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The properties of infinitely dilute metal ammonia solutions are interpreted on the basis of Landau’s model
for electron binding by polarization of the dielectric medium. The electrons are bound in cavities of radius
3.2-3.45 A. The energy levels of the trapped electrons are computed by the variation method using one-
parameter wave functions. It is possible to obtain theoretical values for the heat of solution of the electron
and the energy of the 1s—2p transition in agreement with experimental data.

The susceptibility of the energy of the electronic transition to temperature cannot be interpreted by
the temperature dependence of the dielectric constant only, and it is presumed that the electron cavity

radius is temperature dependent.

INTRODUCTION

THE physical and chemical properties of the solu-
tions of alkali metals in liquid ammonia and
ammines have been studied for many years. Although
the available experimental data concerning these
systems is extensive, the nature of the binding of the
electrons in these solutions is still a matter of contro-
versy. The currently proposed theories for these systems
are the electron cavity and the cluster theory.

The cluster theory was recently proposed by Alder
et all Tt was postulated that the main unit in the solu-
tion is a solvated metal cation with the valence electron
localized on the protons of the ammonia molecules of
the primary solvation layer. This species may dis-
sociate, or may combine with dimer formation.

The electron cavity model postulates the binding of
the electrons, which are removed from the alkali ions,
in cavities in the liquid. This model was essentially
proposed by Ogg.? The cavity radius and the binding
energy of the electron were computed using an over-
simplified model of an electron in a box. This model
was refined by Lipscomb.? Kaplan and Kittel* postu-
lated the binding of the electron in a molecular orbital
formed by the protons of the ammonia molecules
adjacent to the cavity. The electron cavity model was
recently applied® to interpret the absorption spectra
of alkali metals in ammonia as electronic transition
within the e centers and the absorption spectra of
electrons in ammine solutions as due to e; center
absorption bands.

An experimental evidence for the possibility of
binding of electrons in nonprotonic solvents was
recently obtained by Wilkinson et al.® who obtained
solutions of electrons in certain ethers. These results
indicate that proton-electron exchange forces are not
essential for the electron binding in solutions. Recently
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s Fowles, McGregor, and Symons, J. Chem. Soc. 3329 (1957).

6 D70wn, Lewis, Moore, and Wilkinson, Proc. Chem. Soc. 209
(1957).

a model’” was proposed for the binding of electrons in
solutions which is an improved form of the electron
cavity model. This model is based on Landau’s ideas
on the possibility of binding of electrons in a dielectric
medium.? Landau’s model was mathematically formu-
lated in the work of Pekar® who used the term “polaron”
for the state of an electron bound by the polarized
medium. Dawydow!® and Deigen'® attempted to apply
Pekar’s model to liquid ammonia solutions. The com-
parison between the work of these authors and our
results is presented in the last section of this work.
An application of this model to electron capture in
liquid systems was made by Platzman and Franck"
who discussed the nature of the photoexcited state of
the halide anions, and also indicated the possibility
of the application of this model to metal-ammonia
solutions. It was previously shown’ that the absorption
spectra of metal ammonia solutions can be interpreted
on the basis of a refined form of Landau’s model, using
the experimental data for the solvation energy of the
electron. The purpose of this work is to present more
elaborate calculations of the energy levels of bound
electrons in liquid ammonia.

SUMMARY OF EXPERIMENTAL RESULTS

The present summary will be limited to the properties
of dilute metal ammonia solutions which are relevant
to the presentation of the model.

(1) The volume expansion of a dilute sodium am-
monia solution is 72 A3 per alkali atom. With Kituki’s'?
density measurements, Lipscomb? suggested that the
electrostriction due to the Nat ion is about 35 A%/ion.
A more accurate treatment will be presented similar
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913 (1948); (b) M. F. Deigen, Trudy Inst. Fiz. Akad. Nauk,
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TabLe 1. Calculation of the heat of solution of an electron in
liquid ammonia.

