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In this paper we present a theoretical study of the physical properties of solvated electrons in ammonia 
based on the Copeland-Kestner-Jortner model, which incorporates short-range interactions uia a first 
solvation layer and long-range interactions via polaron modes. We have studied bound-bound and 
bound-continuum optical transition emphasizing the problem of line shapes in absorption and emission. 
The total energy of the ground and excited states and its dependence on nuclear configuratiens was han- 
dled by three successive approximate calculations: (a) a temperature dependent potential including 
short -range radial displacements; (b) a temperature independent potential incorporating both radial and 
angular short-range displacements; (c) a multidimensional potential surface including both short-range 
and long-range (polaron) nuclear displacements. The calculated line shapes in absorption for a single sol- 
vent configuration include major contributions from short-range radial displacements and from the po- 
laronl modes. The energy and line shape for the 2p -* ls  emission band is predicted. A general formula is 
presented for photoionization cross section including the contribution of all medium modes and in this 
caise the role of the polaron modes is crucial. 

I. Introduction 
In our previous paper,2 we advanced a model for the 

solvated electron in polar fluids which took into account 
the strong short-range interactions of the electron and the 
first coordination layer solvent molecules as well as the 
long-range interactions with the bulk medium. This 
model was capable of yielding quantitative information on 
the properties of solvated electrons in ammonia as well as 
providing qualitative data on excess electrons in other 
polar solvents. In the latter cases we did not attempt a 
detailed study. Rmxntly, Fueki, Kevan and Christoffer- 
sen, in particular, have applied a similar model to study 
solvated electrons in water and a l ~ o h o l s . 3 ~ , ~  Although 
many questions remain concerning the trends observed in 
wideby differing solvents4 and solvent mixtures,4-' these 
are predicted well enough by our model to allow us to 
consider an entirety different set of problems, namely the 
details of radiative processes in which the state of the 
electrlon changes. 

In this paper we will use metal-ammonia solutions as a 
representative system for the study of these processes. We 
expect the same general behavior in other polar fluids ex- 
cept that the relative rates of the various processes could 
change in different solvent systems. We will begin with a 
display of the latest calculations on our model2 as well as 
an improved version. These new results provide a better 
insight into the physical properties of the solvated elec- 
tron. We shall focus attention on the radiative processes 
of the solvated electmn and, in particular, the observed 
absorption line shapes for bound-bound and for bound- 
continuum transitions as well as the yet unobserved emis- 
sion line shape and the photoionization profile. The study 
of optical line shapes provides a starting point for the un- 
derstanding of nonradiative processes of the solvated elec- 
tron, such as electron capture from the conduction band 
to form the localized ground state, or the reverse process 
of thermal ionization of the ground state and of excited 
states. In general, the nonradiative transition probability 
can be expressed in terms of a generalized line shape 
function in the limit of zero frequency. However, in view 
of the special nature of the problem, where the localized 

excess electron wave function is strongly dependent on the 
(short-range and polaron type long-range) nuclear coordi- 
nates, the theory of the optical line shapes presented 
herein requires a gross modification before it can be ap- 
plied for the elucidation of the nonradiative decay pro- 
cesses of the solvated electron. 

11. Calculations 
A.  Temperature Dependent Potentials-One-Coordinate 

Model. Let us briefly review the Copeland-Kestner-Jort- 
ner model2 which incorporates the following features. 

(a) We assume that in the first coordination layer 
around the electron there will be a small fixed number, N,  
of solvent molecules. In this work we will assume values of 
N = 4, 6, 8, and 12, although the first two numbers seem 
to be most physically relevant. 

(b) The solvent molecules in the first layer interact with 
the electron uia their permanent and induced moments 
and with other solvent molecules in the first coordination 
layer uia their repulsive forces, i .  e., primarily hydrogen- 
hydrogen repulsions and dipole-dipole repulsions. 

(c) The electron interacts with the continuum beyond 
the first coordination layer in two ways. First of all it 
reacts with the inertial polarization field in the same way 
as in polaron theory. The use of adiabatic polaron theory 
is justified since we have treated the strong short-range 
interactions separately. The additional interactions with 
the solvent are contained in the VO term. The quantity VO 
represents the energy of a quasifree electron in the same 
medium -8  

(1) Address correspondence to this author at the Department of Chem- 
istry, Louisiana State University, Baton Rouge, La. 70803. 

(2) D. A. Copeland, N. R. Kestner, arid J. Jortner, J. Chem. Phys., 53, 
1189 (1970). 

(3) (a) K. Fueki, D. F. Feng, L. Kevan, and R. Christoffersen, J. Phys. 
Chem., 75, 2297 (1971); (b) D. F. Feng, K, Fueki, arid L. Kevan. 
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(d) 'The energy to form the cavity will involve surface 
tension work, JEST> hydrogen repulsions between solvent 
molecules, E", dipole repulsions between solvent mole- 
cuies in  the firbt coordination layer, Edd,  pressure volume 
work, E p v ,  and since we will use the adiabatic theory, an 
energy to polarize the medium. 

The electron wave function &(r)  will be determined by 
the solution of the aidiabatic equation (in atomic units) 

(1) 1 (---g2 2 + V ( r ) ) @ , ( r )  = W,@,(r )  

where the potential is 

V ( r )  = -N,ue /rd2  - pe2 / r ,  

V ( r )  = -Npe/rd2  - pe2/r,  + Vo 

(0 < r < R) 
( R  < r < r )  (2)  

V ( r )  = -pez/r + V,  (rd  < r )  
The relevant coordinates are defined as in Figure 1. In 

this model (referred to as Model 3 in our previous paper2) 
r d  is the distance to the dipole from the center of the cavi- 
t y  and rc is the distance to the start of the continuum 
which lies beyond the first coordination layer. In this 
model it is assumed that the parameter, Vo, the energy of 
the quasifree electron in the medium also represents the 
Interaction of the electron with the molecules in the first 
layer beyond that due to inertial polarization effects and 
the small electronic polarization c o n t r i b u t i ~ n . ~  VO is not 
known experimentally. It has been estimated as -0.5 eV 
in liquid arnrnonia,lO but we shall report calculations for 
Vo = 0.5,0.0, and -0.3 eV. 

The value of the effective dipole moment, p,  is equal to 

p = po C O S  e (3) 

where 0 is the angle between the radius vector and the di- 
pole moment vector. In the calculations of this section we 
will assume that the cosine can be replaced by its average 
value which can be calculated by the Langevin function, 
1. e. 

