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In this paper we study the effect of a surrounding lattice of He atoms on the manifold of electronic
states of the Hy* molecule-ion. One-center expansions of the molecular wavefunctions are employed, calcu-
lated by the Tibbs—Wannier method. The spherically averaged wavefunctions are in good agreement with

the known exact solutions.

A detailed study of the environmental effect of the He lattice leads to the prediction of a blue shift of
the first electronic transition, arising from a delicate balance between changes in the impurity excitation
energy, Coulomb, exchange, van der Waals, and three-center interaction terms. The signs of the various
energy changes are rationalized in terms of the overlap charge density. These results are compared with
previous treatments of environmental spectral shifts based on continuum models.

I. INTRODUCTION

T is commonly observed that the frequency of a
molecular electronic transition shifts when a mole-
cule is transferred from the dilute gas to a solution in
a condensed state of matter. This electronic frequency
shift may be considered to measure the difference be-
tween the interaction energy of the absorber and the
surrounding medium when it is in its excited state
and in its ground state. Indeed, it is commonly as-
sumed that the interactions in the ground state and
excited state can be represented in terms of a pairwise
additive intermolecular potential which is different for
each state. The total change in interaction energy is
then obtained from the difference in the intermolecular
pair potentials and the density of surrounding mole-
cules, presumed to be known as a function of distance
from the absorbing center. By consideration of the
time constants characteristic of various molecular mo-
tions, it is easily established that electronic transitions
occur in an essentially static environment, whereupon
the distribution of molecules which is important is
that characteristic of the ground state assembly. For
the particular case of a nonpolar absorber in a non-
polar solvent,! the application of the multipole expan-
sion to evaluate the interaction energy leads to a rela-
tionship of the form

W—pef(n2—1)/(2#°4+1),

where » and »° are the absorption frequencies in solution
and vacuum, f is the oscillator strength of the transi-
tion, and # is the refractive index of the solvent. This
relation, which is valid only for nonoverlapping charge
distributions, predicts that the transition frequency is
always red-shifted on passage from the gas phase to a
condensed phase. Examples of such behavior are to be
found in the m—#* transitions of planar aromatic com-
pounds.

It is also possible to discuss the effects of specific
molecular interactions on the absorption spectrum. The

1H. C. Longuet-Higgins and J. A. Pople, J. Chem. Phys. 27
192 (1957). ’ '

most important of the specific interactions are hydrogen
bonding and charge transfer. For the simple system
we wish to discuss herein the possibility of hydrogen
bonding does not exist, and we shall examine the role
of charge transfer states in another paper.? Suffice it
to say that these states are unimportant for the sys-
tem studied herein but are of great importance in a
large number of other systems.

A common feature of the theoretical treatments which
lead to a representation of the interaction in terms of
the multipole expansion is the assumption that the
charge density of the absorbing molecule does not over-
lap with that of the surrounding host molecules. The
simplest of the treatments then parameterize the effects
of the host in terms of one or a few macroscopic con-
stants (such as the refractive index). Although the
Longuet-Higgins—Pople theory! does not reduce the
description to that level, the role of the solvent is
restricted to be that of a reservoir for dispersion forces.
When the overlap between solute and solvent molecular
wavefunctions is small, these theories work rather well,
as noted above. However, there are large classes of
electronic transitions for which the assumption of van-
ishing overlap is incorrect. In these cases there are
several major factors which influence the manifold of
energy levels of the solute molecule. The resultant
spectrum then represents only the end product of a
delicate balance between many competing changes, and
in order to understand the nature of solvent effects it
is necessary to systematically construct an analysis in
which each of the competing changes is separately
discussed. At first sight, it would appear that no simple
parameterization in terms of the macroscopic properties
of the solvent will result in an adequate representation
of the system. We discuss this remark more fully after
detailing the analysis of a simple model system.

