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Interference effects in sequential decay 
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(Received 17 January 1973) 

In this paper we utilize the Green's function method to study sequential 
decay processes which involve interference effects. The model system 
involves a zero-order discrete state coupled to a set of continua, which are 
themselves coupled together, while the coupling matrix elements are energy 
independent. Interference effects in parallel and consecutive decay involving 
two continua result in the retardation of the decay rate of the initial state and 
in the reversal of the branching ratio for the population of the two continua. 
Finally, a general solution was provided for the problem of sequential decay 
involving multiple continua. 

1. INTRODUCTION 

In  this note we consider some features of the decay of excited molecular  
states. Most  previous theoretical work in this field focused at tention on the 
decay features of a single molecular  resonance [i] .  I t  is often found that  
metastable  states decay by a sequential decay process. A sequential decay 
process is one in which initially excited zero-order  state, which carries all the 
oscillator s t rength f rom the ground state, is coupled to either one intermediate  
state or to a sparse or dense manifold of intermediate  states which, in turn,  are 
coupled to a final dissipative (radiative or non-radiat ive)  cont inuum. T w o  
ext reme physical situations can be now considered : (a) each of the intermediate  

(a) 

Figure 1. Coupling schemes for sequential decay. (a) No interference. (b) Interference. 
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states are coupled to a different final continuum [2-5] ; (b) all the intermediate 
states are coupled to the same continuum [6, 7]. These two types of sequential 
decay processes are portrayed in figure 1. 

Sequential decay processes of type (a) do not exhibit interference effects, 
whereas those of type (b) do exhibit interference. Typical examples of these 
different decay schemes have been treated in the literature. Type (a) processes 
have a long history. Familiar examples involve sequential radioactive decay 
of nuclei and the decay of elementary particles. Recent treatments of internal 
conversion in molecules and non-radiative decay of a small molecule in a medium 
[3] was described in terms of type (a) processes. A complete treatment was 
provided by both the Green's functions method [5] and the Wigner-Weisskopf 
scheme [4]. The importance of interference effects in type (b) processes was 
elucidated by Mies and Krauss [6] in their formulation of unimolecular reactions. 
More recently Rice et al. [7] have proposed that certain photochemical dissocia- 
tion reactions [8] are type (b) processes. Rice et al. [7 a] did not solve the 
complex equations for interfering sequential decay, and this was only very 
recently accomplished [7 b, 9]. 

Lefebvre and Beswick [9] have treated a specific example of a type (b) 
process by the method of Fano and Pratts [10], which was developed primarily 
to treat physical problems involving true continua. Fano and Pratts' formalism 
[10] is rather complicated when extended beyond the treatment of a single 
resonance. It would not be easy to apply that formalism to problems involving 
more than one discrete state and two continua. 

It is our purpose in this note to present a treatment of type (b) sequential 
decay processes by the Green's function method. In our opinion this method 
is easier and more transparent than the method used in previous work [9-11]. 
The present technique can easily be extended to handle more complicated prob- 
lems involving interference effects in sequential decay via several continua. 
Our results should be applicable to optically induced fragmentation processes 
in large molecules. 

2. INTERFERENCE EFFECTS IN PARALLEL AND SEQUENTIAL DECAY 
INVOLVING TWO CONTINUA 

Consider the simplest case of parallel and sequential consecutive decay 
displayed in figure 2 (a), where the initial zero order state Is) is coupled to two 
zero order continua {[l)}  and {Ira}}, which are themselves coupled together. 

