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to the presence of a relatively weakly bonded, imper-
fectly ordered state. Apparently this latter state is
necessary for viscous flow to occur since its free-volume
contribution is the one playing the significant role in
determining the viscosity of B,0s.

The success of a two-state equation in predicting the
volume and viscosity of B,O; over such a large tem-
perature and viscosity range is a result not generally
true for other liquids. In most liquids this data must be
fitted by a free volume of the form Ve« (T—TY).

MACEDO, CAPPS,

AND LITOVITZ

This form of V; can not result from a two-state situ-
ation.

It is curious that the two liquids H,O and B,0;
(both highly bonded, open structural, two-dimensional
network liquids; both exhibiting peculiar volume-
temperature behavior) are those liquids in which a two-
state approximation has met with the greatest success.
It would appear that the alternative presence of two
distinct states or a multiplicity of states is an important
factor in determining the properties of liquids.
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In this paper we calculate the transition probability for excitation of double-exciton states in absorption
and emission processes in molecular crystals. The formalism is based on the tight-binding approximation,
treating the intermolecular electrostatic and exchange interactions and the interaction with the radiation

field by perturbation theory. It is found that:

(1) A major contribution to the transition probability for cooperative excitation to electronic states
arises from intermolecular Coulomb interactions, while the contribution of intermolecular electron-exchange

interactions is relatively small.

(2) Contributions to the transition probability from high-order-transition multipole interactions are

of considerable importance.

(3) Approximate selection rules for cooperative electronic excitation imply that for one component the
initial and final states are of the same parity, while for the second component the transition is symmetry

allowed.

(4) Theoretical evidence is obtained for the appearance of double-excitation bands in the infrared spectra

of solids in the overtone region.

(5) A major contribution to the intensity of the double-vibrational-exciton states arises from an inter-

molecular Fermi resonance effect.

(6) The direct detection of the radiative annihilation of a double-exciton state is not likely to be experi-

mentally feasible.

I. INTRODUCTION

'WO-electron excitations in atomic systems have
been known for many years.! For the case of the
isolated atom, these transitions arise from correlation
effects which cannot be described within the Hartree—-
Fock scheme.? Now, there exist analogous transitions
in molecular crystals. In the crystal, two excitons may

* Present address: Department of Chemistry, Tel Aviv Univer-
sity, Tel Aviv, Israel.

1 During 1965-1966: Senior Postdoctoral Fellow and Visiting
Professor, Faculte Des Sciences, Universite Libre de Bruxelles,
Brussels, Belgium,

1. Fano, Phys. Rev. 124, 1866 (1961).

2 Some contributions to the transition probability arise from
the weak orthogonality conditions imposed on the Hartree~Fock
wavefunction. For example, in the two-electron excitation of the
helium atom 1s2—2s2p the overlap integral {(ls|2s) does not
vanish. However, the correlation effects are dominant in deter-
mining the transition probability.

be produced by a single photon®*® because of the
influence of intermolecular interactions, as would be
expected from the classical analog, which is a system
containing two weakly coupled oscillators exhibiting
combination frequencies. Consider the conventional
theory of the electronic states of molecular crystals.
In the usual formalism, it is assumed that the ground
state of the molecule is not seriously perturbed by the
weak intermolecular forces characteristic of the crystal.
Moreover, if the spatial extent of the electron density
is about the same in the ground state and in a set of
excited states, a further considerable simplification of
the analysis is possible. For, if the intermolecular

3L. N. Ovander, Soviet Phys.—Solid State 4, 212 (1962)
[Fiz. Tver. Tela 4, 294 (1962)].

¢ T. Miyakawa, J. Phys. Soc. Japan 17, 1898 (1962).

s D. L. Dexter, Phys. Rev. 126, 1962 (1962).

Downloaded 25 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



EXCITON STATES IN MOLECULAR CRYSTALS

overlap is small in all states of interest (i.e., overlap
integrals between the molecular orbitals on adjacent
molecules ~102-10%), then the Heitler-London tight-
binding-product wavefunction is the proper zero-order
approximation to the crystal wavefunction. Since the
intermolecular interactions are much smaller than the
intramolecular interactions, the free-molecule wave-
functions suffice as basis functions for the product
function approximating the crystal wavefunction. The
analysis of the crystal states just given is due to Frenkel,
and has been found to be very useful in the description
of the lower excited electronic states of crystals of aro-
matic molecules, as well as for the description of
vibrational exciton states.®

In this paper, we consider the cooperative excitation,
in a molecular crystal, of two Frenkel excitons by a
single photon. It has been shown by Dexter that the
double excitation of a pair of atoms can be interpreted
as arising from first-order corrections to the zero-order
wavefunction induced by the intermolecular inter-
actions, and may thereby be considered to be an inter-
molecular correlation effect. From a somewhat different
point of view, we may consider the interactions causing
the transition from the ground state to the double-
exciton state to consist of two components: the inter-
action with the radiation field and the intermolecular
interaction. The intermolecular electrostatic and ex-
change interactions may be treated in the same way
as is the interaction with the radiation field, ie., the
transition probability may be expanded in powers of €2
This analysis strongly resembles the treatment of
Bremsstrahlung radiation.”

In the present work, we consider the transition
probability for double-exciton states in absorption and
emission processes and establish the selection rules for
creation of the double-exciton states from electronic
and vibrational excitations in molecular crystals.

II. BRIEF SURVEY OF THE AVAILABLE
EXPERIMENTAL DATA

The unambiguous assignment of an observed transi-
tion to a simultaneous multiple-electron-multiple-
molecule excitation is not simple, since there are usually
a large number of possible excitations with energies
close to twice the fundamental energy. Clear evidence
for a two-atom cooperative optical absorption involving

¢ This is not the case for the excited electronic states of the rare-
gas crystals, where large nonorthogonality corrections make the
tight-binding scheme inapplicable. When the lowest excited states
of these systems are described in terms of Frenkel excitons,
charge-transfer states must also be included in the representation.
[S. Webber, S. A. Rice, and J. Jortner, J. Chem. Phys. 41, 2911
(1964)]. An alternative treatment of these excited states can
be carried through in terms of the Wannier formalism [R. S.
Knox]Theary of Excitons (Academic Press Inc., New York,
1964) 1.