A8 Ibie H,g(MZ+)d HSM° Hge
Metal ev ev ev ev ev
Li 1.61 5.39 5.62 —0.42 1.81
Na 1.13 5.14 4.47 0.061 1.74
K 0.94 4.34 3.52 0 1.76
Rb 0.89 4.18 3.31 0 1.76
Cs 0.82 3.89 3.04 0 1.67
Ca 2.00 I,=6.11 17.3 —0.86 1.78
I,=11.87
Sr 1.71 I1,=5.69 15.7 —-0.90 1.81
1,=10.98
Ba 1.83 L=5.21 14.4 —-0.83 1.72
1,=9.95

8 Rossini, Wagman, Evans, Levine, and Jaffe, U. S. Natl. Bur. Standards,
Circ. No. 500 (1952).

b J. Sherman, Chem. Revs. 11, 93 (1932).

© C. E. Moore, Atomic Energy Levels, U. S. Natl. Bur. Standards, Circ. No.
467 (1949).

d Heats of solution of monovalent cations were calculated from heats of solu-
tion of salts in ammonia (references 19, 20). Heats of solution of divalent
cations were calculated from the heat of the reaction M(s)+ZH*am—>M Z+(am)
+(Z/2)H (reference 19).

© References 19, 20.

to that proposed for the calculations of partial molar
volumes of ions in water.13:1¢

By using the method of Hepler'* we introduce the
ionic molar volume in the form

V=4%4nN (ar.)*—B/ar., (1)

where N is Avogadro’s number and r. is the ionic
crystal radius. The ionic cavity radius in solution 7; is
greater than the crystal radius and is presented by

ri=ar,, (2)

where ¢ is a numerical factor greater than unity. The
main contribution to e arises from the loose packing of
the ions and the solvent molecules. Robinson and
Stokes showed that allowance for this effect yields
a=1.22.% The electrostriction constant B is presented
assuming the validity of Born’s model and neglecting
the effects of dielectric saturation

B/N=(Z%/2D;) (dD,/dP)
—(22¢/2)[1—(1/D,) J(1/r) (dri/dP)  (3)

where Ze is the ionic charge, D, the dielectric constant
of the medium.
With Kituki’s'? data we obtain

Vxsci= — 0.4 cm?/mole Vune1=27.7 cm3/mole

If we assume that the values of ¢ and B are the

13 A, M. Couture and K. J. Laidler, Can. J. Chem. 34, 1209
(1956).

41, G. Hepler, J. Phys. Chem. 61, 1426 (1957).

B R. A. Robinson and R. H. Stokes, Trans. Faraday Soc. 53,
301 (1957).
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same for both monovalent anions and cations, we ob-
tain for an ion pair the equation,

VitV $1a}(ro’trs) B (1"

Vr)+U/ry)  (Ure)+ (/1) @

where the index 1 and 2 represent the cation and the
anion, respectively.

Solving for @ and B, using the experimental values
for NH,Cl and NaCl we obtained

a=1.42;  B/a=32.10"% cm*/mole.
The radius of the electron cavity is calculated from
the following cycle:

AV (A%)
Na(s)—Nat(am)+e(g) gr(aroet)’— (B/araxat) —Vm

e(g)—e(am) s7RE— (B/Ry)

Na(s)—Nat(am)+e(am) 72,

where V,,=39.4 A%/atom is the volume of the sodium
atom in the solid state. Hence we obtain swR,—
(B/Ry) =155 A3,

Solving for R, we get R;=3.45 A. This result is
somewhat higher than that obtained by Lipscomb.
The electrostriction term is probably somewhat over-
estimated, as it is assumed that the electron is confined
in the cavity.

