation cross sec-
tions provide a general theoretical framework for the
treatment of coupled radiative and intramolecular con-
tinua. The techniques developed herein to handle this
interesting problem rest on factorization of the inter-
continuum coupling into a product of separate contribu-
tions from the two continua. Subsequently, by the utili-
zation of the Dyson equation for the Green’s function or
the mathematically equivalent identity for the T matrix
we were able to provide a solution for the decay (or
scattering) problem involving two continua. Such tech-
niques are applicable at present for radiative interac-
tions only, where the factorization procedure (II. 19) is
valid. For intramolecular non adiabatic coupling! such
a separation is inapplicable and at present the: problem
of coupled intramolecular dissociative continua (orig-
inating from different vibrational states of fragments
from a polyatomic molecule) were handled by approxi-
mate model system.*” We have limited ourselves in
the present paper to the study of a system involving a
single dissociation continuum. At a lower level of
sophistication, by invoking some simplifying assump-
tions such as constant coupling between intramolecular
dissociative continua the photodissociation and predis-
sociation of a polyatomic molecule can be handled by

Resonance fluorescence 239

similar techniques. In that case, additional interesting
information involves the vibrational distribution of the
fragments.

The present results are relevant for elucidation of the
nature of resonance fluorescence and Raman scattering
from a dissociative continuum and from predissociating
states of small molecules, where the molecular continu-
um is optically active. The same techniques are di-
rectly applicable to the theoretical study of inverse radi-
ative processes, such as radiative recombination and
inverse dissociation. We hope that the present approach
based on photon scattering from molecules will be of
considerable general applicability for the elucidation of
a variety of interesting photophysical processes.
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APPENDIX A: EVALUATION OF THE MATRIX
ELEMENTS OF THE LEVEL SHIFT OPERATOR

We consider the matrix element (III. 8)

Ry =(U'|R|D)=2 mvfi(g'v'” . (A1)

Utilizing Eqs. (II.15)—(II. 21) we have

R’l'l:fo(El')fg(El) lﬁllzfdk \h(k)fz

_ \ (A2)
U =
We shall now utilize the identity
z lp-e()|*=|p|- (-7, (A3)

where k is a unit vector in the k direction. Equation
(A2) assumes the form

R =foE) FHE) | 8] 22 f\h(k)\z

@n)
o Kdksinddede[(pyiple,) 1*~ Ko, Ip-kig.)1?]
E*~Tkc

=folE;) f§(E,) ‘B, \2 |<‘P1 ‘p l¢g> |z
Q ksiné(1 ~ cos®0) dédodk

@) E* - fikc ’ (Ad)
Equation (A4) can be written in the form
Ryy=| B2 foE ) f% (E DA*E) , (A5)
where
|812=%18"12]¢@s D] @) |2 (A6)
and
A‘=@%sf [47k? | h(k)|2dR/(E* - Fikc)] . (A7)
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APPENDIX B: THE MASS RENORMALIZATION
PROBLEM

QOur expression for the various cross sections in the
photodissociation problem (Sec. III) contain the integral
(IT1-34) which diverges linearly and yields an infinite
level shift due to the interaction of the molecular sys-
tem with the radiation field. This problem is handled
using the mass renormalization technique.® We con-
sider a molecular or atomic system and denote by {In)}
the spectrum of the “bare” molecular system which does
not interact with the radiation field. The level shift of
a state, [m) e{ln}} due to its interaction with the radia-
tion field is given by {m, vac|R |m, vac), where R is
the level shift operator [Eq. (III.4)] and the p subspace
contains only the |m, vac) level. Using the explicit
form of Hy,, (II.14) we may express its matrix elements
in the same way as was done in (II. 16) and (II.19) re-
placing f,(E;) by f,(m) and thus we get

4
0 S o

(m,vac‘R| m,vac) =

kdk
E,-E,-Fklic B1)
We now write
- kiic _ E,-E,
En—E,-klic =~ E,-E,-klic (B2)
and so
(m,vac |R |m,vac) =~ 4”2 [BI 20 | fulm) |2
(2m n
x[J‘ dk -
0
= dr
(Em_En) o Em_En—kﬁC] B3)

performing the renormalization it turns out that the
first integral is just the level shift for the “dressed”
free electron and we obtain

_ _4rQ 1B ) |2
(m, vac |R | m, vac) PE 2 (m) |2(E,, - E,)
# dk
<), Fr e By

Performing the summation over e and subsequent aver-
aging over polarization orientations results in®

AE"™ = _ ZaCZ > '(m|f11n>|2(Em—
n
ofe o] -
m n

where V is the velocity operator V=p/m and a is the
fine structure constant. Now defining,

Ep—E,=ki™ 5 (B6)
we get
2
AE™ == 22 55 [ | 0 | m) | 2ic RS
n

K .
Al R B7)

0

X [ln

Resonance fluorescence

This is the expression for the hydrogenic Lamb shift.