7 W. Heitler, The Quantum Theory of Radiation (Oxford Univer-
sity Press, London, 1961).
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only one photon has been obtained by Varsanki and
Dieke from studies of PrCls.? In addition, Milgram and
Givens® have found an absorption at 25 eV in LiF which
has been interpreted by Miyakawa? to arise from double
excitation. It is interesting to note that the intensity of
this transition is about the same as that of the allowed
singlet transition at 12.9 eV in LiF. We show in this
paper that the transition probability for excitation of a
double-exciton state should not exceed ~19%, of the
transition probability to the single-exciton state. For
this reason, the assignment of the 25-¢V transition in
LiF seems less certain than that of the transition
observed in PrCls.

A survey of the reported spectra of crystals of
organic molecules reveals no reported multiple excita-
tions. However, Weigl® has studied the absorption
spectrum of a pinacyanole dye in a crystalline film and
found a strong transition at 15 000 cm™! ( f~1), which
corresponds to a strong tranmsition in the solution
spectrum, and a weak transition at 28 000 cm™, for
which there is no counterpart in the solution spectrum.
This latter transition, if not arising from an impurity,
might be due to a double excitation. It is clear that
further experimental study of films of cationic dyes is
of considerable interest.

Perhaps the most striking evidence for the existence
of double excitations in molecular crystals is found in
the work of Ron and Hornig.!! These investigators
studied the infrared spectrum of solid HCl. Because of
the anharmonicity of molecular vibration, a state of
the crystal with a single molecule excited to the second
vibrational state has lower energy than a crystal state
wherein two molecules are each excited to the first
vibrational state. As a result, if the anharmonicity is
large enough, the overtone transition is well separated
from the double-excitation transition, and both transi-
tions are amenable to observation. Indeed, the infrared
spectrum of solid HCl reveals two relatively strong
transitions in the region 5000-6000 cm': a sharp line
with half-width of 20 cm™ at 3313 ¢cm™, and a broad
line with half-width of 90 cm™ at 5465 cm'. The
intensity ratio of the two transitions is of the order
of foes/fsmz~1. Ron and Hornig!" have assigned the
5313-cm™ transition to an overtone level of a single
molecule, and the 5465-cm™ transition to a double
excitation. As clearly stated by these investigators,
the occurrence of double excitations in the infrared
spectra of molecular crystals should be a very general
phenomenon and may account for much of the struc-
ture in the overtone region. Thus, the transitions at
6050 and 6550 cm™ in ice may be interpreted as
arising from the overtone transition and a double

8 F. Varsanki and G. H. Dieke, Phys. Rev. Letters 7, 442
(1961).

9 A. Milgram and M. P. Givens, Phys. Rev. 125, 1506 (1962).

10 J, Weigl, J. Chem. Phys, 24, 364 (1956).

it A, Ron and D. F. Hornig, J. Chem. Phys. 39, 1129 (1963).
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excitation, respectively. Further evidence for coopera-
tive excitations in the infrared spectra of gaseous mix-
tures has been reported by Ketelaar and Rettschnik.?
Some evidence for mixed electronic-vibrational coop-
erative excitation was recently reported by Yatsiv ef al.®

III. TRANSITION PROBABILITY FOR
DOUBLE EXCITATION

We consider first the second-order process leading to
simultaneous excitation of a pair of atoms (or mole-
cules) by a photon of energy fiw. Let the atoms be
labeled a and b. The interaction responsible for the
transition from the ground state | 0.0,) to the excited
state | fagn) consists of two parts: interaction with the
radiation field H;,q, which leads to absorption of the
photon, and the electrostatic intermolecular interaction
Vab,

H=Hrad+ Vab- (1)

The interaction with the radiation field is conveniently
represented in the form”

Hrad=—(e2/mc2) zk:[Pk'A(rk)]’ (2)

where P, and r; are the momentum and position of
the kth electron and A is the vector potential of the
electromagnetic field. Since we are not concerned with
two-photon transitions or light-scattering processes, the
term Hia involving A2 can be neglected, as has
already been done in Eq. (2). As usual, the inter-

K= 2,

P; [0p) #]00)

2; | pg) #{00)

JORTNER AND S.
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molecular pair potential has the form

VAYAT Z1e? Zye?
VabEIJ Zle ZJ"I‘E ,

;7 Ry 17 Ruy T Rys 57t

where I and J refer to the nuclei on the different
Molecules a and b, ¢ refers to the electrons on Molecule
a and 7 to the electrons on Molecule b.

Of the terms in the interaction Hamiltonian, Eq. (1),
the operator involving the radiation field has non-
vanishing matrix elements for transitions to inter-
mediate states involving the change of a single atomic
(or molecular) electronic state, and for which momen-
tum is conserved. On the other hand, the electrostatic
interaction has nonvanishing matrix elements for tran-
sitions to states wherein the radiation field is unchanged,
and induces a double excitation to an intermediate
state. The possible intermediate states involved in the
transition | 0,05)— | fagu) arise as follows:

@)

(a) A photon of energy #iw is absorbed and the
intermediate state | Oapn) (or | pu0s)) excited. The final
state is then reached via a transition induced by the
perturbation V.

(b) The transition to an intermediate state | pags)
(or | fapw)) is induced by the electrostatic interaction
Vab, which is then followed by absorption”of a photon
to yield the desired final state.

The two pathways described are schematically out-
lined in Fig. 1. Tt is now seen that the transition
probability for double excitation is, from second-order
perturbation theory,

[{00 | Hraa | $0 or 0p)(p0 or 0p | Vap, | f2)/ (8> +Fiw—8,2) ]
+ > [{00] V| fpor pg){fpor pg | Heaa | fg)/ (282> —62

-8, (4)

where the summations are extended over all possible intermediate states. Since energy is conserved in the transition,

Fio=8/4-8,°— 60— &P, (5)

where &2 represents the energy of the ath atom or molecule, in its ith electronic state. Now,

H:a 1s a sum of

one-electron operators. Thus, using the conservation condition (5), Eq. (4) may be rewritten in the form

2 [{0a| Hesa | 9u){(0:05 | Vb | fage)/ (62482 —82—8,2) ]

1pa) #0g)
+ E [(Ob I Hyg l pb><oupb l Van |fﬂgb>/(8fa+8ab_80b_'8pb):l
| pp) #|0b)
+ 2 [006 ] Var | pugn)(Pa | Hraa | fa)/ (Bt 48— 80— ;b))
|Pagb) 71040p)
+ 2 [0 V| fupo) (P | Hraa | g0)/ (€0 +8"—E,0—8) ] (6)
17 aPb) 71050p)

The reader should note that the transition matrix
elements displayed in Eq. (6) depend upon one-
electron transition probabilities between the ground

2y, A. A. Ketelaar and R. P. H. Rettschnik, Z. Physik 173,
101 (1963).