(2) The solvation energy of an electron in ammonia
is calculated from the heats of solution of alkali metals
in ammonia.’*=1% In order to obtain from these data the
heat of solution of the electron, the heats of solution of
the individual cations have to be calculated. The
heats of solution are defined by the enthalpy change
AH for the process,

AZ(am)__)AZ(g) ’

where AH=Hg(AZ%)—Zev. Here Hg(A2) is the heat of
solution of the ion AZ of charge Ze and v is the inner
potential of ammonia. The heats of solution of indi-
vidual cations were calculated using the data for heats
of solution of salts in liquid ammonia as tabulated by
Jolly.® The calculation was carried out using Verwey’s
method.? These values for the ionic heats of solution
are based on the value Hg#+=286 kcal for the heat of

solution of the proton. These results are presented in
Table I.

(119‘;2). A. Kraus and F. C. Schmidt, J. Am. Chem. Soc. 56, 2297

(1‘97358<;hmidt, Studer, and Sottysiak, J. Am. Chem. Soc. 60, 2780
(1;‘515 V. Coulter and L. Monchick, J. Am. Chem. Soc. 73, 5867
91, V. Coulter, J. Phys. Chem. 57, 553 (1953).
2 W. L. Jolly. Chem. Revs. 50, 351 (1952). -
% E. J. W. Verwey, Rec. trav. chim. 61, 127 (1942).
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The heat of solution of an electron in ammonia is
obtained from the following Born-Haber cycle:

AH
M(s)—M(g) A
M (g)—>M=+(g)+Ze(g) ;I i
M7+ (am)—M?*(g) Hg(M#*) —Zev
Ze(am)—Ze(g) ZHg+Zev
M (s)—Mz+(em) +Ze(am) Oy«

where I ; are the ionization potentials of the metal atom
\ is the sublimation energy of the metal, Hg¥, Hg(M2+)
and H¢ are the heat of solution of the alkali metal, the
alkali metal cation, and the electron, respectively.
Hence we obtain

He=(1/Z) (v gli-ﬁﬂs(MH) g, (&)

The values of Hys® thus obtained are presented in
Table I.

The heat of solution of an electron in liquid ammonia
is He¢=1.740.2 ev and is approximately independent
of the cation. These results are in agreement with the
data of Jolly® but contradict the results of Coulter.?
Calorimetric measurements?? on the concentration
dependence of heats of solution of alkali metals were
interpreted as due to the heat of unpairing of electrons
which was determined as 0.22£0.05 ev. This relatively
small energy difference is of the order of magnitude of
the uncertainty of the heats of solution of individual
ions and was not introduced into the calculation of Hs®.

(3) The absorption spectrum of metal ammonia
solutions in the region of 500-750 my shows a con-
tinuous absorption independent of the alkali metal.®
The band maximum lies in the near infrared region.
Vogt? reported that the band maximum lies at 1.8
(0.7 ev) for both lithium and sodium solutions. Jolly®
found the absorption maximum of sodium ammonia
solutions at 1.5 g (0.8 ev). Blades and Hodgins® found
the absorption maximum at about 1.5 g for lithium
sodium and potassium solutions. Bosch? reported
for thin films of metal ammonia that the infrared band
in these systems lies at -v=1.0 ev at —253°C.

The place of the absorption band is susceptible to
temperature.2® The temperature coefficient for potas-
sium ammonia solutions reported by these workers is
d(hw) /di=—9 cm~/deg in the region —33°C-—70°C.

2 Coulter, Wolsky, Zdanuk, and Monchik, 119th meeting Am.
Chem. Soc. (1951), Abstr. 101, p. 500.

2 G. E. Gibson and W. L. Argo, J. Am. Chem. Soc. 40, 1327
(1918).

% E. Vogt, Z. Elektrochem. 45, 597 (1939). .

% W. L. Jolly, University of California Radiation Laboratory
Rept. No. UCRL 2008 (1952).

% H, Blades and J. W. Hodgins, Can. J. Chem. 33, 411 (1953).

