NORMAL VIBRATIONS OF POLYMER MOLECULES.

future by improvement of the potential field and also
by taking into account the intermolecular interactions
in the crystalline state.
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APPENDIX

The internal coordinates and the intermediate sym-
metry coordinates corresponding to Eqgs. (1) and (7)
of Ref. 13, respectively, are given in Tables VII and
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Fic. 6. Atom numbering adopted for the polyethylene oxide
molecule.
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VIII. The numbering of the atoms is shown in Fig. 6.
Here the number of the chemical unit, 7, is omitted
for simplicity in the notations, Ci(j), Ci(j+1),
Ci(j—1),---. Thus Ci(+1) and Cz(—1) represent
Ci(j+1) and Cy(j—1), respectively.
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The energy of the first electronic transition in crystalline neon has been calculated in the Heitler-London
scheme. The calculation differs from previous work in that the effects of ionized exciton states are formu-
lated as charge transfer states in which the excited electron resides on neighboring neons while the
(15)2(25)2(2p%) hole remains on the central neon. Only the T'(2=0) point in % space is considered, and spin—

orbit coupling is neglected.

When correction is made for the nonstationary character of an exciton in solids, the predicted blue shift of
0.25 eV seems to be in reasonable agreement with the trend of spectral shifts of other rare-gas solids.

1. INTRODUCTION

T is commonly supposed that the electronic states of
molecules entering into the formation of a molecular
solid or liquid are little affected by the surrounding
medium. For the description of a very few gross phe-
nomena this approximation is adequate; for the study
of energy transfer, spectral shifts, photoionization,
exciton dynamics, and a host of other subjects, it is
obviously inadequate.

The earliest studies of the optical spectra of crystal-
line solids were made by Frenkel' and Peierls.2 These
studies were concerned primarily with tightly bound
states which are characterized by zero-order wave-
functions which do not overlap seriously with the
surrounding medium. In this case the spectrum of the
molecule in the crystal differs only slightly from that
of the isolated molecule. Extension of the theory by
Davydov? to the case of crystals with more than one
molecule per unit cell; and subsequent experimental and

* NSF cooperative fellow.

17, I. Frenkel, Phys. Rev. 37, 17 (1931).

2 R. Peierls, Ann. Physik 13, 905 (1932).

2 A. S. Davydov, Theory of Molecular Excitations (translated
by M. Kasha and M. Oppenheimer) (McGraw-Hill Book Com-
pany, Inc., New York, 1962).

theoretical work by Craig,* McClure,® and others has
shown that the lowest excited states of crystals of
aromatic molecules are often aptly described as Frenkel
exciton states. Even for these most favorable cases, it
is often necessary to include the effects of configuration
interaction and crystal field induced mixzing of configu-
rations, since the absorption intensities and polarization
ratios often deviate markedly from the simplest
oriented gas model.

In 1937, Wannier® considered those crystal excitations
which could be described as arising from the manifold
of states of a bound hole-electron pair. In a sense,
these states are analogous to the Rydberg states of
molecules and may be characterized by zero-order
wavefunctions which extensively overlap with the
surrounding medium. Wannier excitons have a hydro-
genlike spectrum and the role of the surrounding
medium is to dielectrically screen the Coulomb inter-
action. Experimental studies of CugO? and of impurity

4 See D. Craig and P. Hobbins, J. Chem. Soc. 1955, 539.

§ See, for example, D. McClure, Solid State Phys, 8, 1 (1959);
9, 399 (1959).

¢ G. H. Wannier, Phys. Rev. 52, 191 (1937).

7§, Nikitine, G. Perny, and M. Sieskind, Compt. Rend. 238,
1987 (1954).
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donor centers in semiconductors indicate that Wannier
excitons are an apt description of diffuse but bound
states in a high-dielectric-constant medium.

Frenkel excitons' and Wannier excitons® clearly
represent two extremes of behavior. In this paper we
consider an intermediate case in which the overlap of
the wavefunction of the excited molecule and the
medium is very large, but where the wavefunction
still does not penetrate far enough into the medium to
validate a dielectric screening approximation. Thus, it
will be necessary to examine in some detail the nature
of the lowest excited states of the constituent molecules
and of their interaction with the surrounding crystal.
In particular, we focus attention on the role of con-
figuration mixing of the neutral exciton with the lowest
charge transfer (or ion-pair exciton) state. This latter
state is characterized by a charge distribution with a
hole on cne molecule and an electron on a nearest-
neighbor molecule, and is obviously only one of the
many possible states intermediate between the tightly
bound Frenkel exciton and the weakly bound Wannier
exciton. As will be shown in other work, ion-pair
exciton states can play an important role in energy
transfer, exciton dynamics and the spectroscopy of
molecular solids.

In the analysis presented in this paper we do not
compute the band structure of the solid. Instead, we
use a “supermolecule” approximation in which some
central atom and a large number of neighbors (~12 to
135) are taken to comprise a representation of the full
crystal. The wavefunction for this subsystem is con-
structed in the molecular orbital utilizing the symmetry
inherent in the structure. In the approach sketched, all
calculations are made in the direct space of the lattice.
The reader should note that the procedure we use is
related to the Wigner-Seitz approximation® in the
theory of metals.

We reserve for the final section a detailed description
of the results of the analysis.

II. FORMULATION OF THE CALCULATION

Consider a sample of crystalline neon. The normal
crystal structure for neon (and other rare-gas solids)
is fcc,® with each neon atom surrounded by 12 other
neon atoms at 5.8124 ay, six at 8.2200 aqg, 24 at 10.0674 ay,
and so on. It is these first three shells surrounding an
excited neon atom that play the most important role in
this calculation. To describe this system we start with
antisymmetrized product (AP) wavefunctions made
up of orthogonal one-electron functions. Because the

8 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).

SE. R. Dobbs and G. O. Jones, Rept. Progr. Phys. 20, 516
(1957). The reader should note that by lattice constant we mean
the distance half-way along the side of a unit cell. It has been
pointed out by A. Gold and R. S. Knox that the change of the
van der Waals forces will be of the same order of magnitude as
our calculated blue shift. [See for example, A. Gold, J. Chem.
Phys. Solids 18, 218 (1961).]
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overlap between ground-state wavefunctions on dif-
ferent centers is very small (~0.01), it is assumed that
the SCF ground-state wavefunctions are accurate
representations of the crystal ground-state wavefunc-
tion.’® Thus, for the ground state of the crystal in the
zeroth order, we take the representation®

Y= Cpad'oaa | H ori ot
I{=d) i(7a)

¢y

where @ represents the antisymmetrization operator,
¢4. is the ground-state wavefunction belonging to
Atom A (the central neon) and the ath atomic func-
tion, o4, refers to the xa.o function and ¢4, to the
X4 function, where x4, is the spatial part of the wave-
function. Of course, it is the ground-state wavefunction
from which excitation is to take place; in the case of Ne
this is a 2p function. The product in Eq. (1) is over all
the atoms in the crystal, where I refers to the nuclear
site and 7 refers to the wavefunction centered on that
site. Equation (1) represents a singlet ground-state. In
the excited state the zeroth-order wavefunction may
be represented by the four wavefunctions which define
the singlet and triplet states (we assume the crystal
Hamiltonian to be spin free throughout this treatment).

1¢e= @( 1/\/2) {'//Aa'ﬂoAa—K[/AMPAa’} H H ﬁOiI"PIi: (23)

I(=4) i(4a)
l//Aa’QOAaI
3¢c= G (I/VZ) {¢Aa,¢Aa+¢Aa¢Aa,} X H H ¢Ii,§0['i-
I(=A) i(%a)
‘pAaSOAa

(2b)

The ¥4, refers to the excited-state wavefunction
which in dilute gas phase would be the SCF 3s neon
wavefunction. We leave y4, general as there is expected
to be a modification of the wavefunction in the solid
state. When spin—orbit coupling is neglected the only
energy difference between the singlet and triplet states
arises from the electrostatic exchange splitting 2K
where!?