Since the same type of integral A appears in our the-
ory of line shape of a continuum we assume that re-
normalization of this problem will give actually the same
“renormalized integral” (this assumption is not rigorous
but is clearly good for an order of magnitude estimates
of our corrections) we thus assume that

- dkrkiic (1g) K .
E_—l _ E_‘g -_kh’c k ( kﬂ( 1g) +1 7T> (BS)
and so [see Eqs. (III.26) and (III. 27)
2 Kglpl)1?
T 24008 _ € e f
N'+i6=-|pl2A'A o o P E
dkk 47Q (B9)

E-E,-khc © (207

For a Lorentzian distribution of (g | Vinitie.,
EIVID 12 [(E; =E)?+172 [} we get

JaEp, I<g[yll>lz—wl(gIV[E)lzp,(E)(gj% z>

(B10)
and Eq. (B9) assumes the form
', 8o > 2
N +za=§?w[<glv|5>( p(E)E,-E,)
X<£[i—i>(ln —1—11{1;,7— +i‘n>. (B11)
2Y ko

Denoting the hydrogen Lamb shift®® by o, and a typical
energy spacing (E,—-E,), whose average contribution
to ay is &y fic, we get

K}®  dolE)/dE

N'+ib=ay —2— " o, (E) {a+1ib) , (B12)
where a and b are of the order of unity
a= EI_EI N T
Ty InlK/RE1
m E, —El
b= . -1 . (B13)
In| K/R¢ 3y

do/dE is the differential scattering cross section from
our continuum whereas oy is the hydrogenic cross sec-
tion, %, is the mean % contributing to the Lamb shift.
Thus for an order of magnitude estimate we have

k€ da/dE

'N ~ —————
N0l e, o AT ®14

Integrating over the continuum molecular band which is
characterized by a width A we get

k(lg) o

IN'|" A=y =4—=T (B15)
ku On

where

or= [ dE|do(E)/dE] (B16)
assuming

kS ~Fy (B17)
and

Or ™0y
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wé finally get
|N' | ~ay/A . (B18)

This result was used in Sec. III.

APPENDIX C: RAMAN SCATTERING FROM AN
OPTICALLY ACTIVE CONTINUUM

In Sec. IV we have presented a solution for resonance
Raman scattering from a dissociative continuum to zero
order in the radiative interaction terms N’ and 6 [see
Eqs. (IV-7), (Iv-8), and (IV-9)]. Itis of some interest
to provide a systematic extension of this treatment to
any order in the radiative interactions. We shall now
demonstrate that the level shift operator for this prob-
lem [see Fig. 1(b)] can be evaluated to infinite order
and can be then subsequently utilized for the systematic
evaluation of the matrix elements of the Green’s func-
tion and of the T matrix. OQOur Hibert space is parti-
tioned as follows:

6=2 2 |g,v,ke){g,v,ke| ,

k,e v
P=2|1,,vac)(l,,vac| , (c1)
1
ﬁ+é=1.
Making use of the formal definition
PRP=PVP+PVQE-H,-QV1{vh (c2)
and representing the radiative interaction in the form
<l95 vac l V!gev’ke> = Vl,:uke= Be(k)fv(El)h(k) (C3)
Rz'zzlﬁ‘zz FlE) FHEDAS(E -E,) , (c4)
v
where
hik)|?
AE-g)= T — (k)] (C5)

x,e E—E,-TFkc

and E, corresponds to the energy of the molecular level
{gev). Note that Eq. (C4) is general.

The general expression for PGP is
PGP =PG,P+ PG'PROGP (C6)
which yields, using Eqs. (C1)-(C5):

5, -B) | 1
E—EI’ E-EJI

Gy =

%1812 23 FE) fo(ED A%(E - viw)Gy, . (C7)
vy 1
This is an infinite set of coupled integral equations for
Gyeye
We now expand (C6) in powers of PRP and get
PGP ~ PGP 4 PG°PRPGP (c8)
which results in an immediate explicit expression for

Gl’l

0(E;—Ey) N | BI2

G: =
- E-E,  E-E.

20 f(E) fEE)

I'4 - 7 .
X -, Aé(E - viw) (c9)

Using this form for G;.; we can find the T matrix ele-
ment for the photon scattering processes:

(g,v, k'el‘ T ‘geo, ke)= 25 Viret,10G 1ot Vi, oxe (c10)
IAN .
which may be written in the following manner:

(gv,k'e’| T|g,0,ke)=p% ée(k)h(k,)h(k)
®A.,,0(E)[1+ |gl220 f—"*i%)

® A, o(E)A%(E - sﬁw)] (c11)

where we have defined the auxiliary functions

Av,S(E)=Z)ﬁ(EE—+ﬁLE(£L)—. s=0,1,... (c12)
1 -4

The s summation in Eq. (C11) is over all the possible
vibrational states of the exit channel.