21 E. Bosch, Z. Physik. 137, 89 (1954).
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(4) It is fairly well established that in extremely
dilute alkali metal-ammonia solutions the electrons
exist as individual unpaired solvated electrons, re-
moved from the alkali metal. This conclusion is con-
sistent with both the electron cavity and the cluster
theory. Calorimetric measurements® and concentra-
tion dependence of paramagnetic susceptibility* of
these systems were interpreted on the basis of the
electron cavity theory by equilibrium between e and
ez centers. Neglecting the entropy change of this
process the equilibrium constant for dissociation of the
e; centers should be about 0.02. Conductivity and
magnetic susceptibility data were interpreted in terms
of the cluster theory. Kraus® interpreted the con-
ductivity of dilute metal ammonia solutions as being
of an electrolytic type and involving ion pair forma-
tion. The dissociation constant calculated by him for
sodium solutions at —33°C was 0.05. Alder e al.l
showed that the concentration dependence of para
magnetic susceptibility of potassium-ammonia solu-
tions is consistent with the assumption that the disso-
ciation constant of the “ion pair” is 0.03. It thus ap-
pears that in the concentration region below 1073
mole/liter the degree of dissociation is greater than
0.95. Thus we feel that the treatment of the electrons,
as bound to the dielectric medium in this extremely
dilute concentration region, is justified.

PRESENTATION OF THE MODEL

The proposed model for metal ammonia solutions
postulates that in the limiting case of extremely dilute
solutions the electron is removed from the metal cation,
and is located in a cavity in the liquid. The electron is
trapped by polarization of the medium by the electron
itself. This picture of “‘an electron trapped by digging
its own hole”® was introduced by Landau.”® No experi-
mental evidence was found for trapping of electrons in
crystals by this mechanism, but this picture may be
applied to liquid systems.

The form of the potential well formed by the polarized
medium will be calculated. We assume that the electron
is bound in a spherical cavity of a mean radius Ro.
At relatively large distances from the cavity center the
medium may be treated as a continuous dielectric
medium. In that region the total polarization — P,—
of the medium formed by a spherically symmetrical
charge distribution within the cavity is presented by

P=(e/4rr)[1—(1/Ds) ]. (5)
The electronic polarization is given by
Po= (e/4xr*)[1—(1/Dyy) 1. (6)

Dy and D, are the static and optical dielectric constant.
The part of the polarization which cannot follow the

2 C. A. Kraus, J. Chem. Educ. 30, 83 (1953).
» T, Landau, Physik. Z. Sowjetunion 3, 664 (1933).
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TasLE II. Calculations for the 1s energy level of an electron in
liquid ammonia.

Ro I3 Wi, rp'*
A At ev A
3.00 0.360 —1.415 2.78
3.20 0.347 —1.356 2.88
3.45 0.330 —1.281 3.03

motion of the electron is presented by
PD= Pt—'Pe, (7)
Pp=(¢/4xr*)[1/Do,) — (1/Ds) ]. (7

This “permanent polarization” represented by 7’
creates the potential well. This separation of the total
polarization to electronic and permanent polarization
can be approximately achieved if the frequency of the
bound electron is much greater than the period of
nuclear vibrations, and is of the order of magnitude of
the electronic frequencies. In this case Dg,= n? where # is
the refractive index of ammonia. Thus the permanent
polarization consists of the atomic and dipole polariza-
tion. The electrostatic potential resulting from this
polarization is given by

¢o=[m(PD/r2)41rr2dr. (8)

In the vicinity of the cavity the atomic structure of
the medium is of primary importance. The first layer
of the solvent molecules surrounding the cavity may
create a discontinuity of the potential function which
is roughly similar to that across a spherical double
layer. The potential function will still be a decreasing
function of » but deviations from spherical symmetry
may be appreciable.

Our treatment involves an extrapolation of the simple
form of Landau’s potential presented by (8) up to the
cavity radius. It is presumed that ¢ is continuous up
to Ry and that within the cavity ¢ is constant. The
liquid is treated as a continuous isotropic dielectric
medium where the electron is confined in a spherical
cavity. The effects of proton-electron exchange forces
are not introduced. Another approximation involved is
that the electronic wave function may extend beyond
the cavity radius and some of the nearest molecules
will be acted by a field due to less than one electronic
charge.