In order to elucidate the delicate balance alluded to
above, it is obviously desirable to study a model sys-
tem for which calculations can be performed with high

2 S, Webber, S. A. Rice, and J. Jortner, J. Chem. Phys. 41,
2911 (1964).
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accuracy. Independently of the work reported herein,
Keil and Gold® have studied the excitation energies
for the 15-2p and 1s-2s transitions of a hydrogen atom
present as a substitutional impurity in solid argon.
Their results are discussed in Sec. VI. With a some-
what different goal in mind, we independently chose
to study the hypothetical solid solution in which an
H,* molecule ion is at a substitutional site in a solid
He lattice. In choosing this system we sought to mini-
mize the artifacts which may arise when inaccurate
wavefunctions are used. The molecule ion Hy* was
chosen for the solute, rather than the hydrogen atom,
because we also intended to examine the usefulness of
one-center expansion procedures in describing the upper
excited states of diatomic molecules. Using the results
of the one-center expansion as a starting point, later
papers from this laboratory will report experimental
and theoretical studies of the spectra of diatomic mole-
cules present as solutes in very simple solids. Our
interests are focused on the nature of the lowest ex-
cited states in the mixed solid, on the changes induced
in the Rydberg states by the surrounding medium, and
on the mechanism of the process of photoionization.
It should be noted that even the simple system studied
herein is complex enough to illustrate all the facets of
the theoretical analysis. It is found that:

(a) The predicted blue shift of the transition energy
arises from a delicate balance between changes in the
impurity excitation energy, the Coulomb and exchange
energies, the van der Waals energy, etc.

(b) The signs of the various energy changes are
easily rationalized in terms of the effects of the overlap
charge density but there appears no direct correspond-
ence between this work and the cavity continuum
model.4

(c) Because of the delicate balance between the
several changes which lead, only as a final result, to
the shift in transition energy, it appears unlikely that
any simple parameterization using macroscopic prop-
erties of the host medium can lead to a quantitative
description of the effects of the host medium on im-
purity transitions.

II. DEFINITION OF THE MODEL SYSTEM

The goal of the analysis reported herein is to con-
tribute to the understanding of the origin of spectral
shifts in mixed solids. Since we are not, at present,
interested in reproducing or explaining the results of
particular experiments, it is convenient to simplify the
analysis by discarding accidental properties of the
H,t:He system which are irrelevant to our goal. The
model system we choose to study is defined by the
following:

(1) The interaction between the charge of the Hs*
and the surrounding medium is disregarded. Although

3T. Keil and A. Gold, Phys. Rev. 136, A252 (1964).
¢ J. Jortner and C. A, Coulson, Mol. Phys. 4, 451 (1961).
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in the real system H;*:He, the polarization of the
lattice would be an important effect, we choose to
regard the Hyt as a prototype mneutral solute, selected
only because the available wavefunctions are accurate.

(2) As a preliminary to work now in progress, we
treat Hy™ as a spherically symmetric solute. Again,
the Hst is considered to be a prototype spherically
symmetric solute, chosen because accurate wavefunc-
tions may be obtained. In addition, the one-center
expansion procedure used forms the first stage of a
more general theory of the properties of diatomic so-
lutes in simple solids.

(3) As a corollary of (2), the orientation of Hgt
with respect to the surrounding medium need not be
considered.

(4) The Hy* is assumed to occupy a substitutional
position in the He lattice, with no change in lattice
parameter (i.e., no relaxation of the lattice about the
guest molecule).

Assumptions (1)-(4) clearly distinguish the model
system considered herein from the real system Hyt: He.

III. HYDROGEN MOLECULE-ION WAVEFUNCTION

The hydrogen molecule-ion has been studied many
times and is one of the very few systems for which an
exact solution to the Schriédinger equation can be ob-
tained. Now, it is possible to represent the wavefunc-
tions of Hs* in a one-center expansion with high accu-
racy. This representation is particularly valuable for
problems of the type considered herein. In a one-center
expansion, the potential energy of the nuclear frame
is expanded in spherical harmonics about some center.
Of course, the convergence of the spherical harmonic
expansion depends on the nuclear geometry. For the
case V(8) =V{(r—8) all spherical harmonics antisym-
metric in cosf vanish, while for highly excited states
it may be anticipated that high order terms in the
spherical harmonic expansion will be small, and the
behavior dominated by the leading term, which has
spherical symmetry. When the potential of the nuclei
of the Hy* molecule-ion is expanded as described, and
only the leading term retained, it is found that

V= '—282/7‘0;
V=—2e/r;

r< 1,

(1)

where 7o is one-half the internuclear separation. The
potential defined by Eq. (1) was first studied by Tibbs,?
and then in great detail by Wannier,® and it has been
used by Chen’ to describe the ground state and several
excited s states of Hst. By comparison with the exact
electronic energies, it is found that in the ground state
the one-center expansion is in error by only 4%, and
in the 25 (2s0) and 3s (3s0) states the error in energy
drops to 39 and 29, respectively. Moreover, the

r> 10,

8 8. R. Tibbs, Trans. Faraday Soc. 35, 1471 (1939).
8 G. H, Wannier, Phys. Rev. 64, 359 (1943).
7T. C. Chen, J. Chem. Phys. 29, 347 (1958).
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TasLe I. Wavefunctions of He* with Tibbs-Wannier potential and their Slater fitting.

