THE JOURNAL OF CHEMICAL PIIYSICS

VOLUMI 42, NUMBER 6 15 MARCH 19635

Deep Impurity States in Molecular Crystals: The Optical Excitation of a Substitutional
Argon Atom in Crystalline Neon

STEPHEN WEBBER,* STUART A. RICE, AND JOSHUA JORTNERT
Department of Chemistry and I'nstitute for the Study of Metals, The University of Chicago, Chicago, Illinois
(Recetved 4 November 1964)

The calculation of the first electronic transition of an argon-atom impurity in a neon lattice is carried
out in the Heitler-London scheme. The energy of this transition is taken to be the energy of the argon
atomic transition, plus the correction to the SCI* 4s orbital energy due to the presence of the crystal. The
modification to the SCE 4s orbital is accomplished by the addition of charge-transfer functions on neigh-
boring neon atoms. It is shown that the choice of the SCI' atomic function is a very bad starting point for

these systems.

A general method for choosing basis functions for hound systems is presented. It is shown that for many
cases a suitably chosen “model Hamiltonian” may be appropriate to a more complex system, and the case
of a dielectrically screened hydrogenic “‘model Hamiltonian” is worked out for Ar-Ne.

I. INTRODUCTION

TREATMENT of the properties of an atom or
molecule present as an impurity in a host crystal

may be built on several different approximation
schemes. In one such scheme, it is assumed that the
medium only slightly perturbs the manifold of states
of the solute. In the earliest work, the effects of the
surrounding medium are represented either in terms of
macroscopic parameters (dielectric constant and/or
polarizability—dispersion energy theories) or, for special
cases, in terms of the splittings induced by the crystal-
line field of the ordered environment (ligand-field
theory). The first group of theories is useful only when
the wavefunctions characterizing both the excited and
ground states of the solute do not overlap the wave-
functions describing the surrounding solvent molecules.
The crystalfield theories are primarily of use in de-
scribing the removal of degeneracies present in the free
atom or molecule and, thereby, for the calculation of
level splittings. They are less satisfactory for the cal-
culation of absolute energy-level shifts due to changes
in environment. Thus, neither of the descriptions cited
is adequate for the many cases in which the wave-
function of the excited state of the solute extends far
into the surrounding medium. Now, from the work of
Gold,'? of Keil and Gold,? and of Sun, Rice, and
Jortner* it is found that the change in excitation energy
of a solute atom or molecule represents only the delicate
net balance between large changes in Coulomb energy,
exchange energy, etc. Indeed, the change in excitation
energy of the solute is often very much smaller than
any of the component energy changes and, also, very
much smaller than can be accounted for by taking into
account only the states of the isolated atom or molecule.

* National Science Foundation Cooperative Fellow.
1 Present address: Department of Physical Chemistry, Uni-
versity of Tel Aviv, Tel Aviv, Israel.
LA, Gold, J. Phys. Chem. Solids 18, 218 (1961).
2 A. Gold, Phys. Rev. 124, 1740 (1961).
3T, Keil and A. Gold, Phys. Rev. 136, A252 (1964).
( 4H. Sun, S. A. Rice, and J. Jortner, J. Chem. Phys. 41, 3779
1964).

That is, the presence of the surrounding medium may
lead to an effective delocalization of the charge density
of the excited solute, thereby greatly altering the exci-
tation energy.

A fundamentally different approach, much discussed
in the literature of solid-state physics, is to regard the
impurity as a perturbation on the manifold of states of
the crystalline host. When the perturbation may be
regarded as weak and slowly varying in space, it is
possible to show that the impurity levels are hydrogenic
and that the surrounding medium dielectrically screens
the electron—parent core interaction. This description
is applicable to donor states in Ge and Si, but even in
these cases where the dielectric constant is large and
the binding energies of the impurity small (Ge: e=16,
Eion™~0.01 eV, Si: e=12, F;;n'™?~0.03 eV) appreci-
able corrections are required to the lowest calculated
excitation energy of the impurity. The theory fails for
the lowest excitation of the impurity because the elec-
tron—parent core interaction deviates from the dielec-
trically screened Coulomb potential near the impurity
site. Of more importance for the problem we consider
herein, the hydrogenic Hamiltonian effective-mass
theory appears (superficially) inapplicable to the
description of deep impurity states.

In this paper we report a theoretical analysis of the
electronic transition between the ground state and the
first excited state of the system consisting of an argon
atom in a neon lattice. Two approaches are considered,
a supermolecule formalism and a pseudopotential
formalism. As in other analyses, we use the static-
lattice approximation and neglect the effects of nuclear
vibrations. This approximation is expected to be satis-
factory for the calculation of the location of absorption
lines, but will not yield useful information on line-
widths, vibronic coupling phenomena, etc. There have
been two previous studies of the lowest electronic
excitation of an argon atom in a neon lattice.l'* In both
instances it is assumed that a product of isolated-atom
wavefunctions i; an adequate first-order electronic
wavefunction for the crystal. The calculations differ in
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the mathematical techniques used to orthogonalize the
wavefunction of the excited Ar atom to the closed shells
of the surrounding Ne atoms. The first calculation
suffered from the lack of convergence of the symmetric
orthogonalization procedure carried out.! When a
Schmidt orthogonalization procedure is used,? the cal-
culation leads to the prediction of a large blue shift
(~4 eV) of the first optical transition relative to the
same transition in the free atom. Direct measurement of
this transition leads to the very much smaller blue shift
of 0.9 eV.3

In a recent study of the optical spectrum of crystal-
line Ne, using the supermolecule formalism, it was
found that charge delocalization in the excited state
leads to a large decrease in the orbital energy of the
excited state. In essence, the inclusion of charge-
transfer states is a mechnism for introducing more
flexibility into the basis set describing the excited state
of the crystal and is to be understood as defining an
approximation function with the extent of delocaliza-
tion determined by the variational principle. In this
paper, when the supermolecule formalism is used, a
similar representation of the excited-state wavefunction
is employed and the resulting orbital energies and
wavefunctions reported. Since we neglect any changes
of the electronic wavefunctions of the surrounding Ne
atoms due to the presence of an excited Ar atom,
consistency requires that we also omit shifts due to bulk
dielectric effects and to changes in dispersion energy.
As in the study of the optical spectrum of crystalline
Ne, it is found that charge delocalization leads to a
decrease of orbital energy such that the predicted
transition energy is in much better agreement with the
observed transition energy® [AE(calc.)=13.1 eV,
AE(obs.)=12.7eV]S$

If charge delocalization is the property that must be
properly handled in problems of the type considered
herein, then it is pertinent to examine methods other
than the use of charge-transfer states to represent
charge delocalization. For this reason we have also
examined the use of a pseudopotential and model
Hamiltonian formalism, with the model Hamiltonian
chosen to be of the dielectrically screened hydrogenic
type. It is found that the charge delocalization and
wavefunction described by the pseudopotential formal-
ism lead to a minimum orbital energy for a dielectric
constant not very different from that characteristic of
pure neon. We are thereby led to the conclusion that
when the radius of the lowest hydrogenic orbit is large
relative to the size of the Wannier function describing

8 G. Baldini, Phys. Rev. 137, A508 (1965). We focus our atten-
tion on the 1P state of the crystal, which is assumed to be the
higher-energy transition of the 1P, 3P doublet.