0,>} (,m>} 0k>} 

~ V s l  Is> V s m ~  

Vim ~ Vmk 

Vsl Is> ~ 

(a) (b) 

Figure 2. Models for sequential decay with interference. (a) Parallel and consecutive 
decay involving two continua. (b) Sequential decay involving multiple continua. 
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The total hamiltonian of the system is H = H o +  V, where Is), {ll)} and {fro)} 
are eigenfunctions of H 0 while V induces the coupling between the zero-order 
states. The  Green's operator is 

1 1 
G ( E ) = E - H + - - = E - H o  V+i~ 7 ' ~7~0+ (1) 

and its pertinent matrix elements are 

G~s(E)=(iIG(E)Ij)  ; i , j - l s )  ; {fl)}; {Ira)}. (2) 

The time evolution of the system can be represented as a superposition 

W(t)=C,(t)]s)+ 5" C,(t)]l)+ • C~(t)lm >. (3) 
{ll)} {Im)} 

where the sums over the continuum states [3] should be replaced by the integra- 
tions over the densities of states Pl and Pm in the two continua, i.e. 

E -+ I dE,p, ; E -> I dEmpm" (4) 
{11)} {Ira)} 

Following the general techniques of Goldberger and Watson [5], the amplitudes 
Ci(t ) in equation (3) are given in terms of the Fourier transforms of the matrix 
elements of the Green's function (equation (2)), as follows : 

C ~ ( t ) = ~  i I dE exp (-iEt)G~.,(E), 

cj(t)=2@ i I d~ exp (-iEt)C~8(E) ; 
(r 

j ~ l, m,} 

(5) 

where the contour c~ goes from infinity to minus infinity above the real axis. 
The probability of finding the system in the initial state Is) at time t is 

Ps(t) = IC~(t)12 (6) 

while the probabilities P(t) and Pro(t) to find the system in the continuum {]l>} 
and in the continuum { [m)}, respectively, are given by 

Pz(t) = Z Icz(t) l 2, (7) 
l 

Pro(t)= E ]cm(t)[ ~. (8) 
m 

Thus the problem reduces to the evaluation of the matrix elements of the 
Green's function. This is most easily done by using the Dyson equation 

G = G O + GoVG, (9) 

where G O = ( E -  H 0 + i ~ )  -1.  Up to this point our treatment is completely general. 
In order to obtain manageable results we invoke a basic approximation, that the 
coupling matrix elements Vsl= (s[ Vll),  V~m= (l  I Vim ) a r e  energy independent. 

T 2  
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An identical simplifying assumption was used by Lefebvre and Beswick [9]. 
This approximation defines an idealized model for sequential decay. In matrix 
form the Dyson equation becomes 

1 Vsz V~ m 
G S S - E - E s + i v  ~ E-E~+i~? ~ G,.~q E - E ~ + i ~  ~ Gins' (10) 

VIa Gs s + Vtm 
Gzs E - E ~ + b l  E - E ~ + i ~  ~m G~,  (11) 

G ~  E - E m + i ~  E - E ~ + i ~  ~ G~. (12) 

In view of the simplifying assumption concerning the energy independence of 
the coupling matrix elements, equations (10)-(12) can be readily solved. Sum- 
mation of equations (11) and (12) over the {]/)} and {Ira)} states, respectively, 
yields 

Gt~ = V~s(R l - i~rpl)Gss + Vzm(R t - iTrpt) ~ Gms, 
l m 

(13 a) 

Z G..,~ = Vms(R.,-irrpm)G~s+ V.,,(R,,~-irrpm ) Y. G,~, (13 b) 
m 1 

where R l and R m represent the Cauchy principal part (PP) of the sums 

1 1 
Rt=PP~ E_Et=PPI dEtp, E-E;  (14a)  

1 1 
Rm=PP~E_E m PPIdE~PmE_E., (14b) 

It should be noted that for a constant density of states Rt=R,~=O. For the 
sake of simplicity we shall neglect those terms, although they can be easily 
incorporated in the following treatment. Equations (13) can now be solved 
for the sums of the diagonal matrix elements 

Gts = - 7rZVzmVm~PzPm + iTrVl~Pt Gs8, (15) 
z 1 +Tr2Vlm2ptpm 

G~ns = _ ~r~ V~,z VtsPmP z + iTr V,,~p m Gs~" (16) 
m 1 + vr2Vlm2plPm 

From equations (11), (12), (15) and (16) we get 

a.,s= \ ]' (17) 