183, Yatsiv,
108 (1963).

L. Adato, and A. Goren, Phys. Rev. Letters 11,

state and the intermediate states, (0| Hyua|#), and
between the intermediate states and the final state,
(p| Hewa | f) and {p | Hraa | g)- Equation (6) is similar
in form to an expression derived by Dexter, but the
restrictions imposed on the third and fourth sums in
Eq. (6) (ie., 28%&,2+8&,*) are less stringent than
those used by Dexter.®?
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As usual, the perturbation expansion (4) diverges
when fiw=§,2—&#, i.e., when the energy of the absorbed
photon exactly matches the energy difference between
the ground state and an excited state of one of the
component molecules. When the system possesses such
a channel for direct excitation, nondegenerate perturba-
tion theory cannot be used. In this case, the system is
characterized as having two degenerate or nearly
degenerate levels arising, respectively, from a single
excitation of one of the components and from the
simultaneous double excitation of both components.
If the electrostatic interaction is sufficiently large,
these levels will be split and might be observed sepa-
rately. We seek, in this case, a representation which
is diagonal in the intermolecular electrostatic inter-
action. The new wavefunctions are

Yae=a| Oupp)+B | fugs),
Y-=810upp)—alfogn), (7)
with the corresponding energies
E.=3[8 482 +6,48,,— 26— 26" ]+3y  (8)
y=4| W[+, 9

where y, the energy difference between the split levels,
is defined in terms of the energy separation between
the singly and doubly excited states, while

3=808‘+8pb—8f“—89b (10)
and the matrix element coupling the states is
W= 0up | Vv | fogv)- (11)

The expansion coefficients o and 8 are determined in

terms of y and § to be
a=[(y+8)/2y1,
B=L(y—98) /2y ] (12)

— I
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Fi16. 1. Schematic representation of the processes leading to the
cooperative excitation of a pair of atoms or molecules. Dotted
and solid lines represent the intermolecular interactions and the
interaction with the radiation field, respectively.
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Having removed the degeneracy of the states, ordi-
nary perturbation theory may again be used with the
states |¢,) and | y.), the transition probability being
determined by the matrix elements displayed in Eq.
(4), but where the final state is |¢.) and the sum-
mation excludes the intermediate state | 0p).

It is interesting to note that for this case of near
degeneracy intensity stealing from an allowed single
excitation becomes very efficient, and for the limiting
case of §=0 the intensity is equally distributed between
the single excitation and the cooperative excitation.
However, when =0 it is not possible to distinguish
between direct single-photon excitation to | 0p) followed
by energy redistribution, and the preceding. That is,
when 6=0 the state | 0p) is not only degenerate with
| fg) but also is no longer distinct from it as long
as {(0p | Vup | fg) is nonvanishing.

To proceed with our analysis, the intermolecular
interaction matrix elements must be evaluated. It has
been customary to estimate these terms by introducing
a multipole expansion for V,, and truncating the series
after the dipole term.'*® Furthermore, intermolecular
electron-exchange interactions and charge-transfer
interactions are usually neglected. In recent studies”
of the electronic excited states of molecular crystals of
organic molecules, it has been demonstrated that these
approximations are valid only for the description of
very strong electronic transitions (characterized by an
oscillator strength of the order of unity), while, in
general, the computation of intermolecular interaction
energies cannot be reduced to dipole-dipole terms alone,
since short-range higher-order multipole interactions
make an important contribution to the diagonal and
the off-diagonal energy matrix elements.

The pertinent interaction matrix elements combining
a singly excited intermediate state with the final state,
ie., (0p | Vb | fg), and the ground state with a doubly
excited intermediate state, i.e., (00| Vi | pg), can be
displayed in the general form

(aBo | Van | ¥abb) =T ap274- K %673,

In Eq. (13), the excitation-transfer matrix element is

(13)

Japebrd= (ﬁaaa‘Pbﬁ I Vab l ‘Pa7¢b6>; (14)
while the electron-exchange matrix element is
K= {(@—1)ga®er? | Var | @a’e?), (14a)

where ¢." is the electronic wavefunction corresponding
to the state n of Molecule ¢, and @ is the intermolecular

1 A, S, Davydov, Theory of Moleculor Excitons (McGraw-Hill
Book Co., Inc., New York, 1962).

1D, S, McClure, Solid State Phys. 8, 1 (1959).

D, P. Craig and S. H. Walmsly, Physics and Chemistry of the
Organic Solid State, M. M. Labes, D. Fox, and A. Weissberger,
Eds. (John Wiley & Sons, Inc., New York, 1963), Vol. 1, p. 585.

1 R, Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42,
1515 (1965).
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antisymmetrization operator permuting electrons be-
tween molecules.

Focusing our attention on the case of spin-allowed
transitions, some simplifications of the formalism are
possible. It has been previously demonstrated that for
the singlet excited states of typical molecular crystals
(e.g., anthracene), the intermolecular electron-exchange
interactions are of the order of 10-50 cm™, and are
small relative to the contribution arising from the
excitation exchange.”-1

For the purpose of making order-of-magnitude esti-
mates, the electrostatic interaction is displayed in
terms of a multipole expansion:

V= SR Q0 R B0 08 0:04)

+eR%yi0a"0x" R (8,01°05"+8":,05°0r)) ++ 4+ ],
(15)

where R is the intermolecular separation, and Qf is
the kth multipole-moment operator of the ith electron
(the electrons being labeled so that Electrons ¢ and j
correspond to Molecules a and b, respectively). The
geometrical factors a;j, Bij, *++, are determined by the
relative orientation of the two molecules. For strongly
allowed 0—f and p—g (or 0—p and 0—g) transitions,
the dipole-dipole term in the matrix elements of Vg,
in Eq. (14) is expected to be dominant, and can be
expressed in the form

©p | V1 f)=7eR=3Q| 220 1) | ;Qlf | £)
00| V1 fg)=7eR>(0| 20¢ | HO| ;Qlf lg), (16)

where v is a geometrical factor of the order of unity.