1s 2p
r 17 Slater fitting Ys—y¢ r r1F(r) Slater fitting bs—
0 0.32143 0.42559 +0.10416 0.11455 0.05602 0.06238 —0.00636
0.1 0.32048 0.31785 —0.00263 0.34364 0.16274 0.15552 +0.00722
0.2 0.31761 0.29201 —0.02560 0.57273 0.25409 0.25479 —0.00070
0.3 0.31285 0.29439 —0.01846 0.80182 0.32177 0.31695 —0.00482
0.4 0.30626 0.30134 —0.00492 1 0.35674 0.35763 —0.00089
0.5 0.29788 0.30384 —+0.00596 1.21000 0.36830 0. 36861 —0.00031
0.6 0.28775 0.29952 +0.01177 1.44 0.36175 0.36143 +0.00032
0.7 0.27592 0.28897 -+0.01305 1.69 0.34086 0.33967 +0.00110
0.8 0.26240 0.27369 +0.01129 1.96 0.30965 0.30771 +0.00194
0.9 0.24721 0.25533 +0.00812 2.25 0.27211 0.26980 +-0.00231
1.0 0.23028 0.23528 +0.,00500 2.56 0.23185 0.22962 +-0.00223
1.1 0.21182 0.21468 +0.00286 2.89 0.19187 0.19009 -+0.00178
1.2 0.19292 0.19436 +0.00144 3.24 0.1543 0.15331 +0.00112
1.3 0.17439 0.17482 -+0.00043 3.61 0.12101 0.12050 —+0.00051
1.4 0.15675 0.15644 ~—0.00031 4.0 0.09239 0.09244 —0.00005
1.5 0.14025 0.13939 —0.00086 4.41 0.06881 0.06923 —0.00042
1.7 0.11113 0.10962 —0.00151 4.84 0.05004 0.05065 —0.00061
2.0 0.07697 0.07518 —0.00179 5.29 0.03562 0.03622 —0.00060
2.5 0.04050 0.03915 —0.00135 5.76 0.02503 0.02532 —0.00029
3.0 0.02082 0.02013 —0.00069 6.25 0.10777 0.01730 +0.00047
3.5 0.01056 0.01027 —0.00029 6.76 0.01334 0.01157 +0.00177
7.29 0.01077 0.00757 +0.00320
7.84 0.00714 0.00485 +0.00229
shapes of the potential energy curves, especially for ble in the form
the 2so and 3so molecular states, are in excellent agree-
. =(1/r)Fi(r) Yin(6, ¢); r<r 2
ment with the computed curves for the model 2s and Vi= (/N Fa(r) Vin(0, 0); o 2)
3s states.” Finally, it should be pointed out that if an Yo=(1/7)Fo(r) Yin(0, )5  1>1, (3

angularly dependent potential is added to Eq. (1),
say Vp(7, 6, ), then all matrix elements of this poten-
tial between spherically symmetric states vanish. Since
the angular potential cannot connect the spherically
symmetric states defined by Eq. (1), the eigenfunc-
tions of the Tibbs—Wannier potential represent the
limit of approximating the one-electron molecular wave-
functions by an exhaustive set of spherically symmetric
functions.

For our purposes it was necessary to extend the
published calculations and obtain the eigenfunctions
and eigenvalues of Hst, in the one-center scheme, for
a number of hitherto unstudied states. Wannier has
given an analytic solution of the Schrédinger equation
for the case that the potential is given by Eq. (1).
However, the expressions given are cumbersome and
the utility of the solution is limited because its form
necessitates undertaking a complete recomputation for
every value of the effective principal quantum num-
ber. Wannier’s solution is expressed in terms of the
Whittaker function, Wi, 143(2), for which there exists®
a convenient series expansion in powers of k2%, with
coefficients given in terms of Bessel functions. Once
these coefficients are known for a given value of /, the
function W,i43(2) is easily computed for any value of .
The connection between the Whittaker function and
properties of the molecule is made by noting that % is
the effective principal quantum number and [ is the
azimuthal quantum number.