K=(ua(1)paa(1) | 757 | Y4a(2)0aa(2)).  (3)

10 A, Gold, Phys. Rev. 124, 1740 (1961). After making a rather
elaborate calculation on a similar system, it was concluded that
any changes of these ground-state wavefunctions were so small
that they could be neglected.

1t The notation to be used for the summations is as follows: A
sum such as 2y is to be taken to mean a double sum over the ¢
functions centered on the 7 different nuclear sites. On occasion it
is convenient to include the ground-state functions of central neon
atoms in such a sum. In that case the notation Zji(-4j) is used.
This should be taken to mean summation over only the occupied
ground-state functions of the central neon atom (i.e., 1s, 25, 2p).
When these are to be expressly excluded, the notation Zyigeas) is
used.

12 The notation (||} means integration over the spin and space
parts of a function throughout this paper except where noted
otherwise. The notation (/i |is used for SCF functions so that
integration over the space and spin parts of these functions would
be written {Ii|f| J7) or {Iili| g| JjJj) where f and g are one-
and two-electron operators as usual.
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For the neon atom the 'P—3P energy difference in the
pure LS coupling scheme is only 0.18 eV. Keeping this
in mind we carry out our calculation for the function

= a‘l’Aa‘PAa’ H II ‘PH"PI'E) (4)

I(=4) i(#a)

realizing that the electrostatic splitting must eventually
be accounted for. The purpose of this calculation is not
to study the splitting between the singlet and triplet
substates of the excited state, but rather to study the
change of the center of gravity of the absorption lines
on transition from free atom to solid. The SCF 3s neon
function differs somewhat in the singlet and triplet
states,’® but since orthogonalization and expansion in a
basis set alter the excited-state function anyway, we
arbitrarily neglect this small difference and choose to
work with the singlet 3s function. Certainly this choice
leads to only slight differences in the values of matrix
elements and to no difference in the general approach.
Roothaan' showed in 1951 that if a SCF calculation
is based on AP wavefunctions and one of the molecular
orbitals’® (MO) is written as a linear combination of
other functions (which may or may not be atomic
orbitals), the vibrational principle leads to the matrix

equation
Fx=S8xe (5)

where
Fy=(x:| F | x3).

As usual, F is the Hartree~-Fock operator equal to the
sum of kinetic energy and nuclear attraction operators,
plus the Coulombic and exchange potentials due to the
charge distribution of the other electrons present. F is
a one-electron operator although the terms in it are
sometimes due to the interactions of two electrons. The
x’s are members of the basis set that construct the F
matrix. In order that this variational treatment be
valid for excited states, it is necessary that the eigen-
functions of the F matrix be orthogonal to the ground-
state functions. If this precaution is not observed, the
wavefunction calculated converges to the ground-state
wavefunction. It is necessary, therefore, to choose the
set x to be orthogonal to the ground-state functions.
Also, the set x should be chosen such that the elements
F;; and F;; are nonvanishing and of the same order of
magnitude, respectively. In a first-order approximate

B A. Gold and R. Knox, Phys. Rev. 113, 834 (1959).

4 C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). It should
be noted that the Hartree-Fock equations are not this simple for
the open-shell (15)2(25)2(25)%3s configuration. The error in using
a closed-shell formalism is quite small (a 0.05-0.10 eV) compared
to terms neglected in the crystal Hamiltonian as defined [see,
for example, C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960) ].

15 In our context, molecular orbital means any function extend-
ing over more than one nuclear site. The treatment that follows
is similar to that for a Ne-Ne;2 “molecule” or, more correctly, an
Ne-Ney (WN~42-135) molecule as this many centers were in-
volved in the orthogonalization. This approach is characterized
as the “supermolecule” formalism.
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calculation, this condition precludes the use of x’s simi-
lar to ground-state functions as the basis set for expan-
sion of the excited-state functions. As a quantitative
guide, the F;; element would be expected to be small
if the charge distribution x; x; is small over all space.
Thus, the magnitude of the overlap integral (x:| x;)
may be used as a rough criterion of the necessity for
the addition of more functions to the basis set.

It is clear that we have now but to define our basis
set and calculate the F matrix for this crystal problem.
There are, in a sense two alternatives which may be
used. A set of functions centered on the excited atom
with different values of the principle quantum number
and the orbital exponent may be used or, alternatively,
a set of functions with the same or similar radial extent
can be centered on neighboring atoms. It is this latter
course which is pursued herein. These charge-transier
states or lon-pair excitons are quite similar to the
Wannier exciton in physical content, but are different
in that functions centered on different lattice sites are
not orthogonal. The charge-transfer states cited are not
constructed from Bloch functions in this calculation,
but the resulting energy matrix is easily shown to be
expressible in terms of the energy matrix based on
Wannier functions (see Appendix I).

We wish to diagonalize the energy matrix in the
excitation wave representation E(K, 8) (following the
notation of Wannier).!6 Here K refers to the wave
vector of the electron-hole pair and in this calculation
is taken to be zero as it is this part of the band which is
most important in an optical absorption experiment.
The vector § refers to the electron-hole separation and
defines the position of the center of the charge-transfer
function. Of course, the matrix is not diagonal in the
representation based on the position of the excited
atom; taking this into account adds a term of the form
of a dipole—dipole interaction which falls off as R—3,
where R is the separation of the two excited atoms.”
This interaction energy is calculated in the continuum
approximation.!®

The calculation described herein proceeded as follows:
First, a basis set of the form

Yao=U(0)%aa+U(] B1)) NZJN (6)

was used, where U(8) is the coefficient of the function
located a vector distance § from the hole and is deter-
mined by the diagonalization of the F matrix discussed

18 G, H. Wannier, Phys. Rev. 52, 191 (1937).

17 R. Knox, Solid State Phys. Suppl. 5, 1 (1963).

1¥8'W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951).
Neglecting exchange between states differing in the position of
the excited atom is probably a poor approximation for these
diffuse wavefunctions. A. Gold and R. S. Knox have suggested
that exchange may be as important as the dipole terms. Since
our interest is not in the band structure of solid neon we believe
our neglect to be justified within the 1-1} eV error estimate of
this calculation (see Appendix IL.D, for example).
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above.!? 3, is the vector distance to the first shell. The
functions X4, and Xw. are orthogonal to all occupied
valence and core orbitals and are described below. In
this calculation the lattice parameter (defined here as
the distance half-way along the unit cell) was varied
so that the approximate behavior of these states could
be studied as the nuclei were moved further apart. The
results of this study are somewhat inconclusive, as the
F matrix is not even approximately diagonal in this
limited representation. For this calculation 12 nearest
neighbors are used as sites for the charge-transfer state
and a crystal containing 43 atoms is used for the SCF
potential.

The second calculation was made for the equilibrium
lattice separation with the basis set

12 ¢
40=U(0)X4a+U (| B l)léiNn-}‘U(] gzl)ﬂgilm

The effect of the further extension of the basis set on
the lowest excited states can be tested directly as can
the structure of the higher excited states. Specifically,
it is possible to see if a hydrogenic energy level series
results from the direct diagonalization of the F matrix.
Hydrogenic level structure has been observed recently
in solid xenon.?0

The Schmidt orthogonalized functions X4, and X
are defined as follows!':

X4a= (1/74%) {qua—;(ZE | Ii)eri},

={1—;(ﬂl1i)2}, (8a)
XNn= (l/ﬂN*)
X{(azvn—r;;”(m [ Ii)son—;(m | A7 )eas},
mw={1~ (; )<Nn | Ii)— Z<Nn | 453, (8b)

where @4, and gun refer to the 3s SCF neon functions.?

It is now necessary to define the HF crystal Hamil-
tonian. We use a notation that stresses the physical
nature of the Hamiltonian, i.e., the presence of a num-

19 Because of the crystal structure of neon there are 12 functions
Xn» Which are equidistant from the Ath site. The spherical sym-
metry of X4a implies that all twelve of Xv» mix equally. The same
is true of the basis set described by Eq. (7).

® (. Baldini, Phys. Rev. 128, 1562 (1962).