6 In the earlier work by Gold (Ref. 1) and in a private communi-
cation from him, the change in the van der Waals energy due to
excitation has been estimated as —0.4 or —0.5 eV. The sign and
order of magnitude of this estimate tends to improve agreement
between calculation and experiment.
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the localized state, the dielectrically screened hydro-
genic model Hamiltonian leads to a valid description.

II. METHOD OF CALCULATION
A. Some Comments on the Supermolecule Formalism

The approach used in this calculation is so similar to
that employed previously that the reader is referred to
the earlier work for the computational details.” Briefly,
the formalism is as follows: The excited state is taken
to be representable in the form

V.= @YacPdd H oaai II Hwawa",

i(#a) J(FA) §

(1)

where the capital letters refer to the nuclear sites, A
being reserved for the “central atom” (in this case the
argon atom and in general the atom in an excited
state). The small letters refer to the particular func-
tions, 1s, 25, +++, while the primes denote an a spin
state, with the absence of primes referring to the 8
spin state. As usual, @ is the antisymmetrization
operator.® The function ¥, is not a pure spin state. The
true energy of the 1P crystal state will then be differ-
ent from that calculated with ¥, by an amount

+ Waa(Deaa(l) [ 757 [$aa(20aa(2)).  (2)

This energy, which is of the order of magnitude of
0.2 eV, is omitted from our analysis, as is the effect of
spin-orbit coupling. A more complete analysis would
have to include (2), but it would be inconsistent to
retain it without also including the first-order changes
in van der Waals energy as well as other corrections
of the same order of magnitude. Since we do not at
present understand how to compute dispersion energies
in strongly overlapping atomic configurations, all such
terms have been neglected.
The function ¥4, is taken to be

Y4.=U(] O )XaatU(| B2 [)Iéil\fn

+U(] B |>W§15<Mn+U<l Bs)) ;%Pn, (3)

where the functions Xae, Xas, **°, represent Schmidt
orthogonalized SCF excited orbitals,

X4a= (1/n4?) (paa— ; (Aa| Jj)esi},

ma={1=2(|4e | Jj}%), 4
7

and we use @4, for the SCF 4s function of an isolated
argon atom. The number (Aa| Jj) is the overlap
integral [pa.pridr, where ¢y; is the neon ground-state

7S. Webber, S. A. Rice, and J. Jortner, J. Chem. Phys. (to be
published).

8@=(NI)"Zp,(—1)"P,, where P, exchanges the »th pair of
electrons.
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orbital j on the Jth nucleus. Xaw, Xars, and Xp, all reler

to functions analogous to (4),

Z (M”l Jjeri),

Ji(=45)

Z <M”\Jj>2h

Ji(=A7)

XMn— (1/77M§) 501|ln

n={1— (5)
where &, is the SCF 3s orbital for an isolated neon
atom:. The sets of functions ¥y, Xam, Xp» are classified
with respect to the shells of atoms surrounding the Ar
atom. In a face-centered-cubic crystal there are 12
nearest neighbors to any given atom, then a shell of
six atoms followed by a skell of 24 atoms, and so forth.?
The argon atom is expected to create a symmetric
distortion of the Ne lattice, and the spherically sym-
metric functions Xz, Xa, ***, are thereby assumed to
mix equally if they belong to the same shell. If §; is
the vector from the central atom to the jth shell and
N{(| B;]) is the number of atoms in the jth shell, then
the general expression defining the ‘“supermolecule”
wavefunction used in this paper is

=ZU( 6D B30> P

M=l =n

(6)

where M refers to the Mth nuclear site of the jth shell
and » is the particular SCF excited state which is
orthogonalized to the neon and argon core orbitals.
The index # may change from shell to shell; for the
case described herein #=a represents the Ar 4s function
for the j=0 shell and represents the Ne 3s function
for all other shells. The sum over j is carried up to j=3
for the case studied in this paper. The reader should
note that the wavefunction (6) is similar to that
introduced by Wannier'®; for the case of a pure crystal,
the relationship between (6) and a Wannier function
is discussed in Appendix I of our previous paper.!* The
basic difference between the basis set (6) and the set of
Wannier functions is the following: Wannier employs
the full sum over § but uses an approximate means to
diagonalize the resulting energy matrix, while in the
present treatment the sum is truncated but an attempt
is made to evaluate all matrix elements exactly and
diagonalize the energy matrix directly. The Wannier
approach is easier to use for the higher excited states
of the crystal, but leads to large central-cell corrections
because of the neglected matrix elements. Under many
conditions the Wannier description of the lowest ex-
cited state is inadequate because of the neglect of off-
diagonal charge distributions interacting with the
central “hole.” The relevant domains of applicability
of these two complementary approaches can only be

? See, for example, p. 1037 of J. O. Hirschielder, C. F. Curtiss,
and R. B. Bird, M olecular Theory of Gases and Liquids (John
Wiley & Sons, Inc New York, 1954).

10 G, Wannier, Phys Rev. 52 191 (1937).

(“ Also see R. S. Knox, Solid State Phys. Suppl. 5, Sec. 3e

1963).
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determined by direct calculation, but such calculations
are fraught with difficulty. Also, the use of Wannier
functions requires the defmition of Bloch states for the
crystal, but such states are not easily found for the case
that the impurity represents a strong perturbation to
the electronic structure of the crystal. Indeed, the
direct diagonalization procedure used herein is con-
siderably easier to apply to the argon-neon case.

The calculation is, in principle, quite easily carried
out: the matrix of the different functions

NQBiD
iMn
M=1

interacting with the charge distribution of the remaining
electrons of the system is diagonalized, leading directly
to a set of coefficients, U;(| §;]), corresponding to the
ith eigenvalue.

Let
— (R¥/2m) V.2, (7
Ure=~Zr|e /| Ri—1, ], (8)
CIu-— \ ¢ l Zl l th(@)dl[d_"“ (9)
X1.(Kk, Jj)
o & feril@)exi*(@)er* (D) es; (1) dri
el 1;1/ exr*(@)esi(a) | Ti— 1. | (10)

Since X1,(K%, Jj) is a nonlocal potential which is not
defined unless ¢xi* and ¢y, are first defined, we can
display the crystal Hamlltoman in general only by
adoptmg the symbol X7, to mean that potential which
is defined only in terms of matrix elements such that

[ ox* @ Xnapa@ire= [ (@) Xru K, T)esi(a) e

(11)

Thus, the crystal Hamiltonian for the ath (excited)
electron can be written in the form

JC(G,) = Ta+ UAa+CAa+XAa+ Z [UIa+CIa+X[a].
I(#4)
(12)
The matrix equation to be solved is then
JCX = SXe, (13)
where
N%n N%l)
/%M?z%(d)iNndTa (14)
M=1
and
N8 NB4n
S”= f: % V/‘iMniNndTm (15)
M=1 N=1

(The functions Xars are real so that Xaw™*=%arn.)
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Because the functions Xa, are rather complicated,
the expressions for the elements are lengthy. Rather
than reproduce here the equations and approximations
used in our previous work, the reader is referred to that
carlier paper” (see Appendix I). Perhaps the most
serious approximation required is the Mulliken approxi-
mation to certain large three-center integrals. This
approximation is expressible in the form

O PN <m l Nn YHov @} (16)

The calculation, when carried out in the super-
molecule approximation, is for a small part of the
crystal consisting of one argon atom and 135 sur-
rounding neon atoms. The inclusion of this number of
atoms assures nearly complete convergence of the
calculated energy terms and is expected to be suffi-
ciently large for the description of all but long-range
effects. The wavefunctions used are listed in Appendix
II. Tt should be mentioned that different choices of the
ground-state neon SCF function can lead to fairly large
differences in the individual energy terms, but to lesser
differences in the complete matrix elements due to the
large cancellation of terms typical of these calculations.'