C'S-\E- E,+i,/ \ J" (18) 
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It will be convenient at this stage to define several auxiliary functions 
characterizing the decay features of the system. Let Ps~ and I2,,, represent the 
apparent zero order widths (which have no physical significance) of a state Is) 
due to its coupling to the two continua 

P,, = 2~r IV,, ]~p,, (19) 

P,m = 27r [ V,m]Zpm. (20) 

The effective number of states in the zero order continuum {[m)} spanned by 
the apparent width [Vml[2pz will be defined by 

N=rr~ I V,,,I~p,p~. (21) 

Finally we shall define two physically meaningful quantities. The width of 
the resonance which will determine the optical line shape and the decay of the 
initial state is 

P,z + P,,~ (22) 
F,=- I + N  

while the level shift is given by 

D,= 2 ~r2plp*~VtmVmsV*z (23) 
I + N  

Inserting equations (17) and (18) into equation (10) we obtain the following 
explicit expressions for the matrix elements of the Green's function : 

1 
G** , (24) 

E - E s - D s +  ~ F, 

G zs = Vts - irr Vzm V, nsPm (25) 

(E -E ,+ i~ ) (E-E~-D. s+  ~ F~) (1 + N ) '  

Gm~ = Vm,- i~V~Vz.,p~ (26) 

(E-Em+i~7) ( E - E s - D s +  2 P,) (I + N) 

The time evolution of the system is now given by equations (5)-(8). It is 
important to note that in the case of two continua we can safely assume that the 
functions F s, D s, p~ and Pm are slowly varying with the energy and can be 
taken as constants during the integration in equations (5). The techniques of 
calculating the transforms of the matrix elements (25) and (26) are given by 
Goldberger and Watson [5]. Thus we get 

Ps(t) = exp ( - P,t), (27) 

P*t+NPsm [ 1 - e x p  ( - r s t ) ,  (28) Pt(t) = r,(1 + N) 2 
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P s i +  Nrst  [1 - exp ( - Pst). (29) P (t) = G(1  + N )  2 

Thus the Green's function technique provides a simple easy way for the solution 
of the parallel-sequential decay problem. Equation (27) was previously derived 
by the Fano method [9-11], while equations (28) and (29) provide an extension 
of the results obtained by Lefebvre and Beswick [9]. 

From these results we conclude that the case of parallel and consecutive 
decay is characterized by the following features : 

(a) The decay of the initially prepared state is exponential, being characterized 
by the decay rate P s- 

(b) The population rate of the two continua exhibits identical time de- 
pendence of the form [1 - exp ( -  Pst)]. The same situation prevails for parallel 
decay into two continua in the absence of interference. 

(c) The branching ratio, r, for the population of the {J/)} and {Ira)} continua 
is 

r = P~(t) _ Psl+ NFsm (30) 
P d t )  + :vrs l  

This branching ratio is time independent. The same situation prevails for 
parallel decay into two uncoupled continua. 

(d) Interference effects are negligible provided that N ~  1. This condition 
(see equation (20)) implies that 

so that interference effects can be disregarded when the coupling I gmtl is 
sufficiently weak; whereupon the apparent width of each state in the {]l)} 
manifold due to coupling with the {Ira)} continuum is negligible compared to 
the level spacing between adjacent ]l) levels. This is, of course, the conventional 
condition for neglecting interference effects. Under these circumstances we 
regain the well-known results for parallel decay into two independent channels 

Ps = Psi + Ps.,, (32 a) 

r = G d G m ,  (32 b) 

where the total width is given by the sum of two independent widths while the 
branching ratio is the ratio of these widths. 