21 It should be emphasized that these 35 SCF functions are for
an excited, neutral neon atom. When an electron is put in such a
3s orbital on a neutral neon to form a “Ne~" ion it suffers a large
repulsive force which is offset by the attraction of the neighboring
(15)2(25)2(2p)® hole. [See Ka and K¢, Eq. (30a) and (30c),
respectively, and their values in Table VIL] It is not at all
obvious that the true Ne~ orbitals would be a superior basis set.
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ber of neutral atoms. Consider the definitions

To=— (f2/2m) V.2, (9a)
Un=(—Zr|e|’/|Ri—1a ), (9b)
=e lzé/l]iia(i)al (9¢)

X1(Kk, Jj)=—|

& [ori(a) err* (@) e1i(3) 15(i) dr
4 ;f eri*(a)psi(a) | Ti— 14 |
(9d)

The atomic functions we use are all eigenfunctions
of the HF atomic equation, so that

[T+ UritCrit-X1:i(Ii, It) Jors= Erseri. - (10)

The one-electron crystal Hamiltonian can now be
written?

3(a)=TotUsat+CaatXaa( )
+ Z [UIa+CIa+XIa( )]

I(=4)

(11)

The matrices which are to be diagonalized have the
following types of elements:

HIIE (y(Aa I JC(G) [iAa); (12)
Hyy=Hp=N(8;)[%4.(0) [ 3¢(a) | x¥(87)], (13)

where NV (B;) is the number of atoms at separation §;
from the Ath site. To designate X functions centered
on the various shells we use xwa(3;) which should not
be taken to mean that xx. is an explicit function of §;:

[:1)]
H,-,-=N(@,->Z§V [ (8) 1 50(@) [fn(@)] (1)

N@BH
H,-,-=H,-.-EN<§.~>§V Cin(B) 1 52(0) | Xara (891 (1)

The overlaps Su, S, Sjj, Si; are defined as above
except that 3C(e) is replaced by unity. The matrix
equation is just that of Eq. (5) except that the symbol
H is used here instead of F. Expansion of the above
matrix elements leads to several terms that require
further discussion.

(1) Terms such as {Ii|3¢(a) | Jj), where {Ii| and
(Jj | are ground-state functions, are ignored because
the charge distribution ¢r;(a) ¢si(e) is small every-
where.

(2) Terms such as

<Ii l Ta+UIa+CIa+XIa(I1:7 Ii) I Ii)

are equal to Eyp;. If one extracts from the Cz, and
Xr1.(I4, I4) sum that pair of terms due to the Iith
B The arguments of x4 and xzs are not written as these poten-

tials are not defined unless the functions on which they are to
operate are first defined.
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function we find that

| ori(2) Pd __f‘PIi*(a)ﬂpli(a)ﬂon(i)‘ﬁ’ﬁ(i)
’ e1*(a)eri(a) | ti— 10|

| ri—1a |
and the potential left is the same as the HF potential ®
(3) Terms such as

<I¢‘ Ta+UJa+CJa+XJa(I”:) ]]) I J])

are approximated by (I7| Jj)Eys; even though the ex-
change potential is changed. In actual calculations this
approximation is made only if (I | is one of the spa-
tially diffuse excited state functions. By expansion of
the function {77 | in the set of states (Jx | one can show
that the approximation is valid if

dri=0, (16)

gail TEYL(TE | Xeal Th, Tj) | J7)

—(Jk| Xw(Jj, Jj) [ T3] (A7)

is vanishingly small.

(4) The physical situation we deal with involves a
delocalized electron interacting with all the surrounding
neutral atoms, plus the positive hole at the Ath site,
and the formal potential must reflect this description.
Indeed, such a representation is derived from the poten-
tial as defined for the general element

(KE| UsatCaotXaa(Kk, I3) | I3)

by extracting from the sum in Cya, and X4, (K%, I3)
those terms due to the (4¢ | function, which are

| @4a(a) |2 _/(?’Au(a)‘PKk*(a)‘PAa*(a)‘PIi(a)dTaz
| ta—ta| ° exi*(a)eri(a) | Ta—Ta |

0.

(18)

We use the symbols Cy,’ and X44'(+++) to signify that
the ath electron has been removed so that at large
separations the total Aath potential has the limit
e/l Ra—o .

(5) There will be terms such as the following:

(Kk | Ta+Uga+CratXko(Kk, I7)
+UIa+CIa+XIa(Kk, I1’) l Ii)

Using the approximation mentioned in (3) this could
be evaluated as either

(Kk | Ii) Ega+ (Kk | Ut Crat-X1a(KE, I3) | Ii)
or
(Kk | Ii) Eri+ (Kk | UgatCratXgo(Kk, It) | Ii).

(When the full crystal Hamiltonian is used, there are
more terms than displayed above, but the idea remains
the same.) The energy operator must be Hermitian,
of course, so we take one-half the sum of the two

3 This is no longer true if the ¢5; function is unoccupied in the
ground state, i.e. (N# |.
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expressions above as an Hermitian average. This pro-
cedure was used only in the lattice variation calculation.
It was found that the approximation

(Kk| Tat-Crat+X1o+Ura | Ii )=~ (KE | Ii)Er; (19)

was somewhat better when (K% | was one of the 3s
functions and (I7| a ground-state function. This is
easily understood in that the charge density of ¢ripnm
is more like | ¢ |? in the region of the Ith site than it
is like | @xx |2 in the region of the Nth site. The approxi-
mation above was also found to be quite good if both
(Ii| and (Kk| were excited state functions. (see
Appendix I1.) With the use of Conditions (1)-(5) the
various matrix elements can be expanded as follows:

[(%4s(0) | 3¢(a) | X4a(0) ]=I44-Ip+Ic+Ip+1z, (20)

Is= E4o/n4, (21a)
Ip=— (1/7111)§<Z_a | I4 )2, (21b)
Ie= (Um)%) (Aa | Ura+CratX1a | 4a), (21¢)
Ip= (1/nA)Ii£]_){ (Aa | LY (11| Usat-Cad +Xud' | Ii)

—2(Aa | Ii)(Ii | UsatCad +Xud | 4a)}, (21d)

Ig= (1/n4) 22 20 {{(Aa| LY (Ii|UsutCratXua| 1)

It J(#4,1)

—2(da | [i){Ii| Usa+CratXsa | da)}.  (21e)

As mentioned in the preceding paragraph there are
two difinitions for the element H;.

If, instead of a Hermitian average we define a non-
Hermitian average as follows:

[%44(0) | 3(a) | Xwn(85) ]

= Jat+Jpt+Joct+JptJetJrtTa. (22)
Then
Ja=[1/(nanw)¥1{da| Ta+Uss+Cad+Xad | Nn),
(23a)

Je=[— 1/(nAnN)%]I. ;N) (Aa|Ii)(Nn| Ii)Er, (23b)

Jo=[1/(nanx)*](Aa | UnatCrat+Xna| Nu),  (23¢)

To=[1/(nanx)¥] 2. (de|Ur+CrotXra| Nn),
1G44,N)

L L (234d)
Je= [1/(17A71N)*]I.(#ZA .){ (Aa|Ii)( Nnu| Ii)
X It Unat-Cad+Xad | Ii)
—(Nn | i) (L5 | UsatCad +Xad | da)
- <Zz I I’I«><I’I/ l UAu+CAa,+XAa, l m)}, (236)
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Tr=[—1/(ram)] (g; (da| 1)

X <m ’ UNa+CNa+XNa I 11’>7
Je=[1/ ()] 25 2. {(4a|Ii)

Ti(=47) JGI,4,N)
XN | Usa+CratXsa| It)
+ Wn | Ii){Aa| UsatCra+Xsa | Ii)
— (Aa| Ii)(Nn | Ii){Ii| UsstCrat-Xsa | Ii)}.
(23g)

In the case that the Hermitian average is taken,
the Hy; element is

[%44(0) | 3¢(a) | xwn(B5) ]

(23f)