The values of the resulting matrix elements are
reported in Sec. ITL

B. Lattice Configurations

In the static-lattice approximation it is necessary to
obtain an accurate estimate of the equilibrium nuclear
configuration of the lattice. This information is generally
available for pure crystalline solids from x-ray or
neutron-diffraction studies. For the case of an impurity
atom which is larger or smaller than the host crystal
atoms, the local distortion surrounding the impurity
must be estimated theoretically since, in general, no
experimental data are available.

Gold! has studied the ground-state configuration of
the Ar-Ne system by using the usual combining rules
for the Lennard-Jones?® potential between an argon atom
and the surrounding neon atoms, therefrom computing
the configuration that leads to the minimum energy. We
have made a similar calculation by estimating the pres-
sure required to form a bubble in crystalline neon: We
use the macroscopic compressibility of solid neon and
relate this to the gradient of the Ar-Ne intermolecular
pair potential. The calculation leads to the same results
as obtained by Gold. The resultant nuclear configura-

2 Comparison of Hy with the value calculated by Gold (see
Ref. 2) shows that the energy of a Schmidt-orthogonalized 4s
orbital in the distorted neon lattice, as calculated herein, is about
2.5 eV lower than that calculated by Gold. This disagreement
could arise from the use of different neon SCF functions or from a
numerical error. Gold has indicated in a private communication
that there may be numerical errors in his work because the values
of integrals were taken over from the earlier symmetrically
orthogonalized calculation (see Ref. 1) to the Schmidt orthog-
onalized calculation (Ref. 2). The very complicated algebra con-
necting these two methods provides ample opportunity for errors.

WEBBLER, RICE

2

AND JORTNER

tion is: | By | =6.3ay(ao=Bohr radii), | 82| =8.3ay, and
[ 8;] =10.2 ¢y. For pure neon | 3y | =3.82 gy and for
pure argon | By | =7.10 a4, so that the estimated dis-
tortion is about as expected. The equilibrium nuclear
configuration of the lattice will undoubtedly be different
in the excited state, but that is not pertinent in this
calculation since we consider only the state reached by
a vertical excitation (no change of nuclear position
during the time of transition). The eigenvalues of the
matrix diagonalization are sensitive to the magnitudes
of the shell separations, but not so drastically as one
might at first think (see Ref. 6). Since the primary
purpose of this calculation is to test the effect of in-
creased flexibility in the representation of the excited
electron orbital and is not an attempt to predict all of
the details of the absorption spectrum of the argon
atom, we do not vary the nuclear configuration in
order to vary the expected transition energies.

III. DISCUSSION OF NUMERICAL RESULTS

In Tables I, II, and III are displayed the calculated
matrix elements. The various terms Iy, Ip, -+, are
defined in our previous paper’ and Appendix I. It
should be noted that the entries are, in all cases, just
H.;/N(B;),” since the symmetry of the system makes
valid the identification

N(Bi) N

O;;= Z (%arn | 0 | %wa)
N=1 M=1
NP .
=N(B:) [El (Zaa | O] Xwn) (17)
M=

for any operator O, that has the spherical symmetry of
the system.

The value of N and the range of M for each element
is also given in the Tables I-V so as to assist in the
interpretation of the figures displayed. The numbering
system is as follows: NV =1 refers to the central or Ath
atom, the argon in this case; N=2 through ¥ =13 refer
to the first shell of neon atoms; N=14 to N =19 and
N=20 to N=43 refer, respectively, to the second and
third shells of neon atoms.

A brief comparison of the entries in Tables I, II,
and IIT with the corresponding matrix elements for the
case of pure Ne reveals striking similarities. The
diagonal element Hy; in the case of pure neon is about
1 eV lower in energy than for the case of the argon-
neon system. This difference reflects directly the 1-eV

TanLe I. Hy terms (in electron volts).

Iy Ip Ic Ip Ig Hy

—4.415 7.391 —35.249 0.574 1.699

3 We use the symbol N (8;) to mean N (| 8:]) hereafter.
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Tapre IL. /1 terms (in electron volts).
Ja Je Je Jpta Jr Jr Je 2 Hy;
—27.068 34647 2.983 —26.855 2.519 —13.774 = Hypb
—9.256 15.179 0.606 —~9.728 1.110 —2.080 = I
—23.474 42.882 0.825 —24.147 2.982 —0.932 = I

8 L denotes three-center term in all tables.

difference between the energies of the SCF atomic
orbitals for 4s (argon) and 3s (neon).'* Tt is also inter-
esting to note that atomic crowding results in little
energy change (i.e., the value of Hy; is little effected),
the reason being that the orthogonality energy' of the
argon-neon system is increased relative to pure neon,
but the penetration energy® is favorably decreased,
leading to effective cancellation of the separate terms.
In both cases the element Hy is about 2 eV higher in
energy than the SCF orbital energy.

In carrying out the diagonalization in a straight-
forward manner we encountered a difficulty in that the
set of functions defining the 4X4 energy matrix is,
accidentally, nearly linearly dependent. The near-
linear dependence, coupled with the errors arising from
the approximations inherent in the analysis, leads
to an impossible result, i.e., the implication that
($aa | 4a) <0. It is easy to find that member of the
original basis set which is accidentally linearly depend-
ent on the others; this function was then discarded.
It was found that elimination of the functions ¥, on
the second shell (located 8.3ap from the Ar atom)
leads to the lowest energy of the three possible 3X3
energy matrices, and this energy is about 0.02 eV
higher than the corresponding energy from the 4X4
energy matrix (i.e., disregarding the one impossible
root which arises from a near singularity in the overlap
matrix). Table VI displays the lowest eigenvalue of the
energy matfrix, as well as the corresponding eigenvector,

Undoubtedly the most serious numerical uncertain-
ties in the work reported herein arise from the use of
the Mulliken approximation to evaluate three-center
terms. The Mulliken approximation has been tound to
give remarkably accurate results for certain advanta-
geous cases, and the configuration with strongly over-
lapping s functions is believed to be one such advan-

U4 For argon see R. Knox. Phys. Rev. 110, 375 (1958); for
neon see A. Gold and R. Knox, tbid. 113, 834 (1959).

15 Orthogonality energy is herein defined as the increase in
energy due to the nodes introduced by orthogonalization of the
excited state to the orbitals of the surrounding Ne atoms: It is
denoted Ip and Ip in Table I, where Ip and Ip are defined in
Appendix I, (A3) and (AS).