( C O S  0) = coth x - x-' (4) 

x = poeC/kTrd2 (5) 
and C is the charge enclosed. When considering the 
ground state or any state arrived by a vertical (Franck- 
Condon) excitation C is that  for the ground or 1s state, 
Gls ,  which is 

This calculation will be referred to a temperature-depen- 
dent model since at  each temperature a different equation 
is solved so that the :potential (2) and the resulting config- 
urational diagrams, are temperature dependent. This ap- 
proach slightly complicates matters, if one wishes to con- 
sider temperature dependent properties. 

The total electronic energy for state i will be given by 

Eeli = w; + si 

Si =: - -NaCi2 / r t  - eyoCi2/2r, 

( 7 )  

( 8 )  

where the small polarization term is 

where C, is the eha:rge enclosed within radius R for the 
state i in question. 

The medium reorganization energy is the same as cal- 
culated in our ear1ie:r paper and outlined elsewhere.2,'1 It 

Figure 1. Definitions of the distances involved in the molecular 
models. rv is t h e  void radius of the cavity, rs is the effective sol- 
vent radius, and 5 is the effective hard core of the molecules lo- 
cated at a distance rd from the center of the cavity. The contin- 
uum begins at r, (see ref 22) .  

is the sum of the terms listed above under item (d) 

E,, = E,, i- E,, + Edd, + E p v  + (9) 
One modification of the earlier work is the term Ed&, 

the repulsion of the oriented dipoles. 

(10) 

where 
= po(cos  e ' )  + eaC,/r: (1 1) 

includes the correct induced dipole moment.lz The con- 
stants, D N ,  are listed in our earlier paper.2 The hydrogen- 
hydrogen repulsion term is modified from earlier work2 as 

E,, = CHH(N) (exp[-4.6(ANR -. B N ) ]  (cos 6 ) 1 (12) 

where the constants are listed in ref 2 . l 3  The modification 
is in the last factor. This is added so that when (cos 0) 
goes to zero this contribution will vanish; i.e., the interac- 
tions will be the same as those in the bulk liquid. The re- 
maining terms of eq 9 are evaluated as in ref 2 and 11. 

In our calculations we assume that the 1s and 2p func- 
tions can be represented by single Slater type atomic or- 
bitals whose exponents can be determined by the varia- 
tional method. This choice is not ideal as the potential 
which traps the electron is very deep and near the center 
of the cavity resembles a particle in a b o ~ . ~ J ~  Neverthe- 
less, a t  larger distances the potential is coulombic. The 
error in this approximation is calculated9 to be about 10% 
for the ground-state energy. The general features of the 
results are not affected by this assumption. The electronic 
energy is minimized for a fixed temperature and then the 
polarization and medium reorganization energy terms are 

(8) This quantity is presented in detail in the work on nonpolar fluids; 
e.g., D. E. Springett, M. H. Cohen, and J. Jortner, Phys. Rev., 159, 
183 (1967). 

(9) An improved model ha5 been used by A. Gaathon and J. Jortner 
(unpublished research). In that model two V O  values are used, one 
in the first layer and another for the continuum. in that case elec- 
tronic polarization with the first layer is not included separately. For 
ordinary liquid densities this improved model is sinilar to our re- 
sults. In polar gases the results are quite different. 

(IO) A. Gaathon and J. Jortner, Proc. Colloq. Wey! I / / .  in press, have a 
more accurate estimate of -0.22 eV for ammonia. 

(11) J. Jortner, Ber. Bunsenges. Phys. Chem., 75 ,  696 (1971). 
(12) In ref 2, Cs is incorrectly written for Ci. 
(13) In ref 2 there is another misprint in Table i I  for the constants in the 

hydrogen-hydrogen repulsion. A6 should be 1.414 and BE should be 
0.600. 

(14) J. Logan and N. R. Kestner,J. Phys. Chem.. 76, 2738 (1972). 
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TABLE I: Results of kh3del 3 Calculations 
One-Electron Cavity (Ammonia) (203'K) 

V O  == 0.5 eV VO = 0.0 eV Vo = -0.5 eV 

N = 4  
Et (I= MI) --0.:537eV -0.909eV -1.30eV 
E, I -- 1 .668 -2.010 -2.404 
RO - 1 .'75 A 1.75A 1.70 A 
,qoeff a 3.1 3.1 A 3.0 A 
hv 1.16eV 1.03 eV 0.94 e V  

EL -0.l578eV -0.972eV -1.294eV 
Eel -2.069 -2.326 -2.603 
Ro 2 2 0  w 2.15 A 2.15 A 
RoefS 3.1 A 3.0 A 3.0 8, 
hv 1.:30 eV 1.15eV 0.99 eV 

"6 

a Roe*r is the effective cavity radius measured by volume expansion 
experinients and hu is the owest allowed optical transition. 

subsequently added. The optimum cavity size, Ro, is de- 
termined by minimizang the total energy 

so t h a t  

The results of these calculations at 203°K and for N = 4 
and 6 are listed in Table I and plotted in Figures 2 and 3. 
These results supercede those published in ref 2. Logan 
and Kestner have also evaluated the first excited s type 
state (2s) of this system14 obtained by vertical excitation 
from the ground stale. It is shown in Figures 2 and 3 for 
comparison and labeled as the 2s curve. 

In the above calculations we have evaluated the energy 
and properties of excited states as they arise in a Frank- 
Condon transition from the ground state; i.e., the inertial 
polarization of the first coordination layer and the contin- 
uum is fixed at the values appropriate for the charge den- 
sity of the ground or Is state. If the excited state is suffi- 
ciently long lived the inertial polarization could relax to a 
value appropriate for the equilibrium nuclear configura- 
tion of the excited state in question. We have evaluated 
the relaxed 2p states and the relaxed Is state in which the 
inertial polarization is determined by the charge density 
of the relaxed 21, state. This means that in the average of 
cos H and in p~ we use the 2p charge density and the re- 
laxed 2p wave Eunctiions. The results are summarized in 
Table IV where the maximum of' the 2p - 1s emission is 
also listed. I t  is significantly red shifted from the absorp- 
tion. The potential curves for these states are also shown 
in Figures 2 and 3 for two typical cases. 

Also shown in Figures 1 and 2 are curves for the vertical 
continuum level, V,, I e ,  the energy of the quasifree elec- 
tron if the cavity and medium have their inertial polariza- 
tions fixed a t  the values dictated by the charge density of 
the ground state. 

T h e  curves represented by Figures 1 and 2 along with 
others to be presented below can now be used to study the 
details of electronic excitations as well as radiationless 
processes. 