The wavefunction of the Hy™ molecule-ion is expressi-

8T. S. Kuhn, Quart. Appl. Math. 9, 1 (1951).

with Y. the spherical harmonic of order /, m and
Fi(r) =x T (x/20) [1— (w/168) 11}, (4)
Fa(r) =Wi,14(2)
=k T (k+i141)[cos(k—i—1) [] U (x)
+sin(k—I1—-1D) [ 0@ (x)] (5)

and
x=4r=2(k2)}, (6)
U (@) = U0 (), )
n=0)
Ua®(x) = 32Vl (). ®)

Of the remaining undefined symbols, V,!(x) is a func-
tion of the zeroth and first cylinder functions, Co, C;,
and U®H (x) and UEP(x) in Eq. (5) differ from
U%® (x) only in that the cylinder functions Cn(x) are
replaced by Jn(x) and V.(x), respectively, in V,'(x).

The convergence of the series expansion of the
Ut (x) is, in general, very rapid. However, for the
ground state of Hy" the convergence is too slow to be
useful. For this case the exact ground state wavefunc-
tion’ was transformed using a representation in spheri-
cal coordinates centered at the midpoint of the inter-
nuclear axis. The resultant wavefunction was averaged
over angles. Finally, for convenience, all the normalized
wavefunctions used herein were fitted to a linear com-
bination of Slater orbitals. The computed wavefunctions
are tabulated in Table I, and the Slater orbital fits are

? D. R. Bates, K. Ledsham, and A. L. Stewart, Trans. Roy.
Soc. (London) A246, 215 (1953).
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(the functions x(, I, {) are Slater functions)
Y1.=0.091656 (1s, 6.25342) +1.31544x (15, 1.35091)

—0.49700x (15, 3.1241),
e,= —1.102625 a.u., (9)
Yo =1.00736x(2p, 0.94304) +-0.0041281x(2p, 8.34976

—0.041881x(2p, 3.46374),
ep=—0.47522 a.u. (10)

A comparison of the averaged wavefunction described
above for the ground state, and the spherical wave-
function computed by Cohen and Coulson'® shows them
to be numerically identical.

The energies displayed in Egs. (9) and (10) are com-
puted at the equilibrium internuclear distance, r,=1.

IV. CALCULATION OF THE EXCITATION ENERGY:

We now turn to the calculation of the excitation
energy of the solute Hs* at a substitutional site in a
lattice of He atoms. An examination of the energy
level diagrams of He and Hz* shows that it is safe to
assume that the first excited state of Hy* does not mix
with states of the He.

In somewhat more detail, we note that the separa-
tion between the first excited states of Hy* and He is
4 V. For appreciable mixing to occur (i.e., for the
energy to be changed by 0.1 eV) the matrix element
connecting these states must be 0.7 eV. It is found
that the required matrix elements are not this large,
and therefore configuration interaction between solute
and solvent can be neglected in this model system.

The effects of configuration mixing were calculated
using the supermolecule formalism. An H,* molecule
ion and its near neighbors are considered to form a
“supermolecule” for which properly symmetrized mo-
lecular orbitals are constructed.’? A configuration inter-
action calculation of the mixing of the first excited
host state and the central particle excited state is then
performed. Since the formalism is essentially identical
with that used by Webber, Rice, and Jortner,? and
since the results indicate that the mixing is very small,
we shall not reproduce the formulas or details herein.
Suffice it to say that direct calculation of the matrix
element connecting the first excited host state to the
first excited guest state leads to a value of 0.1 eV. By
a direct application of perturbation theory, we then
conclude that the inclusion of guest-host state mixing
alters our calculations by only 0.0025 eV, and can
therefore be neglected.

In the following we shall also assume that the Born—
Oppenheimer approximation has been made (and is

10 M. Cohen and C. A. Coulson, Proc. Cambridge Phil. Soc.
57, 96 (1960).

1t A, Gold, Phys. Rev. 124, 1740 (1961).