16 Penetration energy is herein defined as the net energy of the
test electron interacting with the neutral atoms and is always
negative in the cases under consideration, In Table I, it is de-
noted by I, defined by (A4).

b For the II1; elements we display the full value of the matrix element and not
Hv/N@Bj).

tageous case (see Ref. 7, Table XVII). To test the
sensitivity of our calculation to the values assigned to
the three-center terms, eigenvalues were calculated for
energy matrices in which the three-center terms were &
109, of those reported in Tables IT and V. The lowest
eigenvalues for these two cases differed by only 0.05 eV
from each other, roughly symmetrically about the value
displayed in Table VI. It would appear that errors in
the three-center terms lead to less uncertainty in our
final result than the neglected change of the van der
Waals energy.

IV. DISCUSSION OF THE CHARGE-TRANSFER
WAVEFUNCTION

In the present work, as well as in our previous
study of crystalline neon, it has been found that the
addition of basis functions located at distances | §; |
from the central hole leads to significant lowering of the
orbital energy of the excited electron. It is, therefore,
desirable to analyze the supermolecule wavefunction
used in more detail.

We observed in our study of crystalline neon that
the greatest improvement in the orbital energy of the
excited electron came about when the atoms of the
first shell were nearly completely surrounded by other
atoms in the supermolecule. The increase of the energy
of the 3s SCF function (for the 'P state of Ne) arises
mostly from interaction with the first shell of sur-
rounding atoms, and it is therefore not surprising that
“added flexibility”” in this region of the crystal lowers
the energy. In the case of the argon-neon mixed solid,
the second shell of the supermolecule is important

Tasre I, H;; values (in electron volts, see Tables 1V, V).

Element Range

;KI ?L] Sum =11;;/N(8;) N of M
0.578 8.483 9.061 Ha/12 2 3-13
1.330 2.8771 4.207 Hs:/6 14 15-19
1.925 10.104 12.029 Hif24 20 21-43
3.538 3.538 Hx/12 2 14-19
12.723 12.723 Hy/12 2 20-43
oo 13.654 13.654 Hy/6 14 2043
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Taste IV, H;; terms (71, in electron volts).

K4 Kn K Ko Kg Kp Kag = [K [ N H;»
2.854 6.811 —5.544 —3.874 0.331 0.578 2 Hye
2.803 6.141 —3.704 —4.251 0.341 1.330 14 My
2.806 6.310 —2.991 —4.520 0.320 1.925 20 Hy

& Denotes matrix element of which the terms K are a part.

because of the atomic crowding, and it is found that
the energy lowering arising from the inclusion of the
same number of charge-transfer states in the basis set
is smaller than in pure crystalline neon. Presumably, a
larger charge-transfer set would be needed to reach
convergence for the Ar-Ne case.

It is of interest to study the expectation value of
various parts of the crystal Hamiltonian with respect
to the function y¥4.. For convenience we examine the
1,1 element energy terms, where {Aa | should now be
taken to be ¥4, instead of @4, There are three contri-
butions to the orbital energy: (1) interaction of the
electron with the argon hole, given'” by 74 (see Appen-
dix I for these terms), (2) orthogonalization energy
given by Ip+Ip, and (3) penetration energy, given
by I These energies are displayed in Table VII. It is
important to note that the lowering of the energy
effected by the inclusion of CT states is mainly con-
centrated in one term, the orthogonalization energy.
Also, we observe that the attractive contributions to
{3¢(a) ) have decreased in magnitude. Now, orthogo-
nalization energy is an artificial construct in the sense
that it describes the departure of the variation-function
orbital from the true crystal orbital (which would
have zero orthogonalization energy). Thus, what we

have really shown in this work (and perhaps also in
our study of crystalline Ne) is how bad the orthogo-
nalized SCF function is as a representation of the
lowest crystal excited state.

Examination of the charge density of the orthogo-
nalized 4s SCF function and the full charge-transfer
function shows that the difference in charge density is
small almost everywhere (see Ref. 6 for example).

In order to analyze further the above observation, a
rough comparison was made of the expectation value
of (r?)®in the basis of the unmixed SCF function and
the charge-transfer function. Contrary to expectations
based on the presence of functions with | 8; | %0, it is
found that (r?) is almost the same for the CT function
and for the SCF 4s argon orbital (about 31a¢?). Thus,
it would seem that our basis function (which was
chosen because it seemed physically reasonable and
resembled the Wannier approach) has functioned pri-
marily to repair a very bad starting function for the
lowest rare-gas crystal excited state, namely, the SCF
isolated-atom wavefunction. In the next section we
discuss what we now believe to be a more reasonable
approach to this problem along with some criteria for
choosing starting functions for the study of bound
excited states in molecular crystals.

TaBLE V. Terms for H;; (4, j#1, in electron volts).

Range
Ly Ly Le Lp* Lg Ly Lg Lyt ZiLy N of M Hi;»
8.294 26.087 0.088 —10.812 0.937 .ee —16.111 8.483 2 3-13 Ha
1.122 4.098 0.087 —1.415 0.218 —1.233 2.877 14 15-19 Hg
6.203 18.287 0.898 —9.635 0.963 oo —6.612 10.104 20 . 21-43 Hy
4.012 10.297 0.682 —5.413 0,507 —6.547 3.538 14-19 Hy
10.808 30.037 1.700 —15.157 1.592 —16.257 12,723 2 20-43 Ha
9.243 26.294 1.465 —13.760 1.446 —11.034 13.654 14 20-43 Hz

2 Denotes the matrix element of which the terms Ly are a part.

17 In the calculations reported herein the values of (1) for the charge-transfer functions were taken as the net difference of the
repulsion due to the neutral neon and the attraction of the 3% argon hole,
18 The coordinate system has the point =0 as the argon atom for this calculation.
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V. DISCUSSION OF BOUND EXCITED-STATE
CALCULATIONS

Let us first state our objective: We seek o obtain
the best single-product wavefunction for the molecular
solid. This is, by definition, the SCF function. Although
SCF functions are now being computed for atoms and
diatomic molecules, no such calculations for solids seem
presently feasible. For this reason we must lower our
expectations and attempt only to approach the best
single-product wavefunction. It should be pointed out
immediately that it is by no means obvious that the
single-product restriction will lead to the best crystal
wavefunction. For pure crystals of NiXNoX N; atoms,

the most general Frenkel wavefunction for the excited

state 1s of the form

N1XNoXN3 . .
o&K=N 2. exp(iK-R)) 2 ails; 2, exi’, (18)
J=1 T Kk(#J 7)

where N is the normalization constant, ¢y, the ith
excited orbital on the Jth nuclear site, a; the weight
of that state, and the ¢x:? are the lower orbitals be-
longing to the SCF Hamiltonian of the ith excited
state. Exchange interactions between configurations
are often very important in such a crystal state, and
the best choices for single-product functions might not
lead to the best basis states for the full configuration-
interaction wavefunction.?

Consider now how to best choose basis functions for
V74, by a method other than that of picking a set of
functions on purely intuitive grounds (a method which
has been very useful when orthogonality corrections are
small followed by a full variational calculation. We
focus attention on the application of pseudopotential
or pseudo-Hamiltonian techniques. This approach was
first used by Phillips and Kleinman,® and later dis-
cussed in more detail by Cohen and Heine,® and by
Austin, Heine, and Sham (AHS),? who have also dis-
cussed the general properties of pseudopotentials. AHS
point out that the pseudopotential can be written in

TaBLE VI. ¢ and coefficients.