B. 'Temperature Independent Potentials-Two-Coordi- 
nate Model. In our previous work temperature has entered 
our calculations in two different ways. First of all, tem- 

"I 06 I I\ 

, I  I I I t I I I i  
1.5 2 2 5  3 3 5  4 4 5  

R (H) 
Figure 2. Configurational diagrams for t h e  total energy as a 
function of the radius R for various electronic states when N = 
4, V o  = 0.0 eV, and T = 203°K. The ground state is denoted by 
1s and the two bound excited states and the continuum level 
which exist when the polarization field is determined by the  
ground state are denoted by 2s, 2p, and V,, respectively. T h e  
2p state is the lowest energy Q state w h e n t h e  polarization is 
determined by the 2p excited state, and the 1s state is t h e  low- 
est energy level under t h e  same polarization. 
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Figure 3. Configurational diagrams for the total energy as a 
function of the radius R for various electronic states when N = 
4, V o  = -0.5 eV, and T = 203'K. The  notation is the  same as 
in Figure 2 

perature modifies the physical parameters characterizing 
the medium. Secondly, the electron-medium potential ex- 
plicitly contains the temperature in that we use a temper- 
ature averaged cosine of the dipole orientation. The medi- 
um parameters change slowly with temperature whereas 
the average of the cosine changes rapidly. Thus it is ad- 
visable to advance a model in which temperature effects 
are kept out of the quantum mechanical calculation. One 
can always reintroduce thermal averages by the appropri- 
ate Boltzmann weighted average. In addition, however, 
one can consider the effects of the fluctuations in the cos 0 
term as they affect various properties. 
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Figure 6. Temperature-independent potential model configura- 
tion diagrams for the total energy as a function of the radius R 
for N = 4 and Vo = -0.5 eV. T h e  last subscriDt now refers to 

figure 4. Configurational diagrams for the ground-state total 
energy as a function of and 0,  = 4, vo = -o,5 The 
numbers  refer to constaiit potential surfaces in eV. 

the value Of COS 8. Only Curves for two values oi cos 0 are plot- 
ted. Each state has the bulk medium polarized according to its 
electron density (see text). The dots labeled 1s denote the tem- 
perature averaged result where (cos e),, = 0.8-0.9. V M  is the 
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- R (A, Finure 7. An exDanded view of t h e  u m e r  oortions of Fiaure 7 in- 
clGding the completely oriented dipole curve for the  continuum 
or medium level. The indicates the position of the min i -  
mum for the I s  state. 

Figure 5. Configurational diagrams lor the 2p excited state as a 
function of R and @. Notation and parameters identical with 
those in Figure 4 .  

It is a simple matter to extend our previous formalism 
for the calculritiori of temperature-independent energies. 
Instead of using the temperature averaged values of cos 0 
in eq 3, 11, and 12,  we evaluate the energy as a function of 
both R and cos 0 where cos 0 can range from 0.0 to 1.0. 
Such potential energy surfaces (i. e., configurational coor- 
dinates) for the 1s arid 2p states are displayed in Figures 4 
and 5 .  

There is still one problem in defining how that energy is 
to be calculated since we have averaged the set of coordi- 
nates representing the medium quasi-polaron modes. The 
thermally average effect is included in p and their effec- 
tive displacement is included in the a term. There is a 
choice as to what a value should be included with each 
energy state. We have included in the curves of Figures 6, 
7 ,  anti 8 the vaEur of n appropriate to the state in ques- 
tion. Thus t he difference between curves do not represent 
vertical excitations in terms of the medium coordinates. 
To obtain vertical excitations from these curves one needs 

to correct for the difference in x values. Thus it is impor- 
tant to note that the 2p curves contain xP calculated with 
2p wave functions, the 1s curves contain ns calculated 
with 1s functions, and the continuum or Vm curves do not 
contain any contribution of K. The last subscript on the 
curves refers to the value of cos 0. We have presented in 
Figures 6-8 only the cos 8 = 0.0 and cos 0 = 1B results. At 
small radii the one term wave function is inadequate. In 
addition, remember the T term is not the same for any 
two curves and for a vertical process they will be sepa- 
rated by the differences in the values of n appropriate to 
the various states and this is a few tenths of a volt. 

To relate this to our previous work,2 we must remember 
that before we used (cos O)l, for all Franck-Condon transi- 
tions. The value of (cos @)I, for the ground state is about 
0.85. In Figure 6 we indicate for reference the position of 
the thermally averaged results for 1s versus lsl. 

The use of this temperature-independent potential to 
calculate the thermally averaged energy of the bound 
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- 
O '  r 

Figure 8. Temperature-independent potential model configura- 
tion diagrams for the total energy as a function of the radius R 
for N = 6 and V O  := -0.5 eV. Notation is the same as in Fig- 
ures 7 and 8. 

states leads to almost exactly the same answers as in our 
previous calculation since for values of cos 8 above about 
0.6 the energy i s  a h e a r  function of cos 8 and thus aver- 
aging yields the same Langevin result as before. However, 
for weakly bound stiites and small values of cos 8 this ap- 
proximation is poor and thus the relaxed 2p states would 
probably change slightly if the proper averaging were done 
with a tempemture.independent potential. It is unlikely 
that the relatiue behavior of the previous relaxed 2p and 
Is states would change greatly. 

A Absorption Line Shape for the  I s  - 2p Transition. 
In the previous sect ion we have presented configuration 
diagrams for the ground (1s) and excited (2p) states of the 
solvated electron in ammonia. With these curves and a 
few reasonable assumptions we can calculate the h e  
shape expected from this model. These assumptions are as 
follows. (a) The classical high-temperature limit for the 
absorption line shapie can be safely used. This approxima- 
tion implies that the relevant frequencies are lower than 
the thermal energies. The fundamental totally symmetric 
radial. vibration of the electron cavity is about 80 cm-l, 
while the characteristic frequencies of the medium modes 
are estimatedl5 to be of the order of 1 cm-l .  Thus in the 
relevant temperalare region 200-300°K this approxima- 
tion i~ valid. (b) The semiclassical Condon approximation 
is invoked, whereupon the electronic transition moment is 
independent of the nuclear configuration. This is also rea- 
sonably good for the ranges of R considered (see section 
-44). The intensity distribution function, F ( E ) ,  for optical 
excitation a t  energy E for one configuration of the cavity 
can be recast in the general form 

where M is the electronic transition moment, 2 is the 
ground state partition function, and a and /? represent the 
vibronic levels of the initial (Is) and the final (2p) states, 
respectively. These vibronic levels are characterized by 
the energies eo  and tp  and by the vibrational wave func- 
tions x,(X) and x b ( X ) ,  respectively. The generalized coor- 

dinate x represents the set of the radical, R, and angular 8 
coordinates of the first coordination layer and the solvent 
Dolar modes { q  outside this first layer whereupon X E 