2 By a supermolecule is meant the approximation in which the
crystal is treated as Hy*He,, with # large. The wavefunction for

this configuration is obtained by constructing molecular orbitals
from a linear combination of atomic orbitals.
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valid) so that only electrostatic interactions need be
discussed. The wavefunctions for the system may now
be constructed in the form of a product over all atoms
in the crystal and the substitional impurity, i.e.,

Vo=l [ [Tvss
T i%a
W= @haH IIBDH,

I i¥a

(11)
(12)

where @ is the antisymmetrization operator, I refers
to a nucleus located at a lattice site, ¢ refers to an
electron, and the symbols Aa are reserved for the
impurity, ath electron. It is the electron on the impurity
center which will make the transition under considera-
tion. In Egs. (11) and (12),

Yri=¥ri=¢r, (13)
Yae=(Paa— ;SAu,Ii(f)Is‘) (1- ZI;SzAa,Ii) -+ (14)

Vao= ($aa— ;S'Aa.mbu) (1— ;S”Aa,u)"*; (15)

and the ¢r;, ¢a. are solutions of the Hartree-Fock
equations for atom / and the impurity, respectively.
As usual Sz, r;i= {$ac | ¢1:)—0418s: is the overlap inte-
gral between the states characterized by the functions
Saa, b1; and S 4a,1i= {Paa | $1:)—84r0si. The overbar
is used in Egs. (12), (13), and (15) to indicate an
excited state. The content of Eq. (13) is equivalent
to the statement that the impurity center, in both its
ground and excited states, interacts with a lattice of
atoms all of which are in their ground state.

Using standard methods it may be shown that the
excitation energy of the impurity has the form

AE=Ey+ Ect E- Er+AEvaw (16)
with!?
E ;=iEA L X 38 pariErs
CONTY N ESTTTT
_1

1
NEAa'*'Z—V ;4 Z‘:SzAa,nEn, 17

E.=(1/N"[(Aa| X zr | da)+ Y J(4a, Ii)
JH#A Ii#da

+ > 8%l 1#Z;zj | Ii)

Ii#da

+ > S J(Kk, 1) ]

Kk#Ii#Aa
—(1/N)[{4a| 2ar | da)t 2. J(4a, Ii)
JH#EA Ii#4da

+ X0 Stuar{li| Dozs | Ii)
Ii#Aa JHET

+ E S2Aa,KkJ(Kk7 I"') :l; (18)
Kk#Ii7#Aa

13 The reader should note that we have used the approximation
(e | T—z+(Jil g| Ji) | T 1)~ SaewiLsi.
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E,=—(1/N)[ 2. K(4e, I1)]

IiZAa

+(1/N) [I;A K(dae, I))], (19)
Er==—(2/N)[ D, S'a01:{da 1#21};, | I4)

Ii#da
+ > > Sam{dali|g] KkIi)]

Ii#Aa Kk=Ii7#Aa

+(2/N)[ 2 Saeri{da| ;ZJ | Ii)

Ii#Aa

+ > Y Suame{dali|g| KkIi)] (20)
Ii#Ada Kk#Ii#Aa

zr=—2s¢/(R;—7); g=1/rp, (21)
N=1-2 5%, (22)

Iz
N'=1—2"5"4 1, (23)

It
J(da, I1) = (Aali | g | Aali) (24)
K(da, Ii) = (Aali | g | Iida). (25)

Finally, it must not be forgotten that the van der
Waals interaction between Hyt and He changes when
the solute Hyt is excited. This leads to a change in
energy (second-order perturbation theory result)

AEyaw=—2_(Caz/Ras%, (26)
I

Car=4 2 T (R (R %/ [(R) 1 (R) 4], (27)

It Aa

(R) k= (KE | 1?] Kk)—k;c[(l(k x| K& )?

+(Kk|y| KE' P+ (Kk |3 | K )], (28)

which is the last term displayed in Eq. (16). As usual,
Ry4r is the internuclear separation of the pair, and in
the matrix elements, 7, x, ¥, 2 are coordinates relative
to the nucleus of atom K.

It is worthwhile to mention briefly the nature of the
various contributions to the energy shift: E,; is the
atomic excitation energy corrected for overlap effects,
E. and E, represent Coulomb and exchange terms,
respectively, and Er is a three-center term involving
Coulomb exchange and overlap contributions.

V. NUMERICAL CALCULATIONS AND RESULTS

The He lattice is hexagonal close packed, so that if
the Hyt molecule ion replaces an He atom, there are
12 nearest neighbors and 30 other atoms close enough
to require consideration. It is convenient to subdivide
these 42 neighbors of the Hy* into four groups. Assum-
ing that the He lattice remains undistorted (lattice
parameters a,=3.57 A&, ¢,=5.83 A at 2°K) there are
12 neighbors at 6.74 a.u., 6 at 9.54 a.u., 18 at 11.68 a.u.,
and 6 at 13.49 a.u. Calculations were also made at
several other uniformly reduced interatomic distances,
in order that the effects of changes in lattice parameter

SPECTRAL SHIFTS 3783

TasBLE II. Sets of neighbor distances.