€ uiol) U(§ 6 ) U(lB:))

—2.26 0.8397 0.0586 —0.0508

9 See, for example, R. S. Knox, J. Phys. Chem. Solids 9, 238,
265 (1959) for application of the Frenkel exciton formalism to
solid argon.

w0 J, C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
118, 1153 (1960).

2 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

2 B. J. Austin, V. Heine and L. J. Sham, Phys. Rev. 127,
276 (1962).
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Tapre VII. Comparison of charge-transfer set and 4s argon SCF
function energy terms, in electron volts.

Charge
E transfer  Dillerence
Interaction with argon —-4.4 —3.5 +0.9
hole
Penetration energy —-35.3 —4.7 +0.6
Orthogonalization energy 8.0 6.0 —-2.0
Net energy —1.7 —2.2 -0.5
the general form
N
Vilé)=2_(Fi| )] o), (19)
t=1

where we now use the bra and ket notation of Dirac.?
In (19) Vg is a nonlocal potential??® which projects
the | ¢.) out of the space of the “smooth” function | ).
The treatment assumes that the lower N electronic
states of a particular Hamiltonian are known. The
pseudo-Hamiltonian of the system is now

=3+ V. (20)
The pseudo-Hamiltonian 3¢, is particularly useful in
finding an advantageous function | ¢) or set of | ¢;) to
represent the smooth part of an excited-state orbital.
If 3¢, is to be used with some arbitrary function | ¢),
it is necessary that 3C, be defined such that the arbi-
trary function | ¢) will converge to the lowest excited
state and not to some lower energy function, | ¢,). Such
a condition is satisfied if the “energy’’ corresponding to
the functions | ¢;) (the core functions) when operated
on by the Hamiltonian 1, is large. Then the lowest
energy corresponding to the variational function will
be roughly related to the energy of an excited state, or
at least that function with the lowest algebraic value of

E,=(p13¢,|0)/ (¢|e) (21)

will correspond to the best fit to the “smooth part” of
| ¢ay1), the true (N+1)th state.

Consider now the calculation of the matrix elements
of a very poor function | ¢}, say

N
| ¢n>=t§m | o), (22)

which is as different from |¢y41) as possible. The
secular ecuation for | ¢, ) is

det | (By= )80+ {(Fu )| =0. (23)

BP. A. M. Dirac, The Principles of Quanium M echanics
(Oxford University Press, London, 1958), 4th ed., see especially
Sec. 20.
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Let (I ] be such that the ofi-diagonal terms of (23)
are small. Then the perturbation approximation o the
th root is
- N <¢)L ‘ '1,',,> lz
o= Et- (0| 1,)— ShLAh RN
=LA@ Fo— ) (Bo—Ey)

V=1(%£t)

(24)

We wish E, to be larger than Ey,,, and at least greater
than zero. As pointed out by AHS, if

Fil==(:]V, (25)
where V is the true potential, then
E=FE,—{($.| V| ¢:)+ perturbation terms, (26)

Ignoring the perturbation terms for the present and
using the order of magnitude result that

(6.1 V| p)=2E,, (27)
then _
E~—E, (28)
which is far into the continuum. If
(Fi| =—(¢:] 3= —E,{¢:], (29)
then
E.,=0, (30)

so that the choice of (29) for (F,| is satisfactory so
long as we deal with bound states. The choice of (29)
for (F/| is particularly simple to use, and is closely
related to the Phillips-Kleinman?:2 function

(Fi| = (Expn—E.) ($: |. (31)

Our problem is now defined: We seek that set of
basis functions which gives, with 3C,’, the lowest energy,
and where

N

3, =3e— 2 | du){pi | 3C

=1

=J0— EEt [ d0) (s . (32)

The reader should note that (32) is not much easier to
use than the form proposed by Phillips-Kleinman.
However, (32) has advantages when used on a single
function to determine the best value of a parameter,
such as an orbital exponent or quantum number. The
latter part of JC, is quite easy to compute and the
matrix of this part of 3C, may be easily constructed.
Given a “family” of trial functions | ¢, ), each of which
gives reasonably low values of )/, it is advantageous
to find that linear combination which minimizes the
operator

R=— iEt [ ¢e) (@ |-

=1

(33)

AND JORTNER

This calculation aids in the choice of the smallest
possible set of functions | ¢,) to be used in the full
variational treatment. For example, when the three-
shell charge-transfer set of the Ar:Ne supermolecule
function is used to minimize the operator &, the lowest
cigenvalue is 4.4116 ¢V; when the four-shell set is used
{1 8: 1 =0, 6.3, 8.3, 10.2a, with the 8.3a, shell missing
for the former calculation), the lowest eigenvalue is
4.4048 eV. This calculation confirms that the shell at
8.3ay 1s not required for a successful variational treat-
ment, and in fact complicates matters by introducing
near-linear dependency. We should point out that it is
very dangerous to use the minimization of ® too
extensively without also checking the expectation
values of the functions with 3C. In the case of the charge-
transfer set, the expectation values of the functions at
870 with 3¢ are nearly the same, so that the use of ®
vields meaningful results.?

The value of &, for the SCF 4s argon function,
which is the leading term of Eq. (4), is of considerable
interest. By way of comparison, the values of E,’ for a
set of hydrogenic 1s functions were also computed:
These are defined in terms of a parametric dielectric
constant by

1s(e) = (4m) 2t exp{—r/e}. (34)

The results of these computations are displayed in
Table VIIL. It is seen that the e=3 hydrogenic func-
tion leads to the lowest value of £/, indicating that it
might be a far more appropriate starting function in
the representation of the 1P, 3P crystal states than is
the SCF 4s function. The “core functions’ were taken
to be those of the (1s5)2(2s5)2(3s5)2(25)5(3p)%4s(*P)
state of argon and the (15)2(2s5)2(3p)8(1S) state of

Values of 12, for hydrogenic set and SCTF 4s
function, in electron volts.

TasLe VIII.

Function acy (Ra)» (Rp)» E,
15 (3) —25.202 17.369 3.990 —3.842
1s (5) —13.414 5.438 4.143 —3.833
1s (7) —9.000 2.370 5.082 —1.548
1s (9) —6.559¢ 0.973 3.962¢ —1.624
4s —7.5594 0.0 6.4904 —1.8334

B RA=Z~Ea;| aj)ipa; -
Aj
b R,=?—-En | br:) b1 |-
+

¢ There is doubt if this value is correct as convergence of the crystal terms
may not have occurred. Values were taken for neons out to 10.2 a¢, while this
function has its maximum at 9 ao.

d These values are different than reported in Table T as we are not using the
Schmidt orthogonalized 4s, so that the normalization constant is different.

2 We note that the final value of (&) is about 5.1 eV for the
full variational function (corrected for normalization differences)
so that the remainder of 3C, prevents the minimum value of (®)
from being reached.
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neon. A 1s(e) function is quite different from the SCT
4s function, and it is therefore to be expected that the
encrgy of the argon atom in the (1s5)%(2s5)%(3s)%(2p)*
(3p)%1s(e) (' P) state will be different from the SCF 1/
state. Using the SCF program recently discussed by
Roothaan and Bagas,” the energy of the atom using
the hydrogenic function was determined for all the
values of ¢ considered in the next section (3, 5, 7, 9),
as well as e=1, 2 for comparison (see Table IX).* It is
seen that the e=3 and 5 basis functions give total atom
energies only about 0.3 eV higher than that obtained
from the SCF 4s function. This energy increase is more
than offset by the interaction with the rest of the
crystal Hamiltonian, expecially the ® operator (see
Table VIII for example).