( R ,  8,  IqKJ) .  
Extensive theoretical studies have been performed16 

to derive explicit expression for the line shape function 
(16). General closed expressions can be derived only with- 
in the framework of the harmonic approximation which is 
inapplicable for the present problem as the potential sur- 
faces for the R and 8 coordinates exhibit large deviations 
from the harmonic model. However, in the high-tempera- 
ture limit, Kubo and Toyozawal7 have derived a general 
expression for the line shape which is valid for any set of 
potential surfaces 

X E  + VL(X) - U,(X)) (17) 
where U,(X) and U f ( X )  correspond to the potential surfac- 
es of the initial (1s) and the final (2p) electronic states. 
Thus, in the present case, we can write 

F ( E )  == - 'lMP JdX exp[-E,'"(X)/hT! X z 
) - E?p(X>) (17a) 

Equation 17a demonstrates that in the high-temperature 
limit the radiative transition occurs a t  energies E = 
E+(X) - E+(X) in accordance with the ciassical 
Franck-Condon principle. 

A 1. One-Configurational Coordinate Model. Neglecting 
the role of the medium modes and utilizing the tempera- 
ture dependent potential the energies E P ( X )  and Et2P(X) 
are a function of a single radial coordinate X E R, which 
corresponds to the cavity radius. We thus assume that the 
dependence of the energy on the nontotally symmetric vi- 
brations is small and that the major contribution to the 
line width originates from the totally symmetric mode. In 
addition, the triply degenerate 2p electronic state is not 
split by this symmetric mode. 

The line shape is now obtained from eq 17a in the form 

In Figure 9 we show the results of one calculation of the 
line shape for a particular choice of parameters. This fig- 
ure is similar to that of our earlier paper.2 We include it 
in this paper in reference to the more detailed calcula- 
tions to be presented below. The conclusions regarding 
this curve are the same as we presented earlier.2 We have 
observed, however, that  when cos 8 is fixed a t  1.0 rather 
than its thermal average the line shape is more asymmet- 
ric toward lower energies. This observation can be ration- 
alized by noting that the cos 8 dependence of the excited 
2p state is very weak around cos 8 = 1. Thus by utilizing 
equation 17 for the medium one can show that the contri- 
bution of this mode to the line shape will result in a 
broadening only toward lower energies. This one coordi- 
nate (cos 8) line shape will be an exponentially decaying 
function with a width of (In 2)kT, which is quite small. 
Detailed numerical calculations presented in the next sec- 
tion confirm this qualitative conclusion. 

(15) V G Levlch, Advan Electrochem Electrochen? Eng 4, 249 

(16) M Lax, J Chem Phys , 20,1752 (1952) 
(17) R KuboandY Toyozawa. Progr Theor Phys 13, 160 (1955) 

(1966) 
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ciicuiation 

t N =  

80 85 SO S5 13 105 110 115 

Figure 9. Optical lineshape for 1s - 2p transitions calculated 
from the potential dependent configurational diagrams with a 
single (R) mode. N == 4 V O  = -0.5, and T = 300°K. 

Energy ( e W -  

, f -  0.9 1 1 1  1.2 

203' K N = 4  
/ 

Energy (eV) 
Figure 10. Line shape:; calculated at 203'K and VO = -0.5 eV 
by the temperature-independent two (R,  B )  mode potential 
model. On t h e  left are the line shapes for the  N = 4 and N = 6 
cavities including the N = 6 results normalized by its relative 
Boltzniann factor. On the  right is the composite line shape ob-  
tained from the N = 4 and N = 6 cavities following eq 19 in the  
text. 

A2. Two-Conf~~imitional Coordinates (R ,  cos 0). In ad- 
dition to the configurational coordinate, R, the cavity ra- 
dius, it is very easy for us to study the dependence of an- 
other set of short range coordinates on the energy and line 
shape, namely cos 0.  We will assume that the cavity is 
still spherical but thtat the dipole can move together in a 
way described by their collective coordinate, cos 8. It is 
now a simple matter to take the various potential curves 
and properly weight the transition energies, according to 
eq 17a. This was done for the absorption spectra by fitting 
the ground state energy and the excitation energy to a 
power series in cos 8 (a linear relation is sufficient for 
large values of cos 8 ) .  

On the left side of Figures 10 and 11 we have plotted 
line &apes for N = 4 and 6 and VO = -0.5 eV for two 
temperatures, 203 arid 300°K. By comparing Figures 9 and 
10 WE' see that the cos B mode results in small broadening 
a t  low energies and contributes little to the half-width. 
Withnn our curve fitting error of about ~k0.004 eV we can 
see no effect on the half-width. 

In Table X we see that, the Calculated ground state ener- 
gy for the cavity with four and six coordination numbers 
are very similar, Tn our earlier work2 i t  was also pointed 
out that  the oscillator strengths of the two cavity models 
were simi1ar.l" With these conditions and our previous as- 

L-L__L_,L 
0.9 f 1.1 1.2 

Energy ( e V )  

Figure 11 .  Line shapes calculated at 273°K and V o  = -0.5 eV 
by t h e  temperature independent two mode potential model. The 
notation is the same as in Figure 10. 

sumptions we can write for the total expected compound 
line shape involving contributions for different short range 
configurations 

F,(E) = F,(E) -+ exp(-AE'/hT)F,(E) (19) 

where AE" is the difference between the ground state 
energy for the 4 and 6 member cavities. This is calculated 
a t  the minimum of potential curves. In our two-coordinate 
model it is calculated a t  the radius corresponding to the 
lowest energy for cos B = 1.0, On the right side of Figures 
10 and 11 we plot the total line shape calculated by eq 19. 
In principle one should also add contributions for N = 8 
but since it has a significantly higher total ground state 
energy in our model it would contribute very little. 

A3. Role of Solvent Modes. Thus far we have neglected 
or rather suppressed another set of coordinates, namely 
the solvent polaron modes. These are included in our cal- 
culation in an average way via the p parameter in the po- 
tential and the P contribution. The general potential 
energy surfaces including the polaron modes can be recast 
by separating the long-range and the short-range nuclear 
displacements, so that 

where the f and g functions describe the contribution of 
the first coordination layer and the medium to the total 
energy when these coordinates are displaced from their 
minima. 