Number of neighbors

Set 12 6 18 6

1 6.74a0 9.54a,0 11.68a0 13.49a,
2 6.61 9.35 11.45 13.22
3 6.47 9.16 11.21 12.95
4 6.34 8.97 10.98 12.68

(pressure effects) could be examined. Table II con-
tains a listing of the four sets of distances studied.

The analysis outlined in Sec. III was employed to
calculate the transition energy, AE, for the four sets
of lattice distances displayed in Table II. The various
contributions to AE were calculated exactly, except
for the three-center integrals which were evaluated by
use of the Mulliken approximation. Previous work on
crystalline Ne (Ref. 2) has shown the Mulliken ap-
proximation to be quite good, so that we expect no
error of note is thereby introduced. The only other
assumption made in the numerical calculations is that
the nuclear charge of the Hyt molecule ion is centered
on the internuclear axis and has magnitude +2 | e |.

A number of integrals, evaluated with the Hy™ wave-
functions (9) and (10) and the Green He wavefunc-
tion!d:

Ye=0.18159x (1s, 2.906)+0.84289x(1s, 1.453),
ee=—0.91792 a.u., (29)

are displayed in Table III. The entries in this table
refer to the internuclear distances of Set 1, Table II.
Finally, the computed transition energies are displayed
in Table IV and Fig. 1.

An attempt was made to test the dependence of the
spectral shifts on the nature of the wavefunctions em-
ployed in the calculations. We have repeated the com-
putations for Set 1 with the simplest He atom wave-
function, i.e., the Slater function yYge= (z%/7)%e ™,
characterized by the orbital exponent z=1.6875. The
results thus obtained are displayed in Table V. It is
apparent that the use of the single Slater orbital pre-
dicts the correct signs of the various energies, but the
magnitudes are seriously in error. Indeed, if the same
van der Waals contribution is used as in the more
complete calculation, the predicted spectral shift has
the wrong sign.

VI. DISCUSSION

We now turn to an examination of the several com-
ponents of the shift in transition energy. We note that:

(a) The term E,, is the excitation energy for the
transition including corrections due to the overlap of
charge distributions. As expected, a decrease in lattice
parameter leading to an increase in overlap causes E,,
to increase. An examination of Egs. (17) and (22)
and (23), together with the observation that the over-
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TasLE IIL. Several representative integrals (computed with the Hy* wavefunctions 9 and 10 and
Green’s helium wavefunction) for Set 1.»

(aa | bb)=(ab| g | ab)=/f¢A(l)¢A(1) (r2) s ()¢5 (2)dr

(ab | ab)={(ab|g| ba)=//¢4(l)¢3(1) (rn2) s (2)¢s(Ddr

(4 | 8) = f va(Dva(l) (rad)dr

(a, b) = f Yavsdr

Function R=6.74 a, R=9.54 q, R=11.68 a4 R=13.49 a9
(15’15’ | 151s) 0.14913 0.10536 0.086058 0.074512
(2pn"2p7" | 1s1s) 0.14068 0.10136 0.083321 0.072373
(296296’ | 151s) 0.15705 0.10724 0.086526 0.074453
(2p6'1s | 2p6'1s) 0.0013106 0.000017479
(I'| 2p6"2p6") 0.15717 0.10724 0.086526 0.074453
(I|2pr"2px") 0.14068 0.10136 0.083321 0.072373
(I']1s',1s") 0.14913 0.10336 0.086058 0.074511
(2p067, 15) 0.051903 0.0065147 0.0011798 0.00026432
(1, 1s) 0.0035679 0.00013153
(4 }2p6'15) 0.0096479 0.00084468
(1s'1s | 15'1s) 0.00000

8 Those functions belonging to the impurity molecule are primed. Energies in atomic units.

lap in the excited state of the impurity is larger than
the overlap in the ground state, shows that

[(1/N") E4a—(1/N) Esa]

increases as the lattice constant decreases. Because the
overlap is not very large in either state, the remaining
terms in (17) make only small contributions to the
change in E,; with changing lattice parameter.