The potential energy of the electron is — eg, thus the
following expression for the potential energy V(r) is
obtained

V(r)=—Be/r for r>R,
V(r)=—Be/Ry for r<R,, (9)
where 8=[(1/Do,) — (1/Ds)]. The reference state is

JOSHUA JORTNER

that of a nonpolarizing electron located in the medium
at infinity from the cavity.

CALCULATION OF THE ENERGY LEVELS OF A
TRAPPED ELECTRON

A calculation of the energy levels of an electron
bound in the potential well V(r) is presented. Con-
sidering the approximations involved in the derivation
of Eq. (9), these calculations intend to show that the
right orders of magnitude for the experimental quanti-
ties can be obtained from the proposed model.

The calculations were carried out using the variation
method. As the potential for > R, is approximated by
a hydrogen-like form the one parameter function intro-
duced for the ground state was of the form

1= 4 exp(—pr), (10)

where A%=u?/r.

The energy of the ground state was calculated from

the variation integral

W= / Vil — B2A/8mm—+V (1) Wrdv, (11)
where A is the Laplacian operator and v is the total
volume.

From (11) the energy is obtained as a function of .
The best value of u is obtained by putting W i,/du=0
and solving for u. By substitution of this value of u
into (10) and (11) the energy and the wave function

for this state are obtained.
Expression (11) is presented in the explicit form:

W= — [ 9uu(1/7) (d/dr) (@ ) Yomrd

— (Be?/ Ry) /; R0¢1a241rr2dr— Be? f V1. (1/r ) darridr.
Ry

Introduction of (10) into (11') yields )
Wis= (Ku/8x*m) — (Be*/ Ro)
+ (Be*/ Ro) (1+uRy) exp(—2uRo) (12)
and
oW1/ 0u= (uh?/4x®m) — Be2 (14 2uR,) exp(—2uRy).
(13)

The Bohr radius for the 1s level is approximately
presented by rp*=1/u and the mean radius by Fi,=
3/2u. Calculations for ammonia at —33°C were carried
out setting Dg=22, Dy,=n*=1.756, and $=0.523.
The results of these calculations for several values of
Ry are presented in Table II.

From Eqgs. (12) and (13) we obtain the best ap-
proximation to Wy, which the form of the trial function
(10) would allow. The adequacy of this variation func-
tion was tested by repeating the calculation using the
function Y1,=A(14vr)e 7" where A2=+3/7x. The
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value of Wi, thus obtained is —1.4135 ev for Ry=3.20 A,
which is only 4.59, lower than the result obtained
using the simple one parameter function.

The energy of the 2p level was calculated using the
one parameter functions

2p,=Br sinf cosp exp(—ar),

2p,=Br sinf singp exp(—ar),

2p.=Br cos# exp(—oar), (14)
where B*=o%/r.
The energy is presented by
Wep= (Ho/8x*m) — (Be*/ Ro) + (B¢*/ Ro) (1-+3aRo
+a? R+ 302 Re?) exp(—2aRy). (15)
and
OWap/da= (Ka/dw*m) — Bt (3+aRy+a?Ry?
4262 R) exp(—2aR,). (16)

The numerical value for Ry and the form of the
potential well selected for the 2p state are the same as
those for the ground state. The 2p energy level thus
obtained is not an equilibrium state but is used for the
calculation of the energy of the 1s—2p electron transi-
tion. During the electronic transition the position of the
nuclei remains unchanged according to the Franck-
Condon principle. Thus we have to consider the energy
of the 2p state acted by a field corresponding to the
ground state. By using the oversimplified picture of a
cavity in a continuous dielectric medium this restric-
tion is equivalent to the assumption that Ry remains
constant and that the permanent polarization of the
medium did not change.

The Bohr radius for the 2p state is given by r5??=2/«
and the mean radius by 7o, =5/2a.

Considering the relatively great extension of the 2p
wave function the energy of this state is not very
susceptible to the behavior of V(r) at small distances.
The energy of an electron bound in the 2p state in a
hydrogen-like potential well of the form —fBe?/r is
0.925 ev.