Following Levich we shall invoke two approximations to 
specify the contribution of the medium modes:15 (a) the 
harmonic approximation whereupon small displacements 
of the medium modes are considered around the equilibri- 
um configurations {qK"(ls)) and (q r0 (2p) ]  in the two elec- 
tronic states; (b) the medium modes will be approximated 
by the single mean frequency wo in both electronic states. 
Qualitative estimates yield19 hwo sec-l = l c m i l ~  

(18) This is confirmed by unpublished calculations of A. Gaathon and J .  
Jortner. The previous values of the  oscillator strengths published in 
ref 2 are in error due  to a numerical error and the use of the dipole 
length formula. For fur ther  discussion see A. Gaathon, J. Jortner, 
and N. R. Kestner, Chem. Phys. Lett., in press. 

(19) R. Dogonadze, Ber. Bunsenges. Phys. Cham., 75,628 (1971). 
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ti wo E,"(X) = J'LP(R,B) 4- ,C(S, - q,P(2pD2 + 
h 

Et@(XoZP) (23) 
Defining a new set of medium polaron coordinates QK 

= qK - q K o ( i s )  a t  reduced shifts of the minimum config- 
uration 6~ = qii"(lrj) - "(2p) we can write 

EI'YX) = fZp(R,B)  +YZQ: 4- fioocS,Qg 

where the energy gap is 
+ E, + A E  (25) 

AE =: E,2p(X2P) - E,"(Xols) (26) 

represents the difference between the energies of the two 
states a t  equilibriuni nuclear configurations. We have also 
defined an energy (Stokes) shift 

( 2 7 )  

Levich has shown15 that E, can be expressed in the form 

E, = L J ( D .  - D$dV (28) 8nP ,. 
( 29) 

where D, and DI, are the electric displacement vectors in 
the s and p slates while P, and Pp are the corresponding 
polarizations of the two states. 

I t  is possible to make some very rough statements con- 
cerning &. It behaves somewhat like the difference in the 
a term calculated using the 1s wave function and that cal- 
culated using the 2p wave function. Since we know these 
are two magnitudes similar, we expect Es is small. TQ ob- 
tain a reliable value of E,  we have used the wave func- 
tions obtained to calculate Ds and Dp. For N = 4 and Vo 
= - 4 . 5  we obtain a value for Es of 0.024 eV. 

Foc.using attenti011 on the line shape (eq 17) we note 
that I;he factorization of the potential surfaces into short- 
and long-range contributions enables us to recast F(E) in 
the form of a convolution. Neglecting the contribution of 
the B mode (see section A3) we can write 

dt exp[-fdR) / kT1 X 

1 - f zp (R)  - AE - €1 X 

K 2 / 2 k T I  6(t -f iwOCQ,6, - E ,  - AE) (30) 
K 

Defining the line shape functions for the two modes 

dR exp(-fidR)/kT)6(E + f,,(R) - 
fZP(R) - 6) (31) 

? ( e )  = J!IdqK ~ ? x p [ - f i w ~ ~ Q K 2 / 2 k T ] 6  x 
(t - ~ W O C  S,Qx - E, - AE) (32) 

The line shape takes the form of a convolution 

(33) 

The line shape a originating from the radial cavity dis- 
placement was calculated previously and is given by 

@(E t )  = A ( E  - E )  (34) 
where A is given by eq 18. The line shape ( E )  for the har- 
monic medium displacements can be easily evaluated uti- 
lizing the techniques of Kubo, Toyozawa,l7 and Lax16 and 
is given by the Gaussian distribution 

The half-width of this distribution is given by 

Numerical calculations yield for Vo = -0.5 and N = 4r7 
= 0.07 eV. On the other hand, the width of the distribu- 
tion A ( E  - e )  is 4 = 0.12 eV a t  300°K. As the A distribu- 
tion can be reasonably well approximated by a Gaussian 
the total width, r, of the line shape (33) is given by the 
sum of the two widths 

r = A +r,  = 0 19 eV ( 3 7 )  

We thus conclude that the contribution of the medium 
polaron modes to the line broadening of the bound-bound 
1s - 2p transition is relatively important; however, it stili 
cannot explain the discrepancy between theory and exper- 
iment. 

A4. Conclusions and Other Possible Source of Line 
Broadening. Rased on our calculations several general 
comments can be made. (1) Even though the calculated 
1s -+ 2p absorption lines we have are quite broad they are 
narrower than the experimental widths by almost a nu- 
merical factor of 2. (2) The partiqular vibrational motion 
of the first coordination layer dipoles, namely cos 8,  does 
not contribute significantly to line broadening. Almost all 
of the line shape arises from the spherically symmetric 
vibrations and from the long-range polaron modes. (3) 
The contribution of several types of cavities does contrib- 
ute to line broadening but is not capable of leading to ex- 
tremely wide lines. Furthermore, if this were the primary 
reason for broad line shapes then the half-width should be 
greatly dependent on the density of the fluid, and the best 
available data10920 for electrons in supercritical vapors 
suggest it is not the case. In the case of dense water vapor 
the line width does not vary greatly even when the gas 
density is reduced to 2% of the normal liquid water densi- 
ty.10 (4) The theoretical line shapes are slightly asymmet- 
ric on the low-energy side while the experimental results 
are very skewed towards high energy. This asymmetry 
originates from the contribution of the 8 mode. This slight 
low-energy asymmetry is removed if one properly includes 
the variation of the oscillator strength across the band. 
This variation of the oscillator strength across the band is 
about 30% and it will produce a more symmetrical line of 
almost the same width. ( 5 )  The theoretical line widths be- 
have as (T)1/2 contrary to experimental data21 which show 

(20) R. Ofinger, U. Schindewolf, A. Gaathon, and ,I Jortner, Ber. Bunsen- 
ges. Phys. Chem., 75, 690 (1971). 

(21) D. F. Burrow and J. J. Lagowski, Advan. Chem. Ser.. No. 50, 125 
(1965). I. Hurley, T. R .  Tuttle, Jr., and S. Golden, "Metal Ammonia 
Solutions," J. J. Lagowski and M. J. Sienko. Ed., Butterworths. 
London, 1970. 
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a much weaker tem:perature dependence in dilute metal 
ammonia solutions 

The final comparison between the latest theoretical and 
experimental results are summarized in Figure 12. The 
fact that the maxima of the two curves do not agree is not 
important, but, their great difference of shapes is crucial. 
There are many possible explanations for this qualitative 
discrepancy. 