VI. PASSAGE TO A MODEL HAMILTONIAN

One of the intriguing aspects of the study of the
electronic states of solids has been the success of some
very simple models. The experiments of Baldini¥ on
solid rare gases present one of these cases. In the
spectrum of solid Ar, Kr, and Xe, Baldini has observed
a series of hydrogenic lines, relatively sharp and pre-
sumably arising from transitions between bound states.
These lines were most clearly seen in the spectra of
annealed Xe crystals, in which the three absorption
peaks at 8.36, 9.07, and 9.19 eV could be fitted to the
series

hon= Egp—G/n? (35)
with fair accuracy. Fewer sharp lines appear in the Kr
and Ar spectra, and the assignment of these peaks to a
hydrogenic series seems to be less certain. We have
discussed the possibility of using charge-transfer states
farther removed from the hole and eventually reaching
values of § large enough to make direct comparison
with Wannier’s original treatment. In this section we
discuss the possibility that the nature of a particular

TasLe IX. SCF results for 1P argon atom using a minimal basis
set, in atomic units.

IMPURITY STATES IN MOLECULAR CRYSTALS

Excited orbital

Function energy Total energy
1s (1) +0.16495 —525.13786
1s (2) —0.07582 —525.37548
1s (3) —0.11787 —525.41671
1s (5) —0.11938 —525.41751
15 (D) —0.10362 —525.40149
15 (9) —0.08889 —525. 38667
4s —0.13158 - 525.42986

% C. C. J. Roothaan and P. S. Bagas, Methods in Computational
Physics {Academic Press Inc.,, New York, 1963), Vol. 2, pp.
47-94,

2 The resulting SCF 1s(E) orbital is orthogonal to the argon
core.

2 G, Baldini, Phys. Rev. 128, 1562 (1962).
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solid may make valid the use of a simple model Hamil-
tonian.

Cohen and Heine?' have discussed the use of the
pseudopotential as a method of testing model Hamil-
tonians. These investigators set

(Fel=—A¢e| (V=Vu), (36)

whereupon

WpZC‘C—g Vo) (@e| (V—=Vu)

et (V= m)—é 60| (V—Va)  (37)

with

Har=To+Var. (38)

For any choice of Vs it is necessary that E, remain
greater than zero. If the set |¢,) is complete, then
3C,=3Cy for any arbitrary Vy including zero, so 3C,=
T, and the conduction band results.

A perhaps more useful observation is that for a
proper choice of Vj, the quantity V—Vy can be
expanded in the set | ¢;). As an example let us con-
sider a hydrogen atom embedded in a rare-gas matrix.
In that case the SCF potential ¥ would be taken to be

V=—|Ry—r "+ 2 [Un+Crt+Xr] (39)
1(%4)
If
Vau=— [ Ry—r ’_1, (40)
then
CFCp=3(zhydrogen'+{ Z [UIa+CIa.+XIa:|

I(=4)

—;; | ¢r:)(¢ri | [Usat-CratXsad}.  (41)

If the set of | ¢r;) at each Jth nucleus is fairly large, it
is quite likely that the bracketed part of Eq. (41) will
almost cancel. This cancellation occurs because the
potential [ Ure+Cro+Xra] and the set Zz | éri){drs |
occupy the same region of real space and drop off to
zero at about the same rate. On the basis of these con-
siderations alone one would predict that the spectrum
of a hydrogen atom in a xenon matrix would be less
shifted from the free-atom spectrum than in a neon or
argon matrix. This observation is rather crude, of
course, and neglects the effects of polarization of the
medium by a charge distribution, different crystal
strains due to mismatched atomic diameters, etc.

The preceding discussion has emphasized the role of
the set | ¢,) in the use of a model Hamiltonian. This is
not really correct, of course, as what is of real interest
is the value of

N
A={p| V-V I¢>>—§<¢1¢L><¢t| V=Vule¢), (42)
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TasLe X. The value of A for hydrogenic sct,
in electron volts.

Function Ay AP A
15 (3) —5.177 1.641 —3.536
15 (3) —3.620 0.053 —3.565
1s (7) —-3.471 1.531 —1.940
1s (9) —2.986 1.193 —1.793

2 A4 is the value of V—V p due to the Ath atom and is the value of
~[(e—1)/e] ({ Ra—r l)‘l-’r}:_[(é—l)/el [ paj)daj | Ra—x |71
i

+ U 46+ Caa™ X 44°] -f_ [ a;Yba; | [Waat+Caad+X 440,
7

b At is the part of A due to the remaining neons and is the value of

;’3 {U1e+C1at+X16) — 2| $1:X1: WU rat+CratX1a— (/6| Ra—r D]}
%

¢ This value may be incorrect, see Table VIII, Footnote c.

where | ¢) is again an arbitrary smooth function. The
function |¢) may contain adjustable parameters to
make (42) vanish as completely as possible within the
set of | ¢¢). If | ¢(a)) represents a function with an
adjustable set of parameters «, we may choose | ¢{a) )
to be an eigenfunction of a particular model Hamil-
tonian 3Cs(a). We now seek to find the best model
Hamiltonian by evaluating A for a series of values of a.
Even if it is possible to find an « such that A=0, it
may be that the resulting | ¢(a) ) leads to a higher
value of F,’ [Eqs. (21) and (32)] than some other
function | ¢ ) which has no relation to 3¢ (a). In such
a situation, we discard 3Cy(a) as having no physical
meaning for the case under study. The procedure cited
is tedious, but it is simplier than application of the full
variational treatment and may lead to considerably
more physical insight.

We should again stress that care in the choice of Vi
is necessary to fulfill the small mixing criterion and
large K, of Eq. (24). If there is the possibility of strong
mixing of part of the set | ¢;), then | ¢(«) ) should be
chosen so as to have fairly small overlap with that part
of the set | ¢¢), in order to prevent convergence to a
lower state.

Returning to the study of Ar:Ne, consider again the
hydrogenic Hamiltonian

3u(e)=To— (1/e | Ry~1), (43)

which gives
V—Vy=—[(e—1)/e](1/| Ra—1])
HULIHCad+X a2+ 2 [Ur4+Cra+- X0 (44)

1(=.1)
The symbol [Cad+Xal+ U aL] represents the “local”
part of the excited argon atom potential and has the
limiting value —17/| R4~r| as | R,—r | —0. When

AND JORTNER

the set

lo(e) )=(4m) et expl—r/e}= | 15(e))

is used for the argon neon case, it is found that the
cancellation is best for large values of € (see Table X),
but the total energies of these states arc higher than
the energies of the states corresponding to lower values
of € (3 or 3, for example). These considerations suggest
the use of | 15(3) ) in an SCF calculation for the 1P
state of argon discussed in the last section.