Table IIT presents the results of the calculations for
the 2p state.

CORRELATION WITH EXPERIMENTAL RESULTS

The calculation of the energy levels of an electron
in the potential well formed by the polarized dielectric
medium did not include the effect of the electronic
polarization. When an electron is trapped in this
potential well the electronic polarization will lower this
state by an additional amount. The actual binding
energy of the electron will be presented by the expres-
sion

Ei=Wi+ Sie, (17)

where ;¢ is the contribution of the electronic polariza-
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Tasre II1. Calculations for the 2p energy level of an electron in
liquid ammonia.

Ry a Wap 7%
A A ev A
3.00 0.390 —0.826 5.14
3.20 0.381 —0.790 5.25
3.45 0.370 —-0.769 5.39

tion to the energy of 4 state. F; is the total binding
energy of the electron in this state.

The total binding energy in the ground state E,
can be correlated with the experimental solvation
energy of the electron. Consider the hypothetical
process of the transfer of the bound electron to the
gaseous phase within a period which is much shorter
than the relaxation and vibration period of the solvent
molecules,

(€am)—=( ) +e

the symbol ( ) represents the electron cavity sur-
rounded by the polarized solvent. This process is
equivalent to the following sequence:

where AE= — E;+ev

AE
(€am)—eg+NH;(1) Hgtev
NHs(H)—( ) II.

IT is the rearrangement energy required for the forma-

tion of the potential well. Hence we obtain
Hg=— E,—1I. (18)

The polarization energy 11 was estimated from an
electrostatic model.

= %/’p¢dv/= %/;2 e 2pdmridr (19)

where p is the charge density, ¢' is the volume occupied
by the dielectric medium; and by using (9) and (10)
IT is then presented by

IT= (8€?/2R0) (1Ro+2u*R¢?) exp(~—2uRy).

Il was calculated by Platzman and Franck!'3° for
uninegative anions by using the expression

(19

=3 / EPpiaridr
Ry

where E is the electric field. This expression is incorrect
as in that case ¥ should be replaced by D—the electric
displacement.

The electronic polarization energy was approxi-
mately evaluated assuming that the electron is a sphere

®R. Platzman and J. Franck, Farkas Memorial Volume
(Research Council of Israel, Jerusalem, 1953), Special Publica-
tion No. 1, p. 21.
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Taste IV. Theoretical calculation of H g¢ and Av for an electron in liquid ammonia at —33°C.
Ry Sis* Sop® Ee Esp T Hge Hg hy hw
ev ev ev ev ev (calc) ev  (exptl) ev (calc) ev  (exptl) ev
3.00 —0.745 —0.480 —2.160 —1.306 0.494 1.67 0.85
3.20 ~0.717 —0.472 —2.073 —1.262 0.475 1.60 1.7 0.81 0.8
3.45 —0.682 —0.459 —1.963 —1.228 0.418 1.55 0.74

of radius 7;. The interaction energy is approximately
given by
F=—31 (eP./r*)4nridr. (20)
7s
Thus the electronic polarization energies for the 1s
and 2p states are

Sié=—(eu/3)[1— (1/Dy,) 1;
Sppt= = (€%a/5)[1— (1/Dy) 1. (207)

The near infrared absorption band of metal ammonia
solutions is interpreted by us as rising from the 1s—2p
transition of the bound electron. The nature of the
excited state is still a matter of controversy. Jolly*®
proposed that this transition corresponds to the transi-
tion of the electron to the conduction band. This idea
was also presented by Stairs.®* Fowles et al.® postulated
that in the excited state the electron is still bound in
the cavity. This interpretation is similar to that pro-
posed by us, although as we shall show later their
arguments are open to criticism. This problem will
probably be finally settled by investigation of the
photoconductivity of these systems.

The energy of the 15—2p transition will be given by

th E2p_E18~ (21)

The results obtained from this model can be compared
with the available experimental data for the heat of
solvation of the electron and the energy of the electronic
transition of the bound electron. The agreement with
the experimental results is reasonable (Table IV).