It will be useful at this stage to consider some
approximate selection rules for cooperative excitation.
We face the usual difficulties encountered in the use of
a perturbation expansion and can proceed with our
analysis only if a small number of terms dominate
the behavior of the series. In our case, the expression
for the transition matrix element can be displayed in
the approximate form

K=%0.,(0p | V| fg}/W1) +300., (00 | V'| fg)/W2),
(6a)

where the energy denominators are Wiy=#w— (8,*—&P)
and We=7iw— (§2—&*) and 3C;.; is the radiative-
transition-probability matrix element between the
states ¢ and j. From this qualitative result, we con-
clude that:

(1) The ratio p between the transition probability
for the cooperative excitation and a typical one-photon

18 T, Jortner, S. A. Rice, S. I. Choi, and J. L. Katz, J. Chem.
Phys. 42, 309 (1965).
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allowed transition is of the order of
P2 | (Op | VI fg)/Wilt or p2[ (00| V| fg)/ Wy |2

Since the energy denominator is characteristically of
the order of 1 eV, in order to obtain a value of p~0.01
the interaction-energy matrix element must be of the
order of 10! ¢V. (2) Electron-exchange interactions,
being of the order of magnitude of 50 cm~?, do not
lead to an appreciable contribution to the transition
probability for cooperative excitation.

(3) Large contributions arise for the case of strongly
allowed transitions 0—f and p—g (or 0—f and 0—yp).
We are able, then, to utilize, e.g., (16). In this case,
the transition moment is of the order of magnitude of a
molecular dimension L, and we find that

o~ (2L2/WRY)?2. (17)

Setting L=1 A, R)’5 A, W=1 eV, we obtain p=0.04

(4) Contributions by higher-transition-multipole in-
teractions are expected to be of importance in the
case of weakly allowed transitions. Thus, in the case
of a quadrupole-dipole virtual transition, it is to be
expected that the relative transition probability (17)
will be reduced by a factor of the order of (L/R)?, as
has been discussed by Dexter.®

It should be noted that there is a close analogy
between the approximate selection rules for the linear
process of a cooperative excitation and the nonlinear
processes involving two-photon transitions.*2 It is
now well established that two-photon transitions can
be treated within the framework of perturbation theory,
expanding the transition probability in terms of ¢? up
to second order. In this case, the nonlinear optical proc-
ess involves the stages | 0), fioy, fiwy— | §), For— | f),
where | p) is an intermediate state. Hence, for the two-
photon transitions to occur, it is required that the
transitions | 0)— | $) and | p)— | f) be allowed, thereby
leading to an even-parity (or symmetry-forbidden)
transition. In the case of the cooperative excitation,
the approximate selection rules require that for one
component, the transition proceeds via an inter-
mediate state, so that the initial and final states are of
the same parity (or the same symmetry, for non-
degenerate states), while the transition for the second
component is symmetry allowed. Both the exact
selection rules for the two-photon absorption and the
approximate selection rules for the cooperative excita-
tions can be relaxed by intreducing the contribution
of higher-transition-multipole interactions. It should
be stressed that in the case of two-photon absorption,
the contribution of transition multipoles higher than
the dipole moment are negligible [of the order of
(L/\)?, relative to dipole term, where A is the wave-

19 M. Goeppert-Mayer, Ann. Phys. 9, 273 (1931).

20 D, A. Kleinman, Phys. Rev. 125, 87 (1962).

2 E, M. Evleth and W, 1. Peticolas, J. Chem. Phys. 41, 1400
(1964).
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length of the exciting light], while, in the case of
cooperative excitation, the contribution of the higher
multipoles to the electrostatic interaction energy may
be of considerable importance. Another important
mechanism for the relaxation of the selection rules
cited arises from vibronic coupling in molecular sys-
tems, i.e., the effect of nuclear motion on the mixing
of electronic states.

IV. COOPERATIVE EXCITON STATES

The theory presented in Sec. ITI is directly applicable
to the case of a pair of interacting atoms or molecules.
We proceed to examine now, in some detail, the nature
of the cooperative excitation of Frenkel states in
molecular solids. At the outset, we make the usual
assumption that the intermolecular overlap is very
small. As is well known, in the case of dipole-allowed
transitions, long-range electrostatic interactions of the
dipole—dipole type are of considerable importance over
distances of the order of magnitude of the wavelength
of light,”” and these interactions determine the energy
of the states concerned. Under conditions such that
crystal momentum is conserved, the long-range dipole-
dipole interactions are absolutely convergent. Consider
now the modifications which must be made in the
formalism so as to make it applicable to cooperative
exciton states in the tight-binding approximation. The
double-exciton state corresponding to the presence of
two excited atoms (molecules) in the solid, can be
displayed in the general form?:

Vg x /7= {1/[N(N-1) T}
X Z exp[z'(K-R,,-I—K’-R,,:)] l "”I>Ann'; (18)

n,n!

where the localized double-excitation representation is

| an'y=Gen'on® 1" of (19)
ijEn,nl
and the exclusion factor As. is given by
Apr =10z, (20)

The ground state of the crystal is represented in the
Heitler-London scheme by the product wavefunction

¥=a] [ (21)

and is characterized by zero crystal momentum.
Momentum conservation in the excitation process now
implies that for the double-exciton state (19) K= —K'.
Two kinds of intermediate states must be considered:

(1) A single-exciton state

= (1/N%) 2 exp(ik-Rj | j)), (22)

22D, L. Dexter and W. R. Heller, Phys. Rev. 91, 273 (1953).
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with
|7)=ae]T'er (23)
154
This intermediate state can be reached by photon
absorption. Momentum conservation implies that k=q,
where q, the wave vector of the incident photon, is
much smaller than the reciprocal lattice spacing.

(2) An intermediate double-photon state ¥k, x/?.
The transition to this state is induced by the crystal
potential V, which is conventionally represented as
the sum of pair interactions,

V= ZV,:.

e<i

(24)

The transition-probability matrix element for the
cooperative excitation to the double-exciton state is

now just
(¥o | Hraa | ¥o? (¥ | V | Y& £7)
K=
2% Ttto—E,

(o | V| ¥k ") (Y&, | Hroa | ¥&,—x/7)
+22 )
» K Ey— (Ep+Ey)

(25)
where Ey is the ground-state energy of the crystal,
E, is the energy corresponding to the single-exciton
state V.7, while (E,+E;) is the energy corresponding
to the double-exciton state ¥k .g'?.