We conclude, therefore, that hydrogenic lines might
not be observed in the argon-neon case even if it were
possible to do the experiment (the absorption shoulder
of neon makes any structure of the argon spectrum
impossible to observe?).

Is there any way to obtain a reasonable estimate of
the best 3y (¢) given the set of | ¢,)? If the set of | ¢a;)
(the excited-atom lower orbitals) is reasonably com-
plete, it is expected that the best choice of € would be
that which puts the charge density of | 1s(e) ) in the
region of the | ¢4;) because the most important term
in V—Vy is usually (1—1/¢) | R4—r |71 Then, if the
interaction of | 1s(e) ) with this potential is mostly in
the region of the | ¢.4;), the cancellation of

[(e—1)/e]{(ts(e) [ | Ra=T1 7' | 1s5(e) )
—;08(6) [ da5)(as | |[Ra—1 [ | 1s(e) )} (46)

(45)

will be more complete.
By evaluating

411'/ 1s(e)rUs(e) r¥dr,

0

(47)

it is found that at #’=¢ (in atomic units), the integral
(1s(e) | |R4—r || 15(e) ) has (1—e™2) of the total
value of 2/e a.u. Thus, for a given set of | ¢4;), the best
cancellation occurs when e approximately equals the
atomic radius. It was stated previously that the best
cancellation in argon-neon occurs for e=9. This is not
really quite correct since the value of A in Eq. (42) is
less in the case =9 simply because it is the difference
of two smaller numbers. In Table XTI is displayed the
cancellation of the value of | R,—r |~* for the s func-
tions of argon. The percentage cancellation is indeed
best for | 15(3) ), as expected. Also included in Table
XT, for comparison purposes, is the 4s SCF function. Tt
should be observed that, if we were attempting to fit
the higher excited states of the crystal by a | 1s(e) )
set, then the set | ¢4;) might include the 4s function.

VII. DISCUSSION

In this paper we have considered two approaches to
the calculation of the excitation energy of an impurity
in a molecular solid. Consider first the remarkable fact
that a simple model Hamiltonian, representing the ex-
cited crystal states as hydrogenic, is extremely good
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for the case of pure Xe despite the size of the orbitals.
This result can be rationalized as follows. A simple
hydrogenic manifold including the effects of dielectric
screening will be accurate, provided that the ratio of
the sizes of the lowest hydrogenic excited state and the
Wannier function defining the localized wavefunction,
is large. Now the solids Ne, Ar, Kr, and Xe are unique
in that the conduction bands are very nearly free
electron bands because the electron-atom interaction
is so small. But when the conduction bands are of the
free electron form, the Wannier function is confined to
one atomic cell. Thus, even though the lowest hydro-
genic orbits in the several solids are only of the order
of two lattice spacings, the corresponding Wannier
functions are so compact that the cited inequality is
achieved. We believe this to bethe reason that the
spectra of the pure solids Ar, Kr, and Xe may be
interpreted as hydrogenic exciton levels. The reader
should note that a direct corollary of this argument is
that any impurity states in a crystal of Xe, Kr, etc,,
should behave as if the medium served merely as a
dielectric continuum. These considerations would be
expected to apply best to Xe and worst to Ne. This
further implies that the condensed inert gases are very
convenient solvents for the identification of Rydberg
transitions in molecular spectra.

In the contrary case that the conduction band is not
free-electron-like, then the Wannier function spreads
over many unit cells and the central-cell correction
becomes extremely large. If an impurity introduced
into such a system results in a large perturbation, it
becomes essential to use the supermolecule formalism.
Indeed, even in the most unfavorable case Ar:Ne, we
have shown that the supermolecule approximation leads

Tance XI. Expansion of the one-center integral
—{Is(e) [ 1I/R | 1s(e) )

in the set of SCF Ar s- symmetry functions, in electron volts.

(Ls(e) | 6a5)
X (1

s{e) Running — (1s(e) |

€ i —1/R| ¢a;) total —1/R| 1s(e) )
3 1s —0.098521 —0.098521

2s —0.971253 —1.069774

3s —4.002492 —5.072266

45 —3.461630  —8.633896  —9.069999
5 1s —0.022170 —0.022170

2s —0.245914 —0.268084

3s —1.394732 —1.662816

4 —3.519817  —5.182633  —5.442000
7 1s —0.008251 —0.008251

25 —0.096662 —0.104913

3s —0.636000 —0.740913

4s —3.887142
9 1s —0.003932 —0.003920

2s —0.047454 —0.051386

3s —0.246688 —0.298074

4s ~3.023333

STATES IN MOLECULAR

CRYSTALS 1917
to reasonable agreement with experiment. Tn other
cages, where the corresponding Wannier function may
be much larger than the SCF excited-state function,
the supermolecule approximation is very much superior
and even better results should be obtained. Of course,
in intermediate cases it may be necessary to use in the
model Hamiltonian a potential more sophisticated than
either the SCT atomic potential or the screened Cou-
lomb potential. For these cases the pseudopotential
formalism described herein should be useful.
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APPENDIX I: MATRIX ELEMENTS FOR THE
CHARGE-TRANSFER FORMALISM

In this Appendix we reproduce the definitions of the
energy terms used in Tables I-IV. These definitions are
discussed more fully in Ref. 6.

For the 3¢y matrix element, set

(%44(0) | 3¢(@) | %4a(0) )=Ta+Ip+Ic+Ip+Ix, (Al)
with

Ia=Eso/na, (A2)
Iy=—(1/na) 2(4a| i Ers (A3)
Io= (l/nA)Ig;l) (da| UratCratXra | 4a), (A4)

In=(/n1) 2 {{(Aa|Ii{Ii| UsatCad+Xad | Ii)

Ti(#Aj)

—2(?{1 l ]i><[’l ‘ UAa+CAa,+XAa, l Z‘;») (AS)

IE=iE >, {{(Aa| L)1 | UsatCrat-Xsa | Ii)

NA Ii J(#A,D

—2{da | Ii){li | Usat+CratXsa| da)}.  (A6)
For the 3C;; matrix elements, set
(244(0) | 5¢(a) | Xwn(85))
=Jat+TsF+Tc+Ip+Tet+Tr+Ja, (A7)

with

Ja=[1/(nann)¥1{da | Tot UsstCad +Xad' | Nu),
(A8)
Je=[—1/(nam)¥] D, (da|Ii){Nn|Ii)Er, (A9)
Ii(#A,N)

Je=[1/(an)*]1{(4a | UnatCratXna | Nu), (A10)
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Jo=[1/(nan)¥] 3, (da| Urat+Crat+Xr. | Nu),
I(#A,N)

(A11)
]E’=|:1/(’7A"IN)%:|“(¢ZM){ (Ao | Ii){(Nn|Ii)
X i | UsatCad +X 4 | 1)
~ (Nu | Ii){Ii | UsatCad +X4d | 4a)
— (Aa | I {Ji | UsatCad +Xad | Nu)}, (A12)

Tr=[—1/(nanw)*] 2,

Ii(=Aj
X AN | UnatCrnatXwa | I1),
Jo=[1/(nann)¥] 2= 2 {{da|Ii)

Ii(=Aj) J(#I,A,N)

(Aa | It)
)

(A13)

X (Nu | Uset-CrotXsa | It)

+(Nu | IiY(da | UretCratXso | Ii)