The diagrammatic representation of the Landau’s
potential well, the energy levels of the bound electron
and the charge distribution is presented in Fig. 1.

TEMPERATURE DEPENDENCE OF THE POSITION OF
THE ABSORPTION BAND

Any model proposed for metal ammonia solutions
has to present an adequate interpretation for second-
order effects of temperature dependence of the band
maximum.

The experiments of Blades and Hodgins®* indicate
that environment changes have a marked effect on the
position of the band maximum. The band maximum is
susceptible to temperature changes and increase of
temperature causes shifts of the band maximum to

3L R. A. Stairs, J. Chem. Phys. 27, 1431 (1957).

longer wavelengths. The energy shift presents the
difference between the change of the energy of the
ground and excited states,

d(Iw) /dt=dEy,/di—dE./dl,

where ¢ is the temperature.

This pronounced effect of temperature on the posi-
tion of the absorption band is typical also for other
cases of electron transfer spectra. The analogy between
the temperature effect on the absorption spectrum of
metal-ammonia solutions and the ultraviolet absorp-
tion spectrum of anions was recently pointed out.’
It was shown by Stein and Treinin® that the tempera-
ture effect on the absorption spectrum of anions cannot
be interpreted by using the Franck-Platzman equa-
tion® and assuming that Dy, and Dy are temperature
dependent. Smith and Symons®:3 interpreted the
absorption spectrum of the iodide ion using the model
of a particle in a spherical box for the excited state.
The temperature effect was interpreted in terms of the
temperature dependence of the cavity radius. Recently
the Franck Platzman model was refined by Stein and
Treinin to include the temperature dependence of the
ionic radius.® This picture yielded satisfactory agree-
ment with experimental data. These results will be
published in the near future.

The energy levels calculated from Eqgs. (12) and (15)
are dependent on 8 and on Ry For the ground level
Ey= E;:(8, Ry, u) u itself is calculated from Eq. (13)
setting the left side equal to zero; hence p=u(B, Ri).
Thus we may write

dF/di= (8E/9B) (df/dt) + (9 Er/dRy) (dR/d1)
+ (8 Ere/0p) [ (01/0B) (dB/d1) + (0u/d Ro) (dRo/d2) ].

(22)

(23)
By using Eq. (13) we obtain
JEy;/du=0S51°/0u, (24)
Op_ (0°W1s/3B3p)
a8 (0*W/3u?) ’
o (WfORW) -
aRo (82W18/6u2) )

2 (5., Stein and A. Treinin (to be published).

3 M. Smith and M. C. R. Symons, Trans. Faraday Soc. 54,
338 (1958).

# M. Smith and M. C. R. Symons, Discussions Faraday Soc.
24, (1957).
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ENERGY LEVELS OF BOUND ELECTRONS IN LIQUID AMMONIA

The temperature coefficient of the energy of the
ground level is thus obtained in the form,

dE [dEs 35: (a?W“/aﬁa,;)]d_ﬁ
dt | 8  ou (W /ou?) |dt
E)Els 6518” (62W18/6R06y) ]d_]i)
aRo a;l. (62W15/6ﬂ2) dt )

The temperature coefficient for the 2p state is given
by Eq. (26) with E,, substituted for Ei, Sp° sub-
stituted for Sy,%, and « substituted for .

The calculations were carried out for Ry=3.20 A,
B8=0.523. The temperature dependence of the ground
and the first-excited level are presented by Egs. (27)
and (28) where E is expressed in ev and R is expressed
in A.

(26)

dFy/dt= —4.00(dB/dt) +0.409(dRo/dt), (27)

dEy,/dt=—3.12(d8/df) +0.132(dRy/df). (28)
From Eq. (22) we obtain |

d(hv) /dt=0.88(dB/dt) —0.277(dRy/dt).