The interaction matrix elements in Eq. (25) can be
rewritten in the following form:

(‘I’qp I |4 | \I’K,—Kf”)
=[1/NW)12 23 exp(—iK-Ry+iK-Ru—igq-R;)

X (nf§0n’a | ZVrt I §0ao¢’.1‘p>y (26)
r<t
¥y | V | Ig,—x"?)
=N exp(—iK-R,+iK-R,)
X el on? | 2 Vet | 0put). (27)
r<t

Neglecting three- and four-center interactions, we need
only consider the terms where #=s and »'=j in Eq.
(26), and n=s and »'=¢' in Eq. (27). It is immediately
apparent that the new feature introduced by consider-
ing cooperative excitation to a double-exciton state,
rather than the cooperative localized excitation of a
pair of atoms or molecules, is that now the interaction
matrix element is determined by the pair interactions
summed over the entire crystal lattice. For the case
of single-exciton states, the long-range dipole-dipole
interaction is of considerable importance in determining
the transition probability for cooperative excitations in
a pure molecular solid. We now represent the inter-
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action energies as the sum of a short-range contribution
(high-order multipole interactions, and electron-ex-
change interactions) and of a long-range interaction
[involving the dipole~-dipole interaction modulated by
the trigonometric factor exp(¢K-R)7]. The contribution
of the modulated dipole sums can be evaluated using a
continuum approximation, whereas the evaluation of
the short-range terms requires detailed knowledge of
the atomic or molecular wavefunctions. When poten-
tial retardation effects are neglected, the total inter-
action matrix element can be represented in the form

o | V | ¥x,—x/?)
= { oo rk0>p(87/3Q) Po(cosh) [ jo(p) +42(p) 1} +X,

where P, (cosf) is the second Legendre polynomial, 6
being the angle between the propagation vector of the
exciton K and the transition moment w,.;={¢° | T | o)
of a single molecule. Since we consider only transverse
excitons excited by electromagnetic radiation, u is
orthogonal to K and P,=—3. The spherical Bessel
functions 7, and j, have the argument p= | K | Ry
where R, 1s the lattice spacing. Finally, @ is the volume
of the unit cell in the lattice, and X represents the
contribution to the matrix element of short-range
interactions.

The general expression for the transition matrix
elements can now be displayed in the approximate form

E=X%

p K

(28)

380—»1) {ﬂo-»fﬂp—»g

Rl e (o)) T )

ICpog [ Mo fHog
+—

AL | RE L7o(p) +j2(P)]+X2} - (29)
To make a crude numerical estimate, we consider only
the region of the Brillouin zone where p<1, so that
jo{p) +72(p) =1. The result obtained is then analogous
to that for the case of two isolated atoms. It does not
seem to us profitable at the present stage of develop-
ment to extend the analysis to crystals containing more
than one molecule per unit cell. It should be noted,
however, that the experimental value of the Davydov
splitting in such systems can be used to make an
estimate of the electrostatic-interaction matrix ele-
ments which determine the transition probability for
cooperative exciton states.

V. APPLICATION TO COOPERATIVE EXCITA-
TIONS IN THE INFRARED SPECTRA OF
SOLIDS

The general formalism of cooperative exciton states
can now be readily applied to the interpretation of the
infrared spectra of molecular solids in the overtone
region.! Following the analysis presented in the pre-
ceding section, we consider two nearly degenerate
excited states of the crystal: the overtone state | 02)
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(or | 20)) and the doubly excited state | 11).22 These
two states are split in zero order because of the finite
molecular anharmonocity. In view of the near degen-
eracy of the crystal states | 02) and | 11), degenerate
perturbation theory must be used in first order, and
we seek a representation which is diagonal in the inter-
molecular electrostatic interaction (02| V| 11). This
interaction between the two close-lying vibrationally
excited configurations in the solid is analogous to the
case of Fermi resonance in the vibrational spectra of
polyatomic molecules. As is well known,* intramolec-
ular Fermi resonance arises from an accidental de-
generacy between the vibrational states of a poly-
atomic molecule. It is the anharmonic terms in the
potential energy, i.e., the perturbations between dif-
ferent vibrations which lead to the interaction between
close-lying vibrational levels of the same symmetry.
In the case of the cooperative excitation to the | 11)
crystal state, intermolecular interactions lead to a mix-
ing of the double-exciton and the double-excitation
states. This interaction may be considered to be an
intermolecular Fermi resonance.

The relevant zero-order single-excitation wavefunc-
tions for a pair of molecules can be displayed in the
conventional form

ne=(1/V2) (| 02)== | 20)). (30)
Only the state 5, can interact with the double excitation
| 11), whereupon the first-order wavefunctions can be
displayed in the form

Ye=ay | 11)+8n,.
The matrix element coupling the states is given by

W=11|Va | n)=VZ{11| Vap | 02). (32)

(31)

Before proceeding to consider the pertinent inter-
action matrix element, it is useful to display the
interaction potential in the dipole approximation,
retaining the first term in Eq. (15):

Ve (varww)  3(wasR) (w-R) _ Halw
ab= - =Y -
Rab3 Rab5 Raba

(33)

It is assumed that R, is the separation of the centers
of gravity of the interacting molecules.?

The dipole-moment operators u; are now expanded
in power series in the normal coordinates Q with only
the first two terms retained. Neglecting interactions
between different normal modes, we find

wi= ud+ (du:/3Q) Q. (34)

2 In this section, we describe the vibrational wavefunction of a
pair of molecules by | v's”"), where v’ and 9"’ represent the vibra-
tional quantum numbers of Molecules a and b, respectively.

2 G. Herzberg, Infrared and Raman Specira (D. Van Nostrand
Co., Inc., New York, 1945).

% R. M. Hexter, J. Chem. Phys. 33, 1833 (1960).
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The matrix element of the interaction potential in
Eq. (32) can now be displayed in the form

_V2(0u/00)(0 | Q11){11Q]2)
Rn.b:‘x

where ((M—1) |Q| M) is the transition matrix ele-
ment. In the harmonic approximation,

(M—1) | Q| M)= (MFi/2u)?, (36)

where #iwo is the excitation energy corresponding to the
0—1 excitation.