=J4'+Te'+J+Tp'+JE. (24)
It was found that, to a good approximation,
(da| Ta+UnatCratXna(Aa, Nu) | Nn)
= (An|Nn)Ex,*, (25)

where
Fyn*= Eyot | e (Nn(a) Nn(a) | ra™t | Nu(i)Nn(i) )
— |el2 (Wn(a)Nn(a) |74t | Nn(i) Nu(i) ) (26)

and
(Nn | = V20,
J4'=[1/ (nanm) ] mlm—;mlmw—n | 7i)}
X {3 (EaatEnn*}, (27a)
J8'=[—1/2(nanw) %]1 4(;{1 A)[[(]WL | Ii)

X 3| Ure+Crat+X1. | 4a)

+(da| UsatCad+X4ad' | I1)

+(da | Ii)(Nn| UnatCrot-Xna | Ii)

+2(Nn| Usat-Cad+Xad' | I1)

+ (13| Ura+CratX1a | N

—2(da | 1) (V| Ti) (T | Unat-Cad +Xad | 1),

(27b)

J'=[1/2(nanw) ] (Nn | UvatCroatXno | da)

+(da | UsatCad+Xad' | Nu)}, (27¢)
Jp'=[1/(nanx)] ZN) (Nn| UsatCratXsa| Aa),

TiG=A,
(27d)

Je'=[—1/(aew)¥] 2, X {(WVu|Ii)

Ti(=A7) JG<T,4,N)
X {Aa| UsatCrat+Xsa| It)
+(Aa|IiY(Nn | UsatCratXya | Ii)
—(Aa | LiY(Nn | Ii){Ii | UsatCratXsa | I3)}.
(27¢)

WEBBER, RICE, AND JORTNER

The expansion of the matrix elements Hj;( j#1) is
conveniently broken up into two parts:

N(BH
Mgtmw» 15¢(a) | %aen(83)]
=[%wa(B5) | 3¢(a) | Xw¥n(85)]
N(87)
+M§Exm<@j) 150(a) | 23 (3] (28)

We expand these two parts as follows:

[xna(85) [ 3¢(a) | Xwa(B5)]
=Ks+Kp+Ke+Kp+Ke+Kr+Keg, (29)

where

K= (l/ﬂN) <N_’n« l Toe+UnetCnatXne l ]_V—”)y

Kp=~(1/m){ 2., (Nn|IiPEn

Ti(#Aj5)
+;<m | 472 E4;*}, (30b)
¥

(30a)

and
Epi*= Ea;— (45 (1) 45 (1) | rst | Aa(2) 4a(2) )
+(4j(1)da(1) [rs™ | 47(2) 4a(2)),  (30b")
Ke= (1/nw) (Nn| Una+Cad'+Xad' | Nn), (30c)
Kp=/mv) > (Nn|Uw+CratXr|Nn), (30d)

I(4,N)

Ks=(1/nx) 2 {(Vn|Ii)

- It(#=Aj)
X (I3 | Usat-Cas'+Xaa' | I3)
—2(Nn | Ii)(Nn | UsatCad+Xus' | i)}, (30e)
K= (—2/’7N) Z <m l UNu+CNa+XNa ] Iz)

Ii(=4j)

X (N | Is),
Ke=(1/1x) 2. >

Ii(=Aj) J(A,N,D)
X (I’Ll UJa+CJa.+XJn l I’)
—2(Nu|Ii){Nn| Use+CratXsa | Ii)}.  (30g)

In a similar fashion,

(30f)

{(Nn|Iip

NG
zgv[im(@j) [3¢(a) | % (8]

=La+Lp+Le+Lpt+Leg+Let Lo+ La, (31)

La= (1/nw) Z:,v (Nn| Ta+UnatCuatXna | M),
M>.
(32a)
Le=—(1/o) 25{ 2 A)(mlli)(]Wz[Ii)EH

M>N Ii(#M,N,

+; (Mn| 45)(Nn| Aj)Eas*}, (32b)

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



OPTICAL SPECTRUM OF CRYSTALLINE NEON

Le=(1/nx) X_ (Nn| Usta+Crta+Xnra | Mn)
M>N

Lp= (1/77N) Z Z

M>N I(=N,M,A)

(32¢)

(Nn | Ure+Crat-X1a | Mn),

L - (32d)
L= (1/711v)MZ>;v ;(Mn [ 13)(|Nn Ii)

X (Ii]| UnatCud’ +Xud' | I2)
— Mn | Ii){Ii| UsatCad+Xad | Nn)
— (Nn | Ii)(Ii| Usa+Cad +Xud | Mn),
LF=—(1/W)MZ>J:V ;{ (Mn|I)
X (Nn| UnatCratXua | I1)
— (N | Ii)(Mn | Unat CaratXara | 18)},

Lo=—(1/nx) 2_ 22 A2(Mn| I)

M>N Ii J

(32e)

(32f)

X (ml UJa+CJa+XJa l Ii)
= (Mn| 1) (Nn | Ii) (I3 | Usa+Crat-X 1o | Ii )},
(32g)

La=(1/95) > (Nn| UsatCad+Xad | Mn)  (32h)
M>N
Note that the latter part of the element Hj; will be
identical in form with the element H,; Therefore we
use the same definitions as above in displaying the
terms that make up the matrix element H;; in the next
section.

III. NUMERICAL CALCULATIONS

As can be seen by inspection of the various quantities
that make up the matrix elements, it is necessary to
evaluate a multicentered wavefunction over a multi-
centered potential. Most of the important terms are
two-center integrations which can be performed ana-
lytically and quickly with the use of high-speed com-
puters once the appropriate programs are developed.
Many of the sums are quite lengthy and complex, but
techniques were developed to handle them quickly and
for rather general cases. The 1, 1 element gives the
orbital energy of the neon 3s wavefunction without
charge transier. There appear in this element no im-
portant three-center integrals that need be evaluated,
so the computational error involved in determining
the zeroth-order energy is very small,

Unfortunately, three-center terms are of significance
in the other matrix elements. Throughout this work
the Mulliken approximation was used for these inte-
grals, i.e., it was assumed that

(33)

for the purposes of evaluating three-center integrals.
When this approximation was checked against an actual

S-DAaS-ONnN% <E l m > { @Aa{bAa—,_Q-ONnQ-DNn }

2917

numerical three-center integration of certain potential
terms, the agreement obtained was remarkably good.
We estimate that the maximum uncertainty in the
three-center terms is of the order of 4109, but a valid
test of this uncertainty must await the development of
general three-center integral computation programs.

As a matter of convenience the tails of the excited-
state wavefunctions were fitted to Slater functions.
This fitting introduces no error in principle, as the inner
nodes of the 3s function have no effect on the inter-
atomic energies. The best fit was found to be

@3s=[283/4m (61) Jr? exp(—{aet), (34)

where {3,=0.822. It was found that the nodes in the
3s function do have a strong effect on certain integrals,
such as (Vn | Upra+CaratXaa | Mn). These nodes were
added by orthogonalizing the Slater fit of the 3s func-
tion to the ground-state s functions described below.
(See Appendix I1.)

The reader will note that many of the terms to be
evaluated are Coulombic in nature and have opposite
signs. Rather than evaluate large nuclear and electron
Coulomb integrals and then take the difference, a total
Coulomb potential was derived. This potential fell off
approximately exponentially with increasing distance.
To carry through the calculation one must have some
analytic form for the ground state wavefunctions. For
convenience, the analytic form is taken to be a combina-
tion of Slater functions, so that formulas derived by
Roothaan? can be used directly. The neon ground-
state functions were taken from an SCF calculation
using a minimal basis set and were supplied by Bagas
et al.% These functions are

@15= C1 X157+ Co,16X2s,

P26= C1 2:X1s+ Ca.26X2s,

P2p= X2y

x1e=[(241)%/2! ] exp(—§r) Yi(8, 9),

Xes= [ (282)%/4! Jtr exp(—{or) Yo'(6, 9),
Xopn=[282/4 Jr exp(—$ar) Yi™(6, ),

©1=9.642, t=2.879,

Cr.1,=0.99735, C2.1,=0.01001,
Ci0,=—0.25495,  C,.2,=1.02937.

The total Coulombic potential of an atom was assumed
to be spherically symmetric. In the case of the potential
UiatCad, the total potential was derived from an
average of the three degenerate configurations

(15)%(25)%(2041)*(25-1)* (20",
(15)%(25)%(2041)*(2p-1) (20)?