First of all, it is possible that our model is not accurate 
enough especially with regard to  the small differences be- 
tween the AI = 4 and N = 6 cavities. This is possible but 
rather unlikely since no matter what relative energies are 
assigned to the two species the observed spectra cannot be 
duplicated. For example, if they are moved far apart the 
composite spectrum will have a dip between the two 
peaks. 

Another explanation commonly proposed is that the 
high energy tail oi' the absorption involves higher excited 
states (3p, 4pp, even continuum levels). Within our model 
this can also be ruled out. The higher excited states 
should have electronic energies given by a Rydberg-like 
formula 

This works well even for the 2p state and should be even 
better for the 3p and 4p levels. Using eq 38 we can locate 
the Is - 3p and :bs --* 4p transitions relative to the Is - 
2p transition. However, as shown in Figure 12 these lie at  
very high energies and in order to  explain the experimen- 
tal data even approximately they would have to be ex- 
tremely broad and carry an extremely large oscillator 
strength. From the calculation of all previously considered 
line broadening factors it is unlikely that they would have 
half-widths over 0.4 eV. Other calculations indicate that 
the oscillator strength available to all excited states be- 
yond 2p is small.18 These excited levels should also be 
greatly affected by the density of the fluid since they de- 
pend directly on p and yet lines in very low density water 
vaporlo are as broad as those in the liquid. Also, Lug0 and 
Delahay22 were not successful in a phenomenological fit- 
ting the solvated elel-tron spectrum with up to four gauss- 
ian diistributions. These remarks apply to water and am- 
monia. 

Thcs the question of the extremely broad lines remains. 
Two other explanations have been proposed which have 
not been fully evaluated as yet. 

Thus far we ha\e assumed spherical cavities with 
spherically symmetri.cal vibrations. Asymmetric fluctua- 
tions might lead to  an appreciable increase in the half- 
width. However, t,he 2p excited state energy is almost in- 
dependent of any noiispherical vibrations of the first coor- 
dination layer and since the estimates indicate that asym- 
metric modes have a very small force constant one calcu- 
lates -,hat at most they could contribute hT In 2 or 0.012 
eV to the half-width. Less well understood is the Jahn- 
Teller effect on the line shape but in any case it will lead 
to  asymmetric lines and increase the width as \/T,23 both 
ideas contrary to  experimental data. 

Another possible explanation of the line shape is a per- 
manent dist,oreior: 01' the cavity from its spherical shape. 
I t  is hard to justify such a model but it could arise from 
the rapid exchange of solvent molecules between the first 
coordination layer and the bulk medium. At any one in- 
stant one would have a variety of cavity shapes. The aver- 
age would be represented by our model but large devia- 
tions from i.t would be possible. This was considered for 

Energy ( e V )  

Figure 12. Typical transition energies and line shapes obtained 
from these models in comparison with typical experimental data. 
The 1s - 2p line shape is the total curve in Figure 10. The 
other lines indicate where the various bound-bound and bound- 
continuum (1s - V O )  levels are located for this model. These 
curves incorporate the contribution of the short-range R and 19 
displacements, disregarding the role of the long range polaron 
dispiacements. 

TABLE II: Metal-Ammonia Solutions Relaxed States at 203°K 

VO = 0.5 eV V O  = 0.0 eV VO = -0.5 eV 

N = 4  

Et (2% 0.3160 eV -0.1826 -0.6811 eV 
hv (emission) 0.594 eV 0.548 eV 0.506 eV 
Et (5) - 0 . 2 7 8 0 e V  -0.7301 eV -1.1873eV 

c, 0.197 0.09 0.08 
CP 0.007 0.007 5.007 

N = 6  
Et (25) 0.3839 eV -0.1 126 eV -0.6093 eV 
hv (emission) 0.627 eV 
Et (Is) -0.2429 eV -0 .6477 eV -1 .0765 eV 

c* 0.181 0.153 0.126 

R 1.55 A 1.55 w 1.55 A 

0.467 e V  0.535 eV 

R 2.05 A 2.05 A 2.00 A 

CP 0.020 0.019 0.013 

the case of electrons in helium.24 Although we cannot 
treat this problem easily without major variations in our 
model, one can argue that this could lead to asymmetric 
lines if nonspherical cavities had larger transition ener- 
gies, becoming slightly more asymmetric at  higher tem- 
peratures (for the case where density is constant), and 
total half line widths increasing more slowly than d T d u e  
to the many contributions to the total line shape. It would 
suggest that lines in dense polar fluids could be as broad 
as those in polar liquids. However, although there is evi- 
dence for all these predictions, in the absence of quantita- 
tive evidence all of this is speculation. At the moment we 
cannot see how to calculate any of these features from 
first principles. 

B. Emission Line Shapes (2p -+ 1s). If the 2p state ex- 
ists long enough for the medium to relax to the new 
charge density, then it may be possible to see an emission 
from the relaxed 2p level to the relaxed Is level. The ener- 
gies of such states were given in Table If. Using the curves 

(22) R. Lug0 and P. Delahay, J. Chem. Phys., 57, 2122 (1972). Note, 
however, that this present paper emphasizes the need to use differ- 
ent line widths for the bound-bound and bound-continuum transi- 
tions. 

(23) Y. Toyozawa in "Dynamical Processes in Solid State Optics," R .  
Kubo, Ed., Benjamin, New York, N. Y . ,  1969. 

(24) B. Fowler and D. L. Dexter, Phys. Rev., 176, 337 (1968) 
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r-r- I I 1 -  

t . i  V - - 0 5  eV q ,Q 60 T 203'K 

3 35 LO L5  50 5 5  

Energy ( eV) -z 

Figure 13. 2p - Is emission line shape calculated from the 
temperature-dependent one-mode model. 