These results are now applied to the study of the
cooperative vibrational excitation in solid HCL. The
excitation energy corresponding to the fundamental
band is 2800 cm™. To make a rough estimate of the
interaction energy, we set Ra,=4 A. For a diatomic
molecule, the normal coordinate and the Cartesian
displacement coordinate » are related by Q= (mg)?r,
where mg is the reduced mass of the molecule. Hence,
in this simple case,

(36/0Q) 0| Q | 1)= (9u/dr) (h/2mpuwn)?.

The dipole derivative is markedly enhanced in the
solid, leading to an appreciable increase of the infrared
absorption of the fundamental band. Using the esti-
mates of Hornig and Hiebert?® for solid HCl, we set
du/dr=2 D/A. Using all these data, we estimate
W =60 cm1. The interaction matrix element W should
be of the order of magnitude of the Davydov splitting
in the fundamental band of solid HCIl. The fundamental
band of solid HCI consists of two sharp bands located
at 27043 cm™! and 274623 cm!, which are assigned
to the Davydov components of the fundamental
stretching vibration” Hence, the Davydov splitting
in this system is 4246 cm™, quite close to the value
of W calculated herein.

The zero-order splitting & between the states | 11)
and ({02)4 | 20)) is readily estimated from the

w ,  (39)
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anharmonicity factor. Setting

o= %(xewe) (37)

and using the gas-phase value x.w,=52 cm™L! we get
6=90 cm™.

The first-order splitting ¥ between the two states is
now obtained from Eq. (9):

y= (4W248)3=150 corL, (38)

This result is in good agreement with the experimental
value y=143 cm—' ! representing the splitting between
the overtone and the double-excitation bands. It should
be noted at this point that the apparent increase of the
anharmonicity factor in the crystal, as noted by Ron
and Hornig,®* is due to the repulsion between two
nearly degenerate states.

The first-order wavefunctions can now be obtained
irom Egs. (7), (9), and (12). They are

¥+ =0.89 | 11)4+0.451,,
¥_=0.45 | 11)—0.89n,. (39)

The states ¢, and . are to be identified with the over-
tone band and the double-exciton state, respectively.
Thus, in first order, the intensity of the double-excita-
tion band relative to the overtone band is given by
p=({00 | w|¥4)/{00 | u|y_))? (where u is the transi-
tion-moment operator) leading to p=(8,/8.)2=0.25.
In this first-order calculation, it is assumed that the
contribution of other excited states of the crystal to
the cooperative excitation is negligible. We now demon-
strate that, in this case, a first-order calculation of the
intensity of the double-excitation band is sufficient,
and that a second-order calculation including the
effects of other singly excited configuration leads to a
negligible change in the transition probability.

The transition-probability matrix element for the
cooperative excitation state can be represented in
second order in the form

K=ﬁ+<00 f H:oa l "7+>+
I;I%2

ZB+(00 | Hraa | OI)OL | V| n4 )+, (00 | Heaa | OI)OI | V| 11)
(2—=TI)hwo

+

1,0;1,0722

Within the framework of the harmonic approximation,
the relevant intermediate states contributing to the
matrix element K in Eq. (40) are the singly excited
states | 0I)= | 01) and | IJ)= | O1) or | I7)= | 10). It
should be noted that in the case of a solid consisting of
molecules with a permanent dipole moment, the inter-

( “5]%. F. Hornig and G. L. Hiebert, J. Chem. Phys. 27, 752
1957).
( "’515)). F. Hornig and W. E. QOsberg, J. Chem. Phys. 23, 662
1955).

> B 00| V | 17T | Hesa | me)tee (00| V [ IT)UT | Hewa | 11)

— (I+J ) Fiwo (40)

molecular electrostatic-interaction potential combines
singly excited states, and the second-order contribu-
tions of the second and third sums in Eq. (40) exactly
cancel, so that the singly excited configurations { 01)
(or | 10}) do not contribute to the enhancement of the
cooperative excitation. This is a rather peculiar example
of crystal-field mixing where, because of a small energy
denominator, configuration-interaction effects with the
ground state are as important as for the vibrationally
excited state. The contributions of crystal-field mixing
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to the ground state | 00) and to the double-exciton
state | 11) cancels out in the harmonic approximation.
When anharmonicity effects are included, a rough cal-
culation shows that second-order effects lead to a
contribution of about 19 to the relative intensity.

The results of this calculation indicate that in the
infrared spectrum of solid HCI, the intensity of the
double-excitation band should be comparable with that
of the overtone band, in qualitative agreement with
the experimental results of Ron and Hornig.

To complete this discussion, some comments re-
garding the excitation spectrum (the line shape of the
double excitation) are in order. It was observed by
Ron and Hornig" that the overtone band in solid HCI
is rather narrow (bandwidth 20 cm™) while the double
excitation band is broad (bandwidth of 90 cm?). The
line-shape function for a double excitation on Atoms a
and b is related to the line shapes a,(E) and ayn(E),
corresponding to the single excitations of the two com-
ponents, by the convolution integral

f o (E) oy (2hiso— E) dE.

If we assume Gaussian band shapes for the single
excitations, the bandwidth for the double excitation
By, is related to the bandwidths corresponding to the
single excitations B, and B, by the expression By,=
(Ba+Byp)}. In the case of solid HCI, we note that the
total width of the fundamental band (including the
two Davydov components) is about 60 cm™!. Hence
the width of the double-excitation bands should be
(qualitatively) about 85 cm™, in good agreement with
the experimental value of Ron and Hornig.

In the present discussion, we do not consider the
detailed structure of solid HCl (crystalline HCI has
two molecules per unit cell).26# In principle, the
double-exciton state in this system will be split into
four components, the splitting being determined by
the interaction potential between excited states. It is
clear that further experimental studies of the double-
exciton band shape are of considerable interest.

From the analysis of the double vibrational excita-
tion states we conclude that:

(1) Theoretical arguments lend strong support to
the proposal of Ron and Hornig that the appearance
of double-excitation bands in the infrared spectra of
molecular solids is a general phenomenon which ac-
counts properly for the structure in the overtone
region.