#C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951). See
especially Egs. (12) and (33).

%P, S. Bagas, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen
(to be published).

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



2918

TABLE I. Terms in Hy (in electron volts).

WEBBER, RICE, AND JORTNER

TaBLE II. Terms in Hy (in electron volts).

LCs» Ia Ip Ieo Ip Iy Hy L.C. Ja' JB' Je Jpt T  Hun

1) —5.597 11.323 -7.696 0.999 0 —0.971 (1) —0.641 5.877 —1.858 —3.857 0 —0.479
(2) —5.152 6.180 —4.325 0.551 0 —2.746 2) —0.551 2.979 —1.527 —2.030 0 —1.129
3) —4.910 3.413 —2.453 0.280 0 —3.670 3) —0.486 1.461 —1.285 —-0.991 0 —1.301

8 Here and in Tables II-V, L. C. refers to the lattice constant as follows:
(1)=3.71 ao, (2)=4.11 a0, (3)=4.51 ac.

and
(15)2(2p41)* (2p-1)*(2p0) .

This potential is also spherically symmetric.

The exchange potential cannot be put into analytic
form, as it depends not only on the atom involved but
also on the particular functions being integrated. All
two-center exchange calculations were performed with
a numerical integration program. Again, all three-
center exchange terms were computed using the
Mulliken approximation.

Certain properties of the charge distributions may be
exploited to advantage in the calculation. For example,
the charge distribution @aaeer;is centered around the 7th
nuclear site. Thus, the following approximations are
quite good:

<% | UAa+CAa’+XAa,(E; I'I:) ! Ii)
R~ |el? (da| Ii)/| Ra—Rsf, (36)
(Nn| UnatCrnatXno(Nn, Ii) | I1)0.  (37)

Direct calculation of the latter term displayed leads to
values of the order of 10— eV or less.

A. Variation of Lattice Constant

It is of interest to study the effect of changes of the
crystal lattice constant on the calculated excited-state
energy level. The experimentally determined lattice
constant? is 4.11 gy, so we chose this value along with
3.71 and 4.51 go. The calculation for the lattice constant
3.71 a, is somewhat suspect as the approximations dis-
cussed above are probably much poorer for this case
than for the larger lattice spacings. Nevertheless, this
study shows that the charge transfer mechanism par-

tially compensates for rather gross changes of the
environment and tends to keep the excited state orbital
energy constant, thereby making understandable the
fact that such a gross difference of environments as
exists between the gaseous and solid states results in
only minor shifts of the absorption spectrum.

The values of the terms Hy, Hi, Ha, S1, Su, are
given in Tables I through IV for the various lattice
parameters. In Table V are displayed the results of
diagonalizing the 2)X2 matrix along with the change of
energy due to the inclusion of the first charge-transfer
state. It is seen that the energy lowering due to this
charge-transfer state does not diminish as the lattice
constant is increased. It is this fact that led to the
further expansion of the charge-transfer basis set.

B. Increased Charge-Transfer Basis Set

For this computation the basis set described by Eq.
(7) is used. Because the basis set is expanded the size
of the crystal used in the computation had to be in-
creased. Whereas the calculation described in Sec. A
uses a 43-atom lattice (1+12+64-24=43), this calcu-
lation uses a 135-atom lattice (1-4124-6-244-12+
24+48+4-48=135). These functions are centered on
atoms in the first three shells about some chosen atom
(located at 5.8124, 8.2200, 10.0674 ag). It can be noted
that the quantities previously calculated in Sec. A
agree quite well with the new calculations. The dis-
agreement is due to the different crystal size and
somewhat poorer approximations used for the former
computation. The matrix elements are displayed in
Tables VI through X.

In Table XI the advantages derived by increasing
the size of the basis set are clearly demonstrated.
Except for the 2X2 case the matrix equation was

TasLE ITI. Terms in Hy, (in electron volts),

L.C. KA KB Kc KD KE Kp KG Sum sz/12
1) 3.106 11.384 —6.656 —7.094 0.702 0 0 1.442 12.657
(2) 2.860 6.236 —5.448 -3.977 0.355 0 0 0.026 5.393
3) 2.725 3.466 —4.653 —2.250 0.183 0 0 —0.529 7.194
L.C. LA LB Lc LD+ Lg ’ Lp Lg Lg+ Sum

1) 10.537 48.059 2.212 —24.537 2.549 0 0 —27.605 11,215
(2) 8.548 24.418 1.575 —11.982 1.4000 0 0 —18.592 5.367
3 6.473 17.013 1.128 —5.498 0.763 0 0 —12.156 7.723
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TasLE IV, Values of overlap.

L.C. S12/128 Saz/12b
1) 0.62613 5.377
(2) 0.53867 4.495
3) 0.47455 3.623

8 Sio=[1/(anw) (( | do)—Z g (da | IiY(Fn | 1)),
b §25=1.0000+ [ Zar> [ (Mn | N )~ 2Zp; (M | 1) (Vn | i) ).

solved by multiplying on the left by S~ and diago-
nalizing. That is,

Hx=Sxe (38)
becomes
S—Hx=Ixe, (39)
which leads to the secular equation
det{S—H~-1¢}=0. (40)

There would appear to be nothing hydrogenic about
either the U(B;) or the higher excited states. However,
such a conclusion is only weakly justified as the higher
roots of a variational treatment provide at best a very
poor approximation to the true excited states of the
system. This observation is further discussed in the
following section.

IV. CONCLUSIONS

The calculations of Sec. IITA serve to illustrate the
physical effects of the crystal environment on Rydberg-
like excited states but give a very poor indication of
the predicted absorption energy. The reason for this
is made clear in Sec. ITIB where the introduction of a
larger basis set makes a spectacular change in the
predicted upper limit of the 3s (crystal) energy level.
However, the results of Sec. IITA indicate that one
need not be concerned that small changes in the crystal
lattice will result in huge differences in the absorption
energy of rare gas solids. This is especially useful to
know for the case of impurity-state calculations where
nuclear configurations must be estimated. Such changes
in the lattice parameter as used in that calculation
would require very high pressures and are probably
much larger than the “lattice changes” resulting from
vibrational motions. One may make a very crude esti-
mate of the experimentally observed linewidths from
the slope of the E-vs-lattice-parameter plot. If the

2919
TasiLE V. Eigenvalues, energy change due to
charge-transfer states.
L.C. 3Sorystal Aecr® BSt
(1) 0.980 0.009 3.62
(2) —~2.856 0.110 1.74
3) —3.823 0.153 0.78

8 Aeor=| Hu—é€orystal |, all energies in electron volts.
b BS=blue shift. The zeroth-order prediction of the change of the first ab-
sorption line of crystalline neon.

experimentally observed absorption line samples nu-
clear configurations which are £29%, of the equilibrium
nuclear configuration, then a linewidth of the order of
0.4 eV would be observed. Such a calculation, per-
formed for the full basis set, could give a rather accurate
estimate of linewidth arising from nuclear motion.

The results of Sec. IIIB are at first very puzzling.
One would expect, @ priori, that those functions with
the largest off-diagonal elements would result in the
greatest decrease of orbital energy. Exactly the opposite
effect is observed. Also there is a regular variation in
the sign of the coefficients in the eigenvectors. We feel
this behavior can be understood in the following way:
The principle interaction of the 3s-like state is with the
atoms of the first shell (see Appendix II). Thus the
variation of the energy of the excited state depends on
the variation of the wavefunction in the immediate
vicinity of the first shell nuclei. Such a variation is
efficiently achieved by surrounding each of these first-
shell atoms with functions centered on its nearest
neighbors. In the case of the 2)X2 matrix there are four
neighbors of each first-shell atom plus the central atom
involved in the basis set. In the 3X3 matrix there are
seven neighbors and for the 4X4 case there are eleven
neighbors in the total basis set. Thus if the atoms in
the fourth shell (at 11.62 a0 from the central atom,
12 atoms) were added to the basis set we would expect
the resulting orbital energy to be the lowest minimum
reached by this procedure. In Table X1I is demonstrated
the fact that all 11 functions are required in order to
reach the energy minimum reported here. One sees that
using a 2X2 matrix with a different basis set than the
charge transfer functions centered on the first shell
also results in small energy lowering.