0f Figure 3 it is possible to calculate using formulas 16-18 
the emission Bine shape inverting the sign of E in the 6 
function. The only change is that A(x)  refers to points on 
the relaxed 2p configuration curves. The resulting line 
shape is plotted in Figure 13. I t  is again quite broad, espe- 
cially considering the very low energy of the emission. The 
emission is Stokes shifted about 0.4 eV to the red from 
the absorption. This emission would be extremely inter- 
esting if it coulid be observed since it could have a rather 
different line shape from the absorption as the emitting 
state has a very different electronic structure. 

e. PhotoiorLidation. Using the calculated curves for the 
energy of various states we can calculate the photoioniza- 
tion profile25,26 as a function of the photon energy. This 
calculation differs from that in the previous section in two 
ways: first of all, there are additional line broadening ef- 
fects and secondly we cannot invoke the Condon approxi- 
mation and remove the energy dependence of the transi- 
tion matrix element or cross section from the integral over 
all possible configurational states. Thus we need to evalu- 
ate the following integral 

(39) 

where F(v1) is related to the quantity we have calculated 
in the previous section and it is proportional to the line 
shape if one can neglect the energy dependence of the 
cross section or transition matrix element u. The reason 
for the integral is that  a photon of energy v can ionize all 
configurations with energy less than v. To reduce this re- 
sult to the previous case we not only factor out u but re- 
place it with a 6 function since F(v1) contains all contri- 
butions of energy E which is equal in that case to u .  

In our considerations F( V I )  represents the probability 
for finding states with an ionization energy V I  a t  a tem- 
perature T. The ionization energy is evaluated as 

Le., the difference between the total energy of the contin- 
uum and the total energy of the ground state. In Table I11 
we present values for this quantity a t  the most probable 
radius as determined by our temperature dependent cal- 
culations. 

Using the same procedure as in the previous section we 
evaluate the F(u1) iiicluding the contributions from the 
symmetric vibration, i e . ,  changes in R. The results are 
very similar to those for the Is - 2p transition and we 
shall use those valuet, here. In addition, however, we must 
consider the effect of broadening by polaron modes. This 

TABLE Ill: The 1s Continuum Thresholds for the Most Stable 
Cavity Radius (Using Temperature-Dependent Mode! and 
T = 203'K) 

V O  = 0.5 e Y  VO = 0.0 eV Vo -0.5 eY 

1.846 eV N = 4  2.071 eV 1.976 eV 
N = 6  2.364 eV 2.138 eV 2.004 eV 

1.890 e V  N = 8  2.461 e V  2.164eV 

is a very small contribution for bound-bound states (espe- 
cially for the 1s - 2p transition) but it is large for bound- 
continuum transitions since the electric displacement in 
the continuum states is zero and thus in eq 28 the value of 
Es is simply the value of 7rs for the ground state. This 
value is 0.78 eV for N = 4 and VO = -0.5 eV. Substituting 
this value into eq 36 we find an additional line broadening 
of 0.388 eV. If the two contributions are independent we 
predict a t  T = 203°K a line half-width for the transition 
of 0.096 + 0.388 = 0.484 eV. For the N = 6 cavity and Vo 
= -0.5 eV we obtain 0.138 + 0.369 = 0.507 eQ since the 
value of K is 0.75 eV. 

If we assume a Gaussian distribution we can write an 
explicit expression for F(v1) in terms of the half-width, w, 
using the notation of Delahay.26 

where 
(41) 

(42) 

where V I ( & )  is tabulated in Table 111. The temperature 
dependence is contained in the half-width which was 
found theoretically to vary as \/T thus further justifying 
eq 26. 

More complicated is the calculation of the energy-de- 
pendent cross section. This is dependent on the square of 
a matrix element of the form 

( + i l t l + f )  (43) 

in the dipole length formulation. and +f are the initial 
and final state wave functions. We have a good idea of the 
initial wave function but we have only approximate ideas 
of the form of $ 1 .  We notice, however, that this matrix el- 
ement involves radial integrals of the form 

J+,*T*+dl.  (44) 

and thus they are very dependent on the behavior of the 
wave functions a t  larger r. Furthermore, $r by symmetry 
must have orbital angular momentum 1 = 1. We have al- 
ready seen that even the 2p state i s  well approximated by 
a purely Coulombic potential with its long-range behavior. 
Therefore in order to get the proper energy dependence of 
the cross section we can use the exact formulas appropri- 
ate to a hydrogen atom (or a screened hydrogen-like atom) 
as derived in Bethe and Saltpeter.27 Except for some con- 
stants the results are proportional to 

d(v,v) = v,"-"(v/v,) (45) 

if 
(25) J. Hasing. Ann. Phys. 37, 509 (1940). 
(26) P. Delahay,J. Chern. Phys. ,  55,4188 (1971). 
(27 )  H. A. Bethe and E. E. Saltpeter, "Quantum Mechanics of One- and 

Two-Electron Atoms," Academic Press, New York, N. Y., 1957, pp 
303-308. 
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( u  - VI> < y3 Ul 
or so. 

often been expanded as 

leading to a cross section varying as 

For very small ( u / ~  - 1) < 0.2 or so, this result has 

F(v/v,)  = (V/V1)"3 (47) 

(48) 
I 

@ ( U , , U )  = $ U l / U ) 8 ' 3  

except for the ( l / v l )  factor this is in the form used by De- 
lahay.28 Delahay was able to very nicely express L(u) in 
terms of the line width and the maximum of the line, 
ul(Ro).26 Because he used the power expression he had 
to evaluate the integrals numerically. We will show now 
that if we use the full low-energy expressions (45) and (46) 
one can evaluate the answer analytically and in the case 
of reasonable line widths obtain a very simple expression. 

Because the photoionization profiles are of interest to 
many people n e  will present our derivation in some detail. 
Following Appendix A in Delahay's paper,26 we can ex- 
press eq 39 using eq 4 I, 42,45, and 46 as 

L(zp) == $ y,(ll 4- ~ Z , \ ) - ~ ~ ~ ' ( ~ S  -1 4- z / > ~  exp(-zZy,2) dz - 

i yc ( l l  4- Z P ~ > - ~  Jzp(ll + zp)2 exp(-zzycz) dz (49) 
-1 

using Delahay's notation in terms of our parameters 

and 

y ,  = !,)Ui(Ra) 1.665 (50a) 

The integrals in eq 49 can be evaluated in terms of error 
functions and their derivatives as well as ordinary expo- 
nential integrals (for odd powers of z ) .  To carry out the 
analysis one must perform a separate calculation for zp > 
0 and for zp .( 0, as the functional dependence is quite 
different in the two regions. To siniplify the result we 
shall define 

The expression for zp < 0 is given in Appendix 1. 
Before proceeding with our calculations it is important 

to estimate the size of our parameters. 
2 eV, W - 0.5 eV, so yc - (1.7)(2)/0.5 - 6.6. Also from 
the calculations of Delahay26 we know that the integration 
changes very rapidly for values of z p  around zero; for z p  > 
0.5 or so the integral is almost constant. In addition, for 
zp < 0.5 the answer is almost zero. These values suggest 
that some very important approximations can be made 
since y 2 5. In this limit we can negiect to within a few 
per cent erf(y-2) us. 1 and e-Y2 us. 1, or @ ' ( y )  us. 1. 