(2) A considerable contribution to the intensity of
the double-excitation band arises from an intermolecu-
lar Fermi resonance effect between the overtone and
the double-excitation states. The first-order interaction
accounts properly for the splitting between these two
states. The calculated intensity ratio of the cooperative
excitation band and the overtone band p(calc) =0.25
is lower than the approximate experimental valuel
p{exptl) =1-2. This discrepancy may indicate that the
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present formalism, involving only neutral-exciton
states, is not complete, and that charge delocalization
between neighboring molecules should be considered.
These charge-transfer effects may enhance the transi-
tion probability to the cooperative exciton state, and
might also be of considerable importance in enhancing
the intensity of the infrared fundamental band in the
solid. Indeed, it is now well established?™" that the
dipole derivatives for the fundamental band in the
solid state range from more than one to almost five
times the values in the gas phase. Since relatively
small changes in the charge density in the periphery of
the molecule in the condensed phase may strongly
affect the dipole derivative,? changes in charge density
induced by intermolecular charge transfer may be
important.?® The intensity changes of the infrared bands
of “hydrogen-bonded” solids are closely related to the
remarkable enhancement of the infrared-band intensity
in molecular charge-transfer complexes, which can be
rationalized in terms of vibronic interactions.?:%

(3) The repulsion between the | 02) and | 11) states
provides an explanation for the apparent increase of
the anharmonicity factor (%.w,) in the crystal. It
should be noted that recent spectroscopic studies of
the cage effect on vibrational states, by Schnepp and
Dressler,® lead to conclusive evidence for a negative
anharmonicity contribution arising from intermolecular
repulsions in the condensed phase.

(4) Intensity stealing from the overtone band by
intermolecular interaction may provide an explanation
for the dilemma posed by the observed relative inten-
sities of the overtone bands in the infrared spectra of
solids.® In contrast to the enhancement of the funda-
mental band in the solid, the intensity of the overtone
band is generally not increased in the solid and, in
certain cases, is even decreased relative to the gas-
phase intensity. Crystal-field mixing of single excita-
tions (i.e., | 10)) into the overtone band cannot account
for this effect, as the contribution of the ground-state
mixing again cancels out the contribution to the over-
tone state. The interaction between the overtone and
the double-excitation states may be responsible for the
decrease in the overtone-band intensity. It is also
important to consider changes in intensity due to
changes in the anharmonicity on going from the free
molecule to the solid.

(5) The large width of the double-excitation band
is qualitatively understood.

VI. RADIATIVE ANNIHILATION OF
DOUBLE-EXCITON STATES

The implications of the existence of cooperative
excitations for the understanding of the radiative

28§, 1. Choi, J. Jortner, S. A. Rice, and R. Silbey, J. Chem.
Phys. 41, 3294 (1964),
2 R. S. Mulliken and W. B. Pearson, Ann. Rev. Phys. Chem.
14, 723 (1964).
3 G. C. Pimentel and A. L. McLellan, The Hydrogen Bond
(W. H. Freeman and Co., San Francisco, Calif., 1960).
310, Schnepp and K. Dressler,] Chem., Phys 42, 2482 (1965).
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annihilation of exciton states in molecular crystals
are of considerable interest. It was suggested by
Dexter that the inverse of the double-excitation pro-
cess to the state | fg) can give rise to two photons
fisg.s and Fwong Although this linear optical effect,
involving photon multiplication, is of considerable
interest, no experimental evidence for such a process
is at present available. Recent experimental studies of
photon multiplication in TIt-doped alkali halide crys-
tals® can be interpreted in terms of resonance energy
transfer from the exciton band of the ionic crystal to
the impurity.

Radiative annihilation of the double-exciton state
| g}, produced by the absorption of two photons fiwo.s
and fiwy.,, may also lead to the emission of a single
photon fiw="Hwg,s+Awssg. This nonlinear radiative
process, proceeding through an intermediate state
(which does not conserve energy), is just the inverse
of the cooperative excitation process. In a very recent
paper, Knox and Swenberg® have pointed out the
possibility of direct emission of a photon from a pair
of excitons and estimated the efficiency of this decay
channel for triplet—triplet annihilation in crystalline
anthracene.®® For comparative purposes, it is also
interesting to consider the transition probability for
the radiative annihilation of a double-exciton pair,
and then to examine the possibilities inherent in the
vibrational and electronic exciton states of molecular
crystals.

The probability for the emission of a photon fiw by
radiative decay of a pair of localized excited atoms or
molecules is given by the conventional expression

Tyg-00= (4*/R®) K2, (41)

where K is the radiative transition-probability matrix
element combining the initial state | fg) with the final
state | 00). The recipe for calculating this matrix
element is presented in Sec. I

We are now able to estimate the rate of the radia-
tive annihilation of a double-exciton state in molecular
crystals. We limit our discussion to exciton states with
a relatively small bandwidth (of the order 1-10 cm™
such as is characteristic of vibrational excitons in
molecular crystals and triplet excitons in organic
crystals). In this case, the frequency of excitation
transfer is small relative to the frequency of inter-
molecular lattice vibrations, so that there is strong
scattering of the excitons by the lattice phonons. In
the strong-scattering limit, we assume that the mean
free path of the exciton wave is of the order of magni-
tude of the intermolecular spacing in the crystal. The
motion of the excitation can then be described as a
random-walk process. The hopping model for exciton
motion has been discussed in detail in another paper.®

32 E, R. Ilmas, G. G. Liidya, and Ch. B. Lusshchik, Opt. Spectry.
18, 255 (1965) [Opt. i Spektroskopiya 18, 453 (1965)].

#R. S. Knox and C. E. Swenberg (private communication),
“Direct Radiative Exciton—-Exciton Annihilation,” J. Chem. Phys.
(to be published).

#R. G. Kepler, J. C. Caris, P. Avakian, and E. Abramson,
Phys. Rev. Letters 10, 400 (1963).
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Within the framework of the random-walk model, a
simple kinetic scheme leads to the following formula
for the reaction rate for radiative annihilation of the
double exciton state:

T'n?
RR= ———,
1+(v/T)

where » is the exciton concentration, T' the rate of
collision of two excitons, and + the excitation transfer
rate in the crystal. When the rate of dissociation of the
exciton pair (where two excitations are located on
neighboring molecules) is large compared with the
radiative annihilation rate (i.e., ¥>>7T), the annihila-
tion rate is determined by the radiative transition rate
to the final state

(42)

RR=(TT/x)n,

while, on the other hand, when the transition to the
final state is fast on the time scale of exciton migra-
tion (i.e., y<T), the radiative annihilation rate is
diffusion controlled, being determined by the rate of
collision of the excitons

RR=Tn2

(42a)

(42Db)

Consider the application of these general considerations
to the study of some specific cases where radiative
annihilation of a double-exciton state can occur.