Such a result suggests that the effect of the environ-
ment on the electron-hole interaction through some

TaBLE VI. H;; elements (in electron volts).

Ja JB Je Jb Jr Jr Je N  Matrix element
—2.7305 3.0028 0.3144 —2.1392 0.2465 0 0 2 —1.3060 Hyp/12
—2.3575 2.4644 0.0876 —1.2465 0.2115 0 0 14 —0.8405 Hy/6
—0.8940 1.6132 0.0297 —0.68856 0.1287 0 0 20 —0.1890 Hy/24
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TABLE VII. H;; elements, j541 (in electron volts).

K4 Kp K¢ Kp Kz Kpe K¢ N Sum, Hjj=sum;+sumg
2.8602 6.1929 —5.4498 —4.0045 0.3843 0 0 2 —0.0169 5.4606=Hx/12
2.8602 6.1929 —~3.7378 —4.2946 0.3693 0 0 14 +1.390 4.1861=Hy/16
2.8602 6.1929 —3.0281 —4.3237 0.3198 0 0 20 +2.0211 13.635 =Hu/24

Ly Lg Le Lpt Lg Ly Lg Ly N Rangeof M sumg
9.8293 24.4026 1.5755 -13.0010 1.4000 0 0 —-18.7289 2 3-13 5.477s
0.9881 4.1726 0.0960 —1.4837 0.3144 0 0 —-1.2913 14 15-19 2.7961
6.1856 18.6670 0.8868 —8.9616 1.1133 0 0 —6.5487 20 2143 11.3424

macroscopic dielectric constant has probably been over-
emphasized. It is probably more nearly true that for
these intermediate exciton cases the dielectric effect is
small. This should be tested by allowing the excited
state charge distribution to mix with the highly excited
neutral states of the surrounding neon atoms. It would
be inconsistent to include such effects in this calculation
for several reasons: (1) the computational uncertainty
is greater than the expected magnitude of the effect,
(2) as pointed out in Appendix IT the neon ground-
state functions are not the best possible functions, and
to calculate polarization of the neon atoms using these
functions could result in large error. Thus one would
have to use better SCF functions for the neon orbitals,

These calculations also indicate that one would have
to use charge-transfer states quite far removed from
the excited atom before a Wannier solution would be
valid. One of the conditions for the validity of the
hydrogen solution to the matrix diagonalization prob-
lem is that all off-diagonal elements vanish, or alterna-
tively that 8 be a good quantum number. This would
appear not to be true of the Hy; elements until | 3 | &
14-16 a,.

Since the supermolecule approach described herein
allows | 8 |=10 @4, no meaningful statements can be
made concerning the energy-level structure of the
higher virtual states. It would be of interest to compare
the solutions found here with those found by solving
Wannier’s difference equation.’® It seems quite likely
that a strongly oscillating solution would be found so
long as one did not approximate the difference equation
by a differential equation. This comparison is now
under study.

Figure 1 illustrates the large modification effected on
a 3s (gas) neon function when it is orthogonalized to
become a zero-order 3s (crystal) function. Figure 1
shows only the effect of orthogonalizing a 3s function
to the s functions of a nearest neighbor. Also shown
on the Ya.-function plot (at a few points) is the Yaq-
function for the complete charge-transfer function. It
is seen that for this particular plot only very slight

changes appear in the y4.-function after the addition
of the charge-transfer states.

The calculations reported in this paper lead to the
following conclusions:

(1) The computation of the first excited state of
crystalline Ne in the Heitler-London scheme without
charge transfer and using the Schmidt orthogonalization
procedure leads to a predicted blue shift of ~1.9 eV.

(2) Inclusion of a 42-atom charge-transfer basis set
leads to a predicted blue shift of about 0.5 eV.

(3) Inclusion of the exciton shift for Ne leads to a
relatively small (0.26 eV) decrease of the predicted
blue shift (see Appendix III). The contribution of the
exciton shift becomes progressively more important in
going from Ne to Xe. Thus a final calculated blue shift
would be of the order of 0.25 eV.

(4) We have demonstrated the importance of con-
figuration-interaction effects on the energy of the
excited state of solid Ne. The contribution of ion pair
exciton states within the supermolecule approximation
leads to a sizeable decrease in the predicted blue shift
of the first absorption.

Many interesting features of the Rydberg states
deserve further study. These include the relative im-
portance of charge transfer, configuration interaction
(including, of course, continuum contributions), the
effect of the singlet and triplet exciton migration, long
range polarization of the medium, the change of van
der Waals forces,? and so on. One would like to be able
to go smoothly from the description of crystal excited
states as Frenkel excitons (no delocalization in the
excited-state wavefunction) to charge-transfer or ion-

TABLE VIII. Hy element (in electron volts).

Iy Ig Ic Ip Ig Hy

—5.1536  6.1929 —4.3527 0.5508 0 —2.7626
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TasLe IX. H;; element (in electron volts).

2921

LA‘ Lg Lc Lpb Lg Ly Lag Lgb N Range of M Hij/N (ﬁ;)
4.1238 10.3900 0.6887 —5.6107 0.6813 0 0 —6.6233 2 14-19 3.6498=Hy/12
10.8911 31.2577 1.6475 ~15.0951 2.0350 0 0 —16.1411 2 20-43 14.5951=H,/12
9.7434 26.7222 1.4958 —13.9352 1.6745 0 0 —11.5242 14 20-43 14.1765=H3/6
8 2/ N (Nn| Mn)Ena*/nn, where Exn*/ny=2.8602.
b Three-center term approximated by the Mulliken approximation.
TABLE X. Si; terms.
(1/9x) 2 (Nn|Mn) (/nw){Nn|Nndy; —~/nx) Z 2 Mn|IiYWNn|Ii) N  Rangeof M Sa/N(B:)
m>n m>n Is
1.0 =Sy
0.5342 ~0.0570 1 2-13 0.4772=51/12
0.2895 ~0.0478 1 14-19 0.2417=51,/6
0.1591 —0.0302 1 20-43 0.1289=51,/24
3.8502 1.1203 ~0.4638 2 3-13 4.5067 = Sp/12
1.6153 —-0.1971 2 14-19 1.4182=55/12
4.2661 —0.5969 2 20-43 3.6692=S5/12
0.3871 1.1203 ~0.0806 14 15-19 1.4268=S3/6
3.8165 ~0.5050 14 20-43 3.3115=53/6
2.4229 1.1203 —0.3581 20 2143 3.1851=5,/24

8 Each of these elements must be multiplied by a factor N(8;) (where B; refers to the shell that contains the Nth atom) before being entered in the § matrix,
The same procedure should be followed for the elements of the H matrix in the previous tables.

Tasre XI. Effect of expanding basis set.

BSS* U(o)r U U(g:)* U(ssh a & & « Aecr® AEd
2 0.9999 —0.00696 —2.7626 7.2538 0.0 1.84
3 0.9924 —0.0512 0.1119 —2.906 0.118 7.447 0.1434 1.69
4 0.9636 —0.0408 0.2547 ~0.0694 —4.095 0.0451 4.124 8.749 1.3324 0.51

8 BSS=Basis set size. The basis set size is increased starting from the first shell and going to the third shell,
b 77 (B;) is the coefficient described by Eq. (7) for the lowest root of the secular equation, €. | 31 }=5.8124 a; | B2 |=8.2200 q; | B3 |=10.0674 a.

¢ Age=| Hu—e |, all energies in electron volts.

d AE=e1—E 44 and corresponds to the first-order prediction of the shift of the adsorption line in the solid.

TaeLe XTI, The effect on orbital energy of surrounding first-shell
atoms with charge-transfer functions.

No. of
neighbors of Shells
Size of a first-shell involved in
basis set atom basis set & (eV)
2 4 1 —2.763
2 2 2 —2.776
2 4 3 —3.098
3 6 1,3 —2.906
4 10 1,2,3 —4.095

pair excitons (moderate delocalization) to Wannier
excitons (extreme delocalization with binding) to con-
tinuum states (complete delocalization).