(e) Interference effects in the present decay scheme set in for N ~  1. The 
extreme limit of strong interference is of interest. This situation will be realized 
when N>>I or w21VmlJ~pm>>p1-1, whereupon the apparent widths of the {[l)} 
states due to coupling with the {Ira)} continuum considerably exceed their 
spacing. In this event 

Psz + Psm 
Ps = N (34) 
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while in terms of the coupling matrix elements and the densities of states we 
have 

2 (tVszl~+ l V~'~t2"~ (34a) 
r~ "lv~,l' Pm -P~ / 

Equation (34) demonstrates a unique feature of interference effects for parallel 
consecutive decay. The  decay rate of the initial state is retarded, being decreased 
by the ' dilution ' factor N -i  due to interference between the continua. 

The  population of the two continua in the limit of strong interference is 
given by 

~ 8~t P,(t) - -  [ 1 - e x p  (-I '~t) ] ,  (35) 
P~t + F~ 

Pro(t) Psi Fst+ r~m [1 - e x p  ( -  Pst)]. 

Thus  the population rate of the {]l)} and the {[m)} continua is governed by 
F~m and by F~z respectively. The  branching ratio in this limit is given from 
equation (30) in the form 

r = r ~ / r ~ , .  (36) 

Thus  interference effects result in the reversal of the conventional branching 
ratio (33) obtained for simple parallel decay. 

3. SEQUENTIAL DECAY INVOLVING TWO CONTINUA 

The problem of sequential decay involving interference between two continua 
(figure 1 b) can now be handled as a special case of the parallel-consecutive decay 
problem. The  time evolution in the case of sequential decay will be obtained 
by utilizing the results of w 2 setting Vsm=0 and consequently Fsm=0. The  
resonance width (equation (22)) for this case is 

rst (37) 
F 8 = 1 +  N. 

The level shift (equation (23)) in this case vanishes (Ds= 0) as we have neglected 
the R~ and R~ terms (equation (14)). If these latter are thus retained, a finite 
level shift would result. 

The probabilities of finding the system in the initially excited state Is) in 
the continuum {]l)} and in the second continuum {]m)} are now obtained from 
equations (27)-(29) in the form 

Ps(t) = exp ( - p~t), 

1 [1 - exp ( -  p~t)], t ' , ( t ) = ] - ~  

N [ 1 - e x p  ( -  F~t)]. p~(t)=~ 

(38) 

(39) 

(40) 
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Equations (37)-(40) are identical with those previously derived by Lefebvre and 
Beswick [9], who have pointed out the basic difference between these results 
and the sequential decay scheme which does not involve interference effects [4]. 

The strength of interference effects for this sequential decay scheme is 
exhibited by the magnitude of the parameter N (equation (20)) relative to unity. 
When we would like to eliminate interference effects we have to set N-->0 (or 
reduce the magnitude of the coupling term V, nl). Under these circumstances 
the two {l/)} and {]m)} continua tend to become decoupled and the problem 
reduces to that of the decay of a zero-order state into a single continuum. The 
case of sequential decay with interference is characterized by the following 
features: (a) The decay mode of the initially excited Is) state is exponential 
as is the case for (a 1) the decay into a single continuum, and (a 2) for sequential 
decay in the absence of interference. (b) In the absence of interference effects, 
i.e. N~I, F~=F~l as for cases (a 1) and (a 2). (c) When interference effects 
are prominent, i.e. N>> 1, the decay rate of the initial decay rate is I 's= PsffN, 
exhibiting a retardation effect due to interference in the intermediate continuum. 
This retardation effect is similar to the situation encountered for the decay to 
an initial level via a single intermediate level to a continuum [2]. When the 
width of the intermediate level increases, the decay rate of the initial state is 
retarded. (d) The populations of the two continua exhibit identical time 
dependence. This situation drastically differs from the case of sequential decay 
(case (a 2)) in the absence of interference. (e) The branching ratio, r, for the 
population of the {ll)} and the {[m)} continua is 

r=l/N. (41) 

When interference effects are important, i.e. N>> 1 then r ~  1, and the final 
{Ira)} continuum is preferably populated. On the other hand, when N ~ I  
we have r>>l and the population of the intermediate {]l)} continuum pre- 
dominates. Under these circumstances the two continua become decoupled. 
Thus when interference effects are switched off the present sequential decay 
scheme does not reduce to the conventional case of consecutive decay in the 
absence of interference (case (a 2)) but rather to the simple problem of a decay 
into a single continuum (case (a 1)). 