— (Aa | YN | I\ Usa+Crat+Xaa | 11}
(A14)

The expansion of the matrix elements 3C;;( j#1) is
conveniently broken up into two parts
N
2 Gva(8) 15¢(a) [ %a(85))
M>N
= Gava(85) | 3¢(a) | xwn(B5))
NG
+ 2 Gara(8)) [5(a) | Zwa(85)).  (A13)
M>N

We expand these two parts as follows:

Gova(85) 15¢(a) | 5wa(85))
=Ki+Kp+Koc+Kp+Kg+Kr+Ka, (Al6)

where

Ka=(1/n8) (Nn | TotUnoatCrnat+Xuna | Nu),

Kp=(—1/m){ 2, Vn|IiYEn

Ti(#Aj)

+;(W | AjPEa}, (A18)

(A17)

and
Eai*=Ez—(4j(1) 45(1) | no' | 4a(2) 4a(2))
+{4j(1) da(1) | s | 47(2)4a(2)),  (A19)
Keo=(1/1%) (Wn | Usat+Cuad +Xud' | Nn),  (A20)
Kp= (1/17N)I(;§N) (Nn | Ure+Crat+Xr. | Nu), (A21)

Ke=(1/1v) 2. {(Nu|Ii)

Ii(#A7)
X1 | Upgat Cad +Xud | 1),
—2(Nu|Ii){Nn| Usat+Cad+Xad | I1)}, (A22)

AND JORTNER

Kr=(=2/m) 2, (Nn|UnatCrot+Xna|Ii)
Ii(=47

X (Nn | Ii),
{(Nn| iy

(A23)

Ke=(1/mv) 2, 2

Ii(=Aj) J(#A,N,I)
X <I7: ‘ UJ(E+CJG+XJG l I1’>
—2(Nn | Ii)(Nn | UsatCratXsa | Ti)} . (A24)
In a similar fashion,
N
Z;v(xm(@j) |3¢(a) | xan(B))

M>.

=Ls+Lp+ Lot Lp+ L+ Le+Le+ Ly, (A25)
La=(1/n3) 2 (Nn | Tat-UnatCrotXna | Mn),

M>N
(A26)

Le=—(/ny) 2.0 > (Mu\IiY(Nn|Ii)Er

MSN 140, 4)
+> (Mn| A7) (Nn| Aj)Eas*}, (A27)
Aj
Lo=(1/1x) 2_ (Nn | Usto+CaratXora | Mn), (A28)
MSN

Lo=(/) 2o 2

M>N I(+#N,M,4)

<m l UIa+CIa+XIa l m),

L L (A29)
Lg= (1/nN>M§Nj;{ (Mn | Ii) (Nn | Ii)
X <I'L l UAa+CAa,+XAc, ! I'L>
—~ (Mn | IiY{Ii | UsatCad’+Xad | Nn)
~ (Nn |\ L)1 | UsatCad +X4d' | M)}, (A30)

LF=‘(1/7IN)M§V;{<W\H>

X[ (Mn | Ustat CrtatXoara | I1)

+ (Mn | UnatCratXwa | Ii)]

+ (Mn | I)[(Nn | Unet+CratXna | I7)

+ (V| UrtatCatatXora | Ii)]

— (Mn | i)y (Nn | I I3 | UnetCrat-Xna | I1)

+{Ii] UsatCouatXue | Ii)]},  (A31)
Lo=—~ (1/nN)M§v; J(ﬂZM N){ (Mn | It)

X (N | UsadCrat-Xsa | Ii)
+ (N | Ii)(Mn | UsatCrat-Xga | I3)
~ (Mn | Iy (N | 1) (I3 | Usat-Crat-Xua| I3)},
(A32)
L= (1/mv)M§,V (V| UsatCad +Xas' | M) (A33)

Note that the latter part of the element 3C;; will be
identical in form with the element 3C;;. Therefore, we
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use the same definitions as above in displaying the
terms that make up the matrix element 3C,;.

It should also be noted that the normalization
constant ny is in general be different for different
atomic shells. Therefore, in these equations ny refers
to the geometric mean of the normalization constant
for the pair of shells involved, or

v =[n(B:)n(B;) I (A34)

APPENDIX II: WAVEFUNCTIONS USED IN
CALCULATIONS

In all the calculations reported herein the SCF wave-
functions were taken as linear combinations of Slater
functions.?® We may write this expansion as

Pra= ZCﬂpo)\a, (A35)

P

where the symmetry species is denoted by A, the sub-
species by a, and p is an index to differentiate between
members of the same species. For our purposes we need
differentiate only between s functions (A=0) and p
functions (A=1) ; x;n. may be broken up into the radial
part and the angular part

Xpha= Rp(r) Y)\a(¢’) 0) ) (A36)
where Yy .(¢,8) is a spherical harmonic. R,(r) is the
Slater function

Ry(r) =[(285) 27/ (2n,) Jrmet exp(—{at).

In Table XIT are displayed the values of Cj, for the
ground-state neon functions.® It was found that the
tail of the 4s SCF function™ could be fit rather well by

(A37)

1919

TaBre XIIL SCF functions for Ne(lS) (minimal basis set).

n, N\, $p
Orbital 1,0,9.642 2,0,2.879 2,1,2.879 ¢ (au.)
1s 0.99735 0.01091 —32.66298
2s —0.25495 1.02937 . —1.73276
2p 1.0000 —0.56199

8 Total energy of the ground-state Ne is —127.8122 a.u. with this basis set.
b Orbital energy.

a single Slater function
oas=(4m) [ (204,)%/8 1] exp(—urr),

C1,=0.845, (A38)
while the tail of the 3s orbital could be fit by

ese= (4m) [ (2¢5)7/6! P exp(— ),

$2:=0.822, (A39)

Using the program described in Ref. 25, the SCF
functions for the 1P state of argon were calculated
using a minimal basis set. It is this SCF result referred
to in Table IX. This analytical SCF wavefunction was
used for the calculations reported herein because it was
quite similar to the numerical SCF function of Ref. 11
and because numerical integrations are thereby avoided.
The Slater function of (A38) was found to give com-
parable results for those integrals where only the
behavior of the tail is important. The Cp, values for
these functions are given in Table XTII.

The 3s fit (A39) was orthogonalized to the ground-
state Ne functions (Table XI). The core functions of
a Ne(*P) atom change very little from the wave-
functions of Ne(1S) atom, so that this orthogonalized
3s function was very similar to the true SCF 3s function.

TasLE XTIII. SCF functions for Ar (!P) (minimal basis set).®

#, N $p
Orbital 1,0,17.5075 2,0, 6.1152 3,0,2.6218 4,0,0.7885 2,1,7.0041 3,1,2.3672 e
1s 0.99759 0.00798 —0.00169 0.00020 —118.85968
2s 0.32480 1.05497 0.01646 —0.00194 —12.40508
3s 0.10743 —0.39826 1.07383 0.00926 res —1.44825
4s 0.01485 —0.05555 0.16116 —1.00982 —0.13158
2p 0.98607 0.05474 —9.68545
3p 0.28773 —1.02573 —0.80673

& Total atom energy is —525.42986 a.u. with this basis set.

b Orbital energy in atomic units.

2 P. S. Bagas, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen (to be published).
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