Defining

~ | Bl2A,,  A%(E ~ sTiw) =N + 6, (C13)

- we get

(g, ke’ | T|g,0,ke)= ﬁf.(k.)ﬁ.(k)h(k')h(k)Av'o

@ [1 5 f‘l—w— (N3'+i63)]
s v, 0 (C 14)

The second matrix element of 7 which is required for
evaluating the various cross sections of our problem is
{1,, vacl Tlg,0, ke) which may be expressed in terms of
(g, kelGll,,vac), i.e., QGP. The formal expression
for Q‘Gl3 is

QGP=(E - §H,Q)™ GRP (E - H,- PRP)™ (C15)

since {g,v, kel Rl 1l,, vac) = V,,, , we may write
Gyre,1 ={g,v, ke| G\ 1,,vac)

1
=% g T Ve G (c16)
Using (C9) and (C16) we obtain

G _ ﬁ&)h(k)f:(El)
et (E _vliw - 7tke)(E —E,)

Baph(k)| Bl
(E ~ vliw — RHc)(E — E,)

®27 A, JXE)AYE - shw) . (c17)

From Eq. (C17) we can now obtain the following expres-
sion for T, o

Th= Vi, + kE Viw Goxier Virox (C18)
vk’
which yields after some algebraic manipulations

T1,00= Bty folE DR(k) [1 -2 (N +i5,) LED

olED
41@%:& (N;+i65)>] . (c19)

We are now in the position to evaluate the various cross
sections: o,(E), 6}(E), and o,(E) using Eqs. (I.2),
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(II.3), (W.4), (I.2a), (II.3a), and (II. 4a) and our ex-
pressions for the 7 matrix elements (C14) and (C19).

We get
0,(E) =~ | B3| R(E/Fic) | p, (E)(A3/2)

®[rmA0,O—E (Red, ) 5,-2 (Ion,s)N;] ,

2 (C20)
oUE)="2- | B|*|n(E/hic) |* o2 (B)
® {A.,,O-EAU,S(NS' +i6)|?, (c21)
0,(E)=2- " o (E)oy ()] 8|2 06 2
| folE,) = 23(N], +10,) £,(E,)
X [1-? %:—j(zv;nas)] |2, (C22)

Neglecting all the terms containing N, or 6,, then ex-
pressions (C20)-(C22) are reduced to (IV.7)-(IV. 9).

It | folE) |>] £(E,

then all the corrections introduced here are of the form
[1+0(¥")+0(5")] which are negligible small. However
'if ImA, o[or fo(E,)] vanish at some energy as is the case
for the Fano problem (Sec. V) then the corrections of
the order of O(N') become important.

N+25v|v 0,1,

APPENDIX D: RESONANCE RAMAN INTENSITIES
FROM A SINGLE DISSOCIATIVE CONTINUUM

As we have shown in Sec. IV the cross section for
resonance Raman scattering o,(Oke ~vk'e’) is propor-
tional to [A4, .12 where

(E) folEy)
A, oE) = deth o Ez:m
=0+
:au,o(E)—iﬂpsz(E)fo(E) (D1)
and
@yo=PP [ dE;p; L(’;'—):JE—(IE—’—) (D2)

In order to have a qualitative understanding of the be-~
havior of this distribution we have solved this integral
numerically for a simple molecular model.

Our assumptions are:

(1) We have a diatomic molecule with a Harmonic
ground state whose potential function is

W,(Q)=3(@*-1), (D3)
where @ is the reduced oscillator coordinate
Q=VMw/% (g ~q,) . (D4)

g is the internuclear distance, g, is the equilibrium
separation distance, and M is the oscillator mass. The
energy is measured in {(fw) units and the zeroth vibra-
tional level is chosen as the energy zero.

(2) The repulsive electronic state has a linear poten-

Resonance fluorescence

tial function with slope %
Wi(Q)=kQ+A . (D5)

(3) The Franck-Condon factors are evaluated by the
“reflection method”, i.e.,

fv(El)QXv[(El_A)/k] ] (D6)

where the continuum wavefunctions are energy normal-
ized (i.e., p;=1) and y, is the Harmonic oscillator wave
wavefunction

Xu(@) = (Vr 2% 1)1/ 2¢71/29% | () O7)

and H, is a Hermite polynomial. Using (D1) and (D6)

we obtain

e fi vy [(E

which may be rearranged in the following manner:

—A)/k]Y (B, - A)/k]
E'-E,

dE,, (D8)

Av,O(E):au,0(€)+iyv,0(€) } (DQ)
where
y0(€) = ppfwd duler2lglerz)
v, 0 - . 4 z
Yo,0l€) = 7 ,(€)Pgl€) , {D10)

where € =(E - A)/k is our new reduced energy param-
eter. Note that ¢ corresponds just to the reduced co-
ordinates @ [Eq. (D4)] at which absorption occurs from
v=0.

We thus have
| Au,0l€)] 2= ary,0(e) [ + [ 7,,0(0) |2 (D11)
and also
Ay o= €)[2= {4,000 |7 . (D12)

Numerical calculations were performed for (D1) in the
approximation (D11) for various values of €. The tran-
sition energy in each case corresponds to E =A +ke and
the band maximum islocated at £ ,,~A. The absorp-
tion line shape from v =0 within a reasonable good ap-
proximation corresponds to o,(€) € e 9 =¢™2 g0 that the
half-linewidth is (in2)!/2~ 0. 83.
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