We believe the principal result of this work to be the
demonstration of the importance of ion-pair excitons
in the spectroscopy of molecular solids. Undoubtedly,
there are many other systems and many more phe-
nomena in which important contributions by these
states cannot be neglected. One such case, to be dis-
cussed in a separate paper, is the Davydov splittings
of some excited electronic states of aromatic crystals.
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o4 @33 (Not Orthogonalized)
03s (Schmidt Orthogonalized)
A3s (Full Chorge Tronsfer)
Y S

F16. 1. Orthogonalization effects on
the neon 3s orbital.
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APPENDIX 1. RELATION OF LOCALIZED CHARGE-
TRANSFER STATES TO WANNIER FUNCTION

Consider the formation of a Bloch state for the first
excited state of a crystal. We choose to use the atomic
excited state ¢ to construct the Bloch function and have
already orthogonalized ¢ to all the ground state localized
functions (by the Schmidt procedure for example). As
Loéwdin has pointed out, the Bloch sum over atomic
functions is not correct unless the atomic functions are
orthogonal. If the real a.f.’s are not orthogonal, one may
use the orthogonalized functions given by

o= (1+8)%¢
(2% E(1+S) ol

(AL1)
or
(AL2)

The index p refers to the position in the lattice as the
¢’s are all identical. The proper Bloch function is,

therefore,
xk=N-1Y_ exp(ik-u) g, (AL3)
I

2% P.-0. Lowdin, J. Chem. Phys. 18, 365 (1950). In Lowdin’s
derivation the definition of the overlap matrix element is S, =
Jou*¢,dr—38,. This is not the convention followed in expressions
involving the overlap matrix in Eqgs. (38)-(40) of this paper.
Here the overlap matrix element does not contain the §,, term.

The localized or Wannier function formed from such a
Bloch sum is

N
a,=N-1)_ exp(—ik-v)xk
k

N N
=N-1D2_>" explik- (3—v) Jou,

(AL4)
kE n
but
N
2_ exp[ik: (u—») = Nb,, (ALS5)
k
a=0v=2_(145) ¢y, (AL6)
or
a=(1+8)%¢. (ALY)

It is interesting to see the relationship between the
energy matrices

B,,= (au I Fla,)
=[2(1+8)we,* | F | 5E(I+S)vr’¢a]

= Z;<1+S>w—%(1+s> w3 dy* | Flen). (ALS)

Define the atomic function matrix as

chli: (¢7* l F l ¢'5) =ZC5‘Y7 (AIg)
B,= Z;(1+S>7u-%<1+5> w45
= Z(1+S)7,.'}[(1+S)_*5C]W
=[(1+S) e (14S)-1],,, (AI.10)
B= (1+S)-i5c(14-S), (AL11)
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TaBLE XTIL. Test of approximation (Aa | Ta+ Cra+Ure+X1s | 25)= {(4a | 25 )E,.

Re (Aa | 25) (TP (Vode (Ve )d (E) {(E)/(4a | 2s)V
5.2467 0.1095 0.1026 —4.2917 —0.5740 —4.,7631 —43.52
6.0000 0.0787 0.0062 —3.1350 —0.4124 —3.5412 —44.98
8.0000 0.0286 —0.0501 —1.1047 —0.1484 ~1.3032 —45.59

& Separation measured in a0 (Bobr radii).

b (T)=(de| Ta| 2s), all energies in electron volts.

¢ (Ve)=(4a| Ura+Cra | 2s).

4 (Vez)=(4a | X1a(4a, 25) | 25).

e (E)=(T)H V)t (Vez )

f If the approximation were exact, this value would be Es=—47.15 eV.

and therefore the two equations can be written in the
form

Bx=€lx, (A1.12)
sey=¢ (1+8)y, (A1.13)
(14S) 3¢y =1lye. (A1.14)

Multiply on the left by (14S)%:
(1+S)taey=1(14+S)¥ye, (AI.15)
(1+S)-tre(14+S)-#(14+S)ty=1(1+S)¥ye, (AL16)
B(1++S)ly=1(1+S)%ye, (AL17)

s €=¢
(14-8)ty=x, (AL18)

so that the SCF vectors are simply connected in the
two representations.

APPENDIX II. COMMENTS ON THE APPROXIMATIONS
AND CALCULATIONS .

A. The Integral (Aa | Ta+Ur+Cra+X1. | i)

Throughout this work the approximation has been
made that

(da| Ta+Ure+Crat+X1.(4a, Nu) | Ii)

~{(da | Ii)Er.  (AIL1)

Terms due to this approximation play an important
role in the calculation of the energy of the first excited
state of neon in the crystalline state (see for example
Ig). A direct test of this approximation was made for
the function | 2s) for three arbitrary separations. The
individual terms are displayed in Table XIII. The term

TasLe XIV. Effect of nodes on the integral
(Nn | Unet+Cwa | Mn).

R (Nul, (Mnl*  (Na*|, Mnl>  @n*|, (Mn*

6.000 —0.090 0.1824 0.1850

_® For Tables XIV-XVI only (Nn* | denotes the Slater fit with nodes added;
(Nn | a nodeless Slater fit. All energies in eV.

in the last column should be compared to F, which is
—47.15 eV for the SCF functions we used. It should be
noted that one of the terms in the exchange potential
cancels a term in the Coulombic potential leaving a net
positive charge. It is seen from Table VIII that this
approximation is good within 39,~-59, at the important
distances in this calculation.

B. Effect of Adding Nodes to the
(Aa|, (Nn| Functions

As mentioned in Sec. IIT most calculations were
carried out using a nodeless Slater fit to the 3s neon
excited-state function. This approximation is quite good
for certain integrals and very bad for others, It is a
very poor approximation for integrals such as

(Nn | Una+Cna | Mn) (AIL2)

or

(Nn | UsatCad | 4a). (AIL3)

In the first integral the behavior of the charge density
¢nneun in the immediate vicinity of the Nth nucleus
determines the sign and magnitude of the integral
while in the second integral a long range interaction, —
| Ra—7 |™Y, makes the value less sensitive to the addi-
tion of nodes. In Table XIV the effect on the first
integral of orthogonalizing the Slater fit to the SCF
neon ground-state functions is displayed. In Table XV
the change in the second integral due to the addition
of nodes is shown. In Table XVI the overlap integrals
(Nn | Mn) are indicated for the (Nn |, (Mn | orthog-
onalized. All the above demonstrate that care must be
used in the use of an analytic fit to a wavefunction in
calculations of this nature.

TasLE XV. Effect of nodes on the integral
(N1 | Use+Cas | Aa) (in electron volts).

R Fn | UsatClac| da) @On* | Usat+Claa| da*)

5.8124 —3.5948 —3.0079
8.2200 —1.5152
10.0674 —0.7550
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TasLE XVI. Effect of nodes on overlap of analytic fit
to excited state.

WEBBER, RICE, AND JORTNER

Tasre XVIII. Comparison of ground state overlap for a minimal
and normal basis set 2px. function.

R n* | Mn*)  (Nn|Mn)
5.0 0.6024 0.6257
5.5 0.5519 0.5693
6.0 0.5009 0.5133
6.5 0.4500 0.4584
7.0 0.4003 0.4055

C. Comparison of the Mulliken Approximation
to Exact Three-Center Integrations

A very important approximation made throughout
this calculation is expressed by Eq. (33) and makes
possible an estimate of certain three-center integrals
as a properly weighted sum of two-center integrals. The
Mulliken approximation has been checked many times
and found to lead to reasonable agreement with exact
integrations. Before using the Mulliken approximation
for this calculation comparison was made to the integral
(Nn | Usa+Cad' | Mn) where (Nu | and (Mn |layona
straight line bisected by the Ath nucleus. Table XVII
gives this comparison. One sees that the agreement is
remarkably good for this case, which would be thought
to be difficult due to the small overlap of these func-
tions (~0.1-0.06) and the rapid variation of the
potential over the region.