The temperature dependence of the energy levels
and of Av is thus attributed to the temperature de-
pendence of the properties of the dielectric medium,
which are roughly expressed by the temperature de-
pendence of Dy and Dy, and to the temperature de-
pendence of the mean cavity radius.

For liquid ammonia at —33°C d1nDg/di=0.0046
deg'@” and Dg=22. The temperature dependence of
Ds can be represented by Ds=66.2 exp(—T/217),
where T is the absolute temperature.

No experimental data are available for the tempera-
ture dependence of D, For liquid water using the
available experimental data%® we calculated

d(1/Dyy) /dt=—7.105 deg16

(29)

02} Is
2p
2 ol
0 ) | POLARIZED
1o 5 [ 5 X 10 MEDIUM
r(4) Wap | NORMAL
MEDIUM
Ezp is
= f
T S f
s E1s | Hs

F1c. 1. Energy-level diagram for a bound electron in liquid
ammonia.

3 I'nternational Critical Tables (National Research Council of
U.S.A.—McGraw-Hill Book Company, Inc., 1933), Vol. 7, p. 12
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Fic. 2. The tem-
perature dependence
of the position of
the band maximum
of metal ammonia
solutions. The ex-
perimental results of _
Blades and Hod-¢
gins® are compared >
with the calculated =
data [Eq. (30)].
Experimental points: 6600
+Li; [Na; OK.
Theoretical curves:

——. The numbers
represent the values (440 | | |
of dRe/dt in 1073 190 210 230 250
A/deg. To%

70001

6800

compared with d(1/Dg)/dt=21%X10~* deg™ for am-
monia at —33°C. Thus we assume that the changes of
Ds with temperature is greater than that of Dy,, and
the temperature dependence of 8 at —33°C is approxi-
mately presented by

d(1/Dg
s/ 922

=—06.95X10"% exp(T/217).

No experimental data are available for the tempera-
ture dependence of the volume expansion of ammonia
solution per alkali atom and for the temperature de-
pendence of the partial molar volume of the alkali
ions, so it is impossible at present to calculate dRy/d!
from experimental data. For anions in water the tem-
perature coefficient is about 1.5X10~% A/deg for the
iodide ion.*? The temperature coefficient is inversely
proportional to the ionic radius.®® Assuming that R,
is a linear function of the temperature, the temperature
dependence of the electronic excitation energy can be
presented by

w(T)=hv(240)
+1.33X10- exp(240/217) —exp(T/217) ]

+0.277(dRo/dt) (240—T). (30)

Figure 2 represents the comparison of the experimental
data of Blades and Hodgins?® with the theoretical calcu-
lations. The best agreement was obtained by setting
Ry=3.25 A. It appears that the temperature depend-
ence of kv cannot be interpreted on the basis of the
temperature dependence of the dielectric constant only.
This temperature dependence can be adequately
interpreted by setting dRo/di=3.0X10"% A/deg. The
temperature coefficient of Ry is of the same order of
magnitude as that for anions in water. Considering
the rather wide scattering of the experimental points
this agreement is reasonable.

Another interesting point is the relative suscepti-
bility of the ground and excited levels to temperature
changes. As it appears from Egs. (27) and (28) in-
crease of temperature diminishes the binding energy

# K. Fajans and O. Johnson, J. Am. Chem. Soc. 64, 668 (1942).
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in the ground level more than in the first excited level,
thus the temperature coefficient of v is negative.
This conclusion of the theoretical calculation contra-
dicts the arguments of Fowles et al.®* who attempted
to compare the ground state of the solvated electron
with the excited state of the iodide ion.

The proposed model suggests that the energy levels
separation increases as the electron cavity volume is
reduced and when the dielectric constant of the medium
is increased. These effects should lead to displacement
of the band maximum to shorter wavelengths when the
solution will be compressed. A model of the electron
imprisoned in a steep-walled potential well (“an elec-
tron in a box”) predicts a similar effect.

DISCUSSION

The application of Landau’s model to metal ammonia
solutions yields reasonable results for extremely dilute