4. INTERFERENCE EFFECTS IN SEQUENTIAL DECAY INVOLVING MULTIPLE CONTINUA 

The application of the Green's function method for the study of consecutive 
decay problems, which involve interference effects, can be easily extended to 
handle more complicated situations. The only simplifications required are 
(a) the coupling matrix elements are energy independent, (b) the integrals of 
the form Rz, R m (equation (14)) are neglected as a matter of convenience. 

To demonstrate the applicability of these techniques we consider the se- 
quential and parallel decay problem involving two continua (figure 2 b). Making 
use of the Dyson equation (9) the matrix form of the Green's function is 

1 Vs~ Vs~ Vsk 
G~s=E_E~+i +E_Es+i~t G~+E_E~+i ~mGm.~+E_E~+i~Gk~, (42) 
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Vts Vim Vtk 
G,S=E_Et+i ~ G~+ E_E,+i~l ~m Gm~ E-Et+i~l ~ Gks' (43) 

V~s Gss ~ Vml Vmk 
G~=E-E,~+i~I E-E~+i~7 ~ Gts-~ E-E,~+i~ ~k Gk~, (44) 

Gk~=E_Ek+i~l Gs~+E_Ek+i~l~ G'~a E__Ek+i~m G~s" 

Taking the sums over {ll)}, {fro)} and {Ik)} in equations (43)-(45) we get 

J 
where the matrix 

(45) 

(46) 

1 irrptVzm .i~rptVuc 
A =  izrpmV,~ n 1 zrrPmlVmk (47) 

i~'pkVkl i~pkVk~ ] 

is antihermitian. The solutions of equation (46) can be subsequently inserted 
in equation (42) to obtain the explicit form for the Green's function. 

The problem of parallel and consecutive decay involving n continuous 
channels is easily reduced, along the same lines, to the mathematical problem 
of inversion of antihermitian matrix of the nth order. The results are 

Ps(t) = exp ( - r8t), (48) 

27r 
Pi(t) = ~ss Oi ]ai 12[ 1 - exp ( - Pst)], (49) 

ai= [ Vi~-i~ ~ Vsj(I- T)jSlpkVk~ ] (50) 

where the width F~ and shift Ds are 

P~=2,~ Re ~ Vs,(I- T),ij-I&Vjs, (51) 
0 

D , :  ~- Im ~ V~( I -  T)~j-IpjVjs. (52) 
O 

In these equations the indices i indicates the ith continuum, Pi is the density of 
states in the ith continuum, Vc~ is the coupling between the discrete states s 
and the ith continuum, and Vii is the coupling between the ith and j th  continua. 
The matrix I is the unit matrix and the matrix T has elements 

T~. = - i~-p~ V~.. 

It is a simple matter to apply these formulae to numerical problems. 

(53) 
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5. DiscussioN 

We have demonstrated the wide applicability of the Green's function 
methods for the study of sequential decay problems involving interference 
between continua. The most interesting physical results emerging from the 
present treatment involve the retardation of the decay of the initially optically 
excited state due to interference effects and the effects of interference on the 
population of the dissipative coupled continua. 

From the physical point of view these theoretical models may be of interest 
for the elucidation of the features of multistage photo-fragmentation processes. 
In this case an initially optically excited state of a large molecule decays into an 
intramolecular dense quasi-continuum of highly excited bound vibronic levels 
of a lower electronic configuration. These highly excited vibronic levels (cor- 
responding to a low electronically excited state) may then subsequently decay 
into a dissociative continuum by predissociation. Under these conditions the 
role of interference effects may be crucial in determining the details of the 
photofragmentation reactions [8]. 
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