(b) E.1is the change in Coulomb energy arising from
the overlap charge distribution. Again, a decrease in
lattice parameter leads to an increase of the overlap
charge, hence an increase in the magnitude of E.. The
reader should note from the entries in Table III that
the Coulomb integrals and nuclear attraction integrals
for the same orbital tend to cancel, so that electron-
electron interactions and electron-nucleus interactions
are delicately balanced against one another.

(c) Both the change in exchange energy, E,, and
the change in three center contributions, Er, also de-
pend on overlap. As observed from the entires in Table
IV, E, and Er change in the same way as do Eg
and E..

(d) The existence of an overlap charge density,
larger in the excited state than in the ground state,
implies both a negative change in the Coulomb energy
and a negative change in the exchange energy. This
is a simple consequence of the attraction generated
by placing charge between the atoms. On the other
hand, charge is then “withdrawn” from the impurity
center, thereby increasing its effective nuclear charge.
As a consequence of this increase in effective charge,
we expect the change in excitation energy to be posi-
tive. These arguments lead us to expect (FEar)sor:a>
(Eqs) vaewumt, Ee<0, E,<0, all of which are confirmed
on examination of Table IV. It seems very difficult to

Tasie IV. Medium induced spectral shift for Hy* in a He matrix calculated using Green’s function.16s

Eq: E, Er E, AEvaw E (Baa—E4a) Eonite
Set (eV) (eV) (eV) (eV) (eV) (eV) (eV) (eV)
1 17.187 ~0.145 +0.222 -0.114 —0.03069 17.119 17.054 0.065
2 17.214 ~0.173 +0.2711 -0.139 —0.03452 17.138 17.054 0.084
3 17.249 —0.212 +0.336 —~0.172 —0.03923 17.162 17.054 0.108
4 17.287 —0.255 +0.411 —0.213 —0.04433 17.186 17.054 0.132
2 See Ref. 15.
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make a simple argument for the three center terms, but
in the Mulliken approximation the sign of the change
should be the same as that of (E.e)sotia— (Fat) vacuum,
and for similar reasons. This is also in agreement with
the entries of Table IV.

(e) The change in van der Waals energy is small
relative to the other energies discussed above. As ex-
pected, it is negative and increases as the lattice pa-
rameter decreases. Because of the varying signs of the
several contributions to the transition energy, the
change in van der Waals energy is of the order of

(a)

(b)

FiG. 1. The crystal structure of the He host lattice: [l the im-
purity center; @ neighbors in the same plane; O neighbors in
adjacent planes.

magnitude of 309, of the total shift in transition en-
ergy.

(f) The net change in transition energy is seen to
result from a subtle balance between orthogonalization
effects, overlap charge effects, and penetration (Cou-
lomb) effects. It is clear that no simple macroscopic
characterization of the medium is likely to be success-
ful, despite the superficial simplicity of the trend of
excitation energy shift as a function of lattice param-
eter.

It is now pertinent to examine, in somewhat greater
detail than in the Introduction, the nature of contin-
uum dielectric models and other models for the calcu-
lation of the transition energy shift. We have already
noted that, when overlap may be neglected, the shift
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TaBLE V. Medium induced spectral shift for Hy* in a He matrix
calculated using He Slater orbital.

Eat Ez ET Ea E
Set (eV) (eV) (eV) (eV) (eV)

1 17.149 —0.117 +0.155 —0.085 17.102

in transition energy depends on the difference in dis-
persion energies between the medium and the ground
and excited states of the optical center. Because of
the short range of the dispersion interaction, only the
properties of the nearest neighbors of the impurity
center are important. On the other hand, if the charge
distribution of the impurity center overlaps the charge
distribution of the surrounding medium, the effects of
distant molecules depend on the extent of charge pene-
tration. In the continuum approximation the dielec-
tric medium surrounding a cavity is polarized by the
charge remaining in the cavity. The problem may be
expressed in a form in which the mean potential exerted
on an electron has components from both the parent
molecular core and the long range polarization field of
the surrounding medium. It is necessary to make the
formulation self-consistent because the charge contained
in the cavity both depends on the extent of penetration
of the surroundings and determines the polarization of
the surroundings. It is an interesting observation that
when the self-consistent potential problem sketched
above is solved for the case of the hydrogen atom in a
cavity, it is predicted that there will be blue shifts of
the electronic transitions.