(a) The radiative annihilation of a vibrational
double-exciton state: Irradiation of a molecular solid
in the fundamental vibrational band (energy fiwo) may
lead to the emission of a photon with energy 2fiw,
arising from the radiative annihilation of the | 11)
state. The transition probability in solid HCI can be
readily estimated from the results of Sec. V, setting
T 11,00 T 205002 T10500/100. The radiative lifetime of the
single excitation |10), calculated from the dipole
derivative data in solid HCL? is 10~5 sec. Therefore,
T1.,0=10% sec’l. The rate of excitation transfer of
two vibrational excitons can be estimated from the
expression y=W/k, where W=50 cm™! is the vibra-
tional-exciton bandwidth. We find v=10% sec™’. The
rate of the encounter of two excitons is easily estimated
from the random-walk model,® setting

I'= 87rDR,,b, (43)

where D is the diffusion coefficient of the excitons in
the strong scattering limit,

DAAYR2 (44)

Setting Rgp=4 A, we find D=1.6X10"2cm?sec?, so that
T'=10"%cm?sec™ which leads to RR= 107842 cn—3.sec™L.
The very small magnitude of the bimolecular radiative
annihilation rate for vibrational excitons indicates that
there is no hope of observing this process in molecular
crystals, where the channel for direct radiative or non-
radiative annihilation of single vibrational states
(characterized by a lifetime of ~107% sec) provide the
dominant decay mode.
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(b) The radiative annihilation of a double triplet-
exciton state in crystalline anthracene®; This prob-
lem was recently treated in considerable detail by Knox
and Swenberg and we limit ourselves to a few general
comments. Triplet-triplet annihilation in crystalline
anthracene leads to delayed fluorescence on the time
scale of milliseconds.® This process has been satis-
factorily interpreted®® in terms of a diffusion-controlled
interaction between triplet excitons, the triplet-exciton
migration being treated in the strong scattering limit.
These calculations®® lead to the numerical values: T'=
1072 ¢cm*3 sec™ and y=10" sec™!. The radiative anni-
hilation rate constant for a pair of triplet excitations
located on adjacent molecules can be roughly estimated
from Eq. (6a). The result is 7T . (v/W)?2, where T, is
the radiative lifetime of singlet anthracene, » is an
electron-exchange matrix element combining the
double-exciton state and the intermediate singlet
state, and W is the energy difference between the
double triplet-exciton state and the singlet-exciton
state. We set W=0.5 eV, which is the energy difference
between the double triplet-exciton state (populated by
a ruby laser) and the 0-0 band of the 1B, state in
anthracene and also set 7w=3X 108 sec™L. The exchange
matrix element is about »=10 cm™, based on the
theoretical calculations of Jortner, Rice, Choi, and
Katz.® (A striking confirmation of this theoretical
estimate has been obtained very recently from a
direct experimental determination of the Davydov
splitting in the first triplet state of crystalline naphtha-
lene.®) Using the quoted values, we obtain 7= 10% sec%,
Thus it follows immediately that, for radiative triplet—
triplet annihilation in crystalline anthracene, v>>T,
and the reaction rate is dominated by the transition
probability to the final state, the annihilation rate
being RR= 10" cm3-sec. This rate is seven orders
of magnitude smaller than that in the diffusion-con-
trolled channel which involves the direct transition to
the singlet state. These conclusions are in general agree-
ment with the recent results of Knox and Swenberg.®

The major conclusions of this discussion are basically
negative. The direct observation of the radiative anni-
hilation of an exciton pair is conceivably possible (if
at all) only with extremely large exciton concentrations,
when a large fraction of the crystal molecules are
excited, and provided that no direct channel for exciton—
exciton annihilation is available. The radiative annihi-
lation channel provides an additional mode of decay of
exciton states which will make the interesting process
of Bose condensation in a dense exciton gas inaccessible
to experimental observation.

VII. DISCUSSION

In the present work we consider cooperative exciton
states in molecular crystals within the framework of
3% D. M. Hanson and G. W. Robinson, “Electronic Structure of

Two Triplet States of Crystalline Naphthalene,” J. Chem. Phys.
(to be published).
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the tight-binding approximation. An alternative ap-
proach, based on the use of Wannier exciton states,
has been presented by Miyakawa* and by Ovander.?
Ovander’s work leads to the prediction that the ratio
of matrix elements for the single and double excita-
tions is of the order of (L/R.s)?% In agreement with
the contribution from the dipole interactions obtained
in the Frenkel scheme. Miyakawa! attributes the in-
tense band in LiF located at 25 eV ? to a double excita-
tion of the fundamental exciton band. But the selection
rules for a double excitation of two allowed transitions
show that the transition-probability matrix elements
in this case should involve quadrupole and electron-
exchange interactions. It is to be expected, then, that
the transition probability to the double-exciton state
in LiF should be of the order of 19, of the transi-
tion probability to the single-exciton state, making
Miyakawa’s assignment of the 25-eV band subject
to question.

Further extensions of the experimental and theo-
retical study of cooperative excitations should lead to
some extremely interesting information about the
excited states of molecular crystals. The pertinent
problems are:

(a) The present formalism, including only neutral-
exciton states, is not complete, and intermolecular
electron-transfer effects should be included to obtain a
better understanding of the nature of vibrational and
electronic cooperative exciton states.

(b) The approximate selection rules for cooperative
electronic excitations imply that the allowed transi-
tions, in this case, involve one final state which is
allowed and another final state which is forbidden in
the dipole approximation. This selection rule ought to
be quite general, and should be extremely useful in the
study and the location of symmetry-forbidden elec-
tronic transitions of molecules. An immediate example
that comes to mind is the location of the lE,, state of
benzene. Thus, studies of (linear optical effect) coop-
erative excitation should be complementary to studies
(nonlinear effect) of double-photon transitions in
locating excited states which are connected to the
ground state by symmetry-forbidden transitions.

(c) A careful study of the matrix elements governing
the transition probability to cooperative exciton states
may yield interesting information concerning exciton—
exciton interactions in molecular crystals.

ACKNOWLEDGMENTS

We are grateful to Dr. Arza Ron for helpful dis-
cussions. This research was supported by the Direc-
torate of Chemical Sciences, U. S. Air Force Office of
Scientific Research and the U. S. Public Health Service.
We have also benefited from the use of facilities pro-
vided by ARPA for materials research at the University
of Chicago.

Downloaded 25 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