While this comparison in no way validates the use of
the Mulliken approximation for other integrals such as
(Nn | Ura+Cra | Mn), it does increase the confidence
that a reasonable estimate of such integrals is obtained.
The Mulliken approximation calculations probably
follow closely the behavior of the exact integrations
when the lattice parameter is varied or new charge
transfer states are added to the basis set even if the
magnitudes of the integrals are in error.

D. Ground-State Energy Shifts and Ground-State
Neon Functions

Throughout this calculation it has been assumed that
the ground-state functions suffer negligible energy
change in the solid state. Also, use has been made of a
very small basis set SCF function to represent the
charge density of a neon atom. For the kinds of integrals
dealt with here this approximation is not serious in the
individual integrals, but the rather large sums of these
integrals tend to magnify these errors. Thus the un-

Tasre XVII. Comparison of Mulliken approximation
and exact numerical integration.

Mulliken

Ra exactb approx.b
10.6248 —0.9144 —0.7267
11.6248 —0.4547 —-0.4377
12.6248 —0.2232 —0.2868

8 R=] Ry—Ry | in ao. . .
b Energy in electron volts for integral (Vn | Ugo+Caa’ |Mn) mentioned in
the text.

S(2pe, 2p0) S(2pe, 25)
R nominal minimal nominal minimal
5.8124 0.001295 0.000024 0.003114 0.000207
8.22 0.000041 0.000000 0.000086 0.000001

certainty in the final orbital energy could easily be
1-2 eV due to the use of these neon functions. Com-
parison of terms calculated by us for the case of an
argon impurity in a neon crystal (to be published)
with the calculation done previously by Gold! leads us
to believe that this error is in the positive direction,
such that a 1-13 eV blue shift is within the uncertainty
of this calculation. However the use of these neon
functions would be completely erroneous for a ground
state calculation. This is most easily demonstrated by
the overlap of a 2p neon function with other ground
state functions using a minimal basis set (FEsp=
—0.56199 a.u., the set used for this calculation) and a
nominal basis set (Ej,=—0.84973), it is seen from
Table XVIII that a difference of orders of magnitude
results in the ground-state overlap.

Using the Er; and overlap values for the nominal
basis set would lead to an orthogonalization energy
increase (i.e., Iz) of the order 0.006 eV for a ground-
state 2p function. The penetration integrals and so on
are expected to be of the same order of magnitude but
of opposite sign. Thus the polarization energies and
other relatively weak interactions are at least as im-
portant as the orthogonalization and penetration ef-
fects and i would be inconsistent to include them for
the ground state and not the excited state. In any
case the energy shift of the ground state is most cer-
tainly small compared to the computational uncer-
tainties of the individual terms that make up the net
energy shift of the excited state.

E. Details of Calculation

In this section some of the more detailed results of
the calculation are presented in order that the reader
may have a better understanding of the interaction of
a diffuse excited state with the crystal environment.

TasiE XIX. Effects of orthogonalization.

Effect of nodes ate

Lattice Effect of First Second  Third
constant  g4® nodesb shell shell shell
3.n 0.8219 9.307
4.11 0.8928 5.517 4.990 0.501 0.026
4.51 0.9370  3.198 cen

2 qa=01-Zritde | LY.

b The value in electron volts of —2;.- (Aa | Ii 2Ej; where the sum over I'¢
extends over the first three shells (42 atoms).

© The value in electron volts of 2 r;{4a | Ii )2Er; where the sum is over the
atoms of only the first, second, or third shell (at 5.8124, 8.22, 10.0674 aq, respec-
tively, for the case evaluated).
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TasLE XX, Values of Coulomb and exchange potentials and overlap integrals at various distances.

Separation®  Total Coulombb Total exchange®  s(1s, 3s) s(2s, 35) s(2pe, 3s)
5.247 —0.180 —0.295 0.0115 0.1080 0.0351
1 5.812 —-0.127 —0.184 0.0089 0.0870 0.0302
6.378 -0.075 —0.113 0.0069 0.0690 0.0251
7.420 —0.025 —0.043 0.0038 0.0380 0.0164
2 8.220 —0.008 —0.015 0.0025 0.0250 0.0111
9.02 0.000 —0.005 0.0013 0.0130 0.0071
9.0876 0.000 —0.004 0.0012 0.0120 0.0070
3 10.067 0.000 0.000 0.0008 0.0080 0.0041
11.047 0.000 0.000 0.0002 0.0020 0.0025

2 Nuclear separation on Bohr radii. The groups of three are the separations of the first, second, and third shells, respectively, with the values in the bracket

being for the various lattice constants taken.
b Value in electron volts of (4a | Ura+Cra | . Aa).
° Value in electron volts of {da | Xz74(dq, 4a) | da).

In Table XIX is presented the normalization con-
stant 94 (=7y) for the various lattice parameters. Also
there is displayed in Table XIX the effect of orthogo-
nalization of the 3s function to the first-, second-, and
third-shell atoms. It is seen that nearly all of the Ip
term is due to the first shell. Roughly the same would
be true for the penetration energy, I¢. Thus Table XIX
supports the statement that the energy of the first
excited neon state is determined by the details of the
wavefunction in the vicinity of the first-shell atoms.

In Table XX are presented values of the total
Coulombic and penetration integrals vs distance. Also
some typical overlap values appears which show the
importance of the first shell relative to the other shells.
One also should note that the value of S(2s, 3s) is
roughly thirty times that of S(2pe, 25) using the nomi-
nal basis set for both 2pe and 2s functions.

APPENDIX III. EXCITON SHIFT

In the calculation of the matrix element Hy; we have
not included the exciton bandwidth. The electro-
magnetic coupling between the atoms of the crystal
gives rise to an additional energy shift arising from the
lifting of the degeneracy due to the translational sym-
metry of the solid. A suitable framework with which to
estimate the (neutral) singlet exciton bandwidth in
neon is provided by the work of Frenkel and Davydov.
Their analysis starts from the tight-binding approxi-
mation in the Heitler-London scheme. The wave-
functions 3¢, do not diagonalize the tight binding
crystal Hamiltonian because of the existence of inter-
atomic interactions; the energy correction is given in
the form?

8oxo= 2 Frs exp[ik+ (R;—R;)], (AIIL1)
IS

where the off-diagonal excitation transfer matrix
elements are given by
Eu= Wl | H ¥, (AIIL.2)

with I and ¢, singly excited states of the crystal with
the excitation located on Atoms I and J, respectively,

and Kk is the reciprocal wave vector, whose values are
limited within the first Brillouin zone.

For the case of cubic symmetry, when Jahn-Teller
distortions are disregarded, we can assume that the
degeneracy of the excited P state is maintained in the
lattice. Applying the multipole expansion and neglect-
ing exchange effects, &y, can be approximated by
dipole-dipole interaction term

oxo=—| u |2
X,#EJ{3 [| " l(lR A= 1] } /1 RRo P,

(AIIL3)

where g is the transition dipole moment. This expres-
sion is adequate for the singlet-singlet transition. The
dipole moment y has the same magnitude and direction
for all atoms. For the case of an optical transition,
k~0 (i.e., k is of the order of 2x/\), and the dipole
summation has to be carried out over the whole lattice.
The summation can now be replaced by an integral
leading to the result

8oxo=(87/3V) | v [* PoLcos(u-k) ]

X{jo(| k| Ro)+j2(| K| Ro)}, (AILL4)
where P; is the Legendre polynomial of order 2, j, and
ja are spherical Bessel functions, V and R, are the mean
volume and radius per atom, respectively, so that
V= (4r/3) R®. When the exciton is created by light,
(u-K)=7/2 so that Py[cos(u+Kk)]=—3. Furthermore,
as | k| Rek1, jo(| k | Ro) +/2(| k | Ro)*1, and

Sexe— | 1 |2/ RP. (AIILS)
For an oscillator strength of 0.1 for Ne, the transition
dipole moment is 1.4 X 10~% cm-esu. Setting Ro=2.0 A,
we find that &.,.= —0.26 eV. This contribution, due to
the exciton bandwidth, is relatively small.
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