Keil and Gold® have studied the 1s—2s and 1s—2p
excitation energies of an H atom in crystalline Ar,
using methods essentially identical with those employed
herein. For a nearest neighbor distance of 7a,, the pre-
dicted blue shift of the 1s—2p transition is 0.4 eV, in

0.20' T T

|” Without Van Der Waals Interactiop4

AE(eV)

0.04 — —

0086

F16. 2. The dependence of the transition energy of Hy* in a He
lattice on the lattice parameter.
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good agreement with measurements made by Baldini.4
The predicted blue shift of the 1s—2s transition is
2.1 eV, the large value arising because of the large
overlap with the surrounding medium in the 2s state
of hydrogen. Thus, despite the considerable changes
in dispersion energy in the H:Ar system (0.5 and
2.2 eV at 7ay for the 1s—2p and 1s—2s transitions)
the sign of the change in the transition energy is
determined by the effects of overlap with the surround-
ing medium. This deduction is in complete accord with
our findings for the Hs+:He system, where overlap
with the surrounding medium is much smaller, but
still of dominant importance.

Consider, now, the origin of the blue shift in the
continuum model. Since the exchange potential, three
center terms and the van der Waals energy are all
neglected, we see that the continuum model represents
a basically different approximation to the calculation
of the combined effects of E,; and E. from that studied
in this paper. In general terms, the procedure used
herein is concerned primarily with overlap and exclu-
sion principal effects, all in the one electron approxi-
mation. On the other hand, the continuum model
includes polarization of the medium, which may be
thought of as a correlation effect. In both cases the
removal of charge screening the atomic core leads to
an increase of F,. However, the stabilization gener-
ated by the potential field of the polarized continuum
is not analogous to the favorable change in Coulomb
energy arising from the overlap charge density. Now,
the polarization energy is less than the increase in Eg,
so that a blue shift of the transition energy is predicted
by the continuum model, but it is not clear that the
magnitude of the shift is meaningful. For, the polar-
ization of the medium depends on the extent of charge
penetration, which in turn depends on the electronic
overlap and required orthogonality to filled shells. Since
these effects are not directly included, the polarization
energy may be seriously in error. Although it appears
that the continuum model mimics the behavior of the
real system, we now believe this result to be fortuitous.
Thus, the fact that the calculations reported herein
predict a blue shift even when Er and E, are neglected
cannot be meaningfully compared with the similar pre-
diction of the continuum model.

Some comments on the choice of wavefunctions for
the calculation of spectral shifts are pertinent. It has
been shown that the use of a simple Slater wavefunction
for the He atom leads to a serious underestimate of
the calculated spectral shift when compared with the
result obtained using the Green function!® (which is a

14 G. Baldini, Phys. Rev. 136, A248 (1964).

5 L. C. Green, M. M. Mulder, M. N. Lewis, and J. W. Woll,
Phys. Rev. 93, 757 (1954).

SUN, RICE, AND JORTNER

good approximation to the He SCF spin-orbital). It
is apparent that the use of a single Slater orbital
seriously underestimates the amplitude of the tails of
the wavefunctions, leading to serious errors in the esti-
mates of overlap and exchange interactions at typical
intermolecular separations, i.e., simple Slater orbitals
are inappropriate for the representation of atomic or
molecular wavefunctions at large distances. Difficulties
arising from the representation of atomic and molecular
wavefunctions at large distances have been encountered
in many theoretical problems: for example, the calcula-
tion of atomic polarizabilities,'® molecular quadrupole
moments,”” interatomic and intermolecular dispersion
forces,’® charge transfer and exchange interactions in
molecular complexes and in aromatic molecular crys-
tals.20-2! In all these cases the use of SCF wavefunctions
for atoms or LCSTO wavefunctions (where the STOS
are SCF atomic orbitals) for molecules, leads to an
improved description of the behavior of the atomic
and molecular wavefunctions at large separations. The
calculation of spectral shifts is included in this category
of problems involving intermolecular interactions at
large distances, and SCF wavefunctions must be used
in any attempt to provide quantitative estimates of
these effects.

As a result of the calculations presented in this
paper, we conclude that any quantitative theory of
solvent effects must include detailed consideration of
the several consequences of nonvanishing overlap be-
tween electron density distributions. There seems no
obvious way in which a quantitative theory can be
constructed in terms of a simple parameterization using
macroscopic properties of the host medium.
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