These results greatly simplify the expressions. Consider 
P(0) in these limits 

P(0) = 4(yc)[1 + (s/,)y,-Zl - (5&-3 = 1.00 (54) 

P ( ~ ~  > o)= 3(i + zp)-3[1 + Q ~ ( ~ ~ ~ , ) , - - ' ( ~ ~ ~ , ) ( ( s / , ) ~ , ~ , - ~  + 

to about three significant figures for y I 5 
Likewise for the other limits we obtain 

4 

zpsyc-l + y,-3)1 - (%)(I + 2,)-*[1 + 
+'(y,zp)(3/,)zpyc--1 + (3/2)zpyc-1 c 3yc-3 4- yc-j + 

- 

Z,"Y~-~ JC (zp4~c-1)/a) (55) 
4 P(z,  < 0 )  = $1 - r p P  I1 - +'(Yc?lp)i).)p2yc-1 + 
ye-3 - (%)rpYc-q - @(ycrlp)j - 

-(1 3 - ??p)-4 11 - Nycrp) - @'(Yc~p)[("%~ri,"c-l 

yL-3 - ( Y J ~ ~ ~ ~ - ~  + yc-5 + v ~ ~ Y ~ - ~  +- ( ~ / Z ) ~ , , ~ , ~ ~ - - ~ I ~  (56) 

1 + 

where np = -zp > 0, but less than 1.0. 
For the regions of interest it was found that terms in- 

volving @'(ycvp) are very small (3  parts in 1000 or less) 
and thus very reliable, very simple expressions can be 
used over all regions of zp. 

P(z, > 0)  = (1 + z,)-~[(%> - (%Xi 1- zP?-'] x 

p(zP < 0 )  = (1 + z P r 3  I(%> - (Y& + z,)-'] x 
ii  -I- @(yczp)l (571 

[i  - @(YLzp)]  (58) 

P(Z, 0)  = [1 - (8/3)zp + ( I ~ k p Z ] [ l  + ~(y,z,)I  (59) 
(when zp < 0.5). 

The region in which the asymptotic result holds is 
therefore when @(yczp) - 1. The exact limit depends on 
the precision required. This simple result occurs because 
of the large value of y in the present examples. In that 
case 

since only small values of z contribute to the integral. 
Thus the integral depends very weakly on the power of n. 
Therefore, the results of Delahay a t  large yc are equiva- 
ient to the above calculations. For small values of y c  both 
our approximate formulas (eq 57-59) and those of Delahay 
need further corrections. In that case the complete expres- 
sions of eq 52, 53, and Appendix A are required. 

(28) P. Deiahay (ref 26) neglected to include the ionization potential 
contained in the factor in front of eq 71.11 of ref 27. His results in 
his Appendix A are thus slightly narrower than our caiculations. 
However, for large values of y, i .e . ,  narrow lines, the integral is al- 
most independent of the specific power law ;and thus kits results are 
good. See eq 60. 
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I 1 I I I 

ZP - 
Figure 14. Photoemission profiles calculated for various values. 
of Yc. 

In Figure 14 WP present the reduced plots of the pho- 
toionization energy profile for various values of y in the 
region of interest. The points were calculated using the 
expressions 39 and 40 but in most cases, eq 57 and 58 
yield results within a per cent or so of these answers. We 
have also plotted the asymptotic behavior which departs 
signilicarrtly from the integrated result for z p  < 0.1 when 
yc - 10 and for z,, c: 0.2 when yc - 5. The points marked 
A are for the s/3 low asymptotic behavior. It differs very 
little from the complete result for z p  < 0.3. 

Since our calculations indicate that both N = 4 and N 
= 6 cavities are eniergetically stable we have calcutated 
the total contribution (unnormalized) from both cavities 
a t  a temperature corresponding to about 240°K. This is 
plotted in Figure 35 for suitable parameters. For the N = 
4 state we used vl(h'0) from Table 111 for T = 203°K and 
Vo = -0.5 el7 and ,y = 5 for a reasonable line width at  
240°K. For N = 6 me also used y = 5,  the corresponding 
energy from Table HI and a weighting factor of 0.8 rela- 
tive to the N = 4 case. It is apparent that with several 
cavity types the profile is very broad and very complicat- 
ed. For values of zrJ :> 0.2 the total result behaves as if the 
ionization potential were 1.9 eV a n h o t  either 1.85 or 2.00 
eV. In general simple power law behavior is expected 
to work. 

The only data with which we can compare our results is 
the photoelectron emission spectrum of metal--ammonia 
solutions of Hasing :!5 To apply our calculations to that 
case involves some drastic assumptions but if we assume 
that this spectrum behaves as E-813 down to 2 eV and if 
extrapolated to Z B ~ Q  current in that way one obtains 1.85 
eV. Our curve in Figure 15 deviates from any simple law 

E n e r g y  (eV)--- 

180 185 190 195 200 205 210 215 220 
x I I 1 I I I I I I '  

-2  -1 0 1 2 3 L 5 6 7 8 9 10  

= P a  

Figure 15. Predicted photoionization line shape for the solvated 
election in liquid ammonia. 

in the region near the maximum or a t  about 2.2 eV, but 
again we emphasize that these interpretations are risky 
and one needs direct measurements of the photoionization. 
More experimental data is desperately needed. 

It has been suggested that the high energy tail of the 
optical absorption is in fact the bound-continuum transi- 
tion.26 Delahay has even analyzed the spectra of hydrated 
electron and electrons in 3-MP, THF, and HMPA in terms 
of such an assumption. They obey an E-8'3 plot. However, 
the calculations presented in section A suggest that the 
high energy tail in these cases may not necessarily be part 
of the bound-continuum transition. (For further evidence in 
the last two cases, see ref 22.) It is also important to note 
that if several types of cavities with different El(&) con- 
tribute the true photoemission line profile, it will very 
likely not have a simple E s I 3  or any other power Law de- 
pendence except at extremely high energies where mly the 
highest value of VI(&) remains important. Unfortunately, 
the experimental data are not yet available to check on this 
feature. 

Appendix 

56 and setting vp = - z p  for z p  < 0, we find 
Total Expression for P(zp  c 0). Using the notation of eq 

4 
P k ,  < 0) = $1 - V P F 3  ((1 + (xlyc-2>(s(y,) - 

@(YCVP)) + cp'(Y,)(Y,-3 + (X>y,-') - "cVp)[??p~Yc-l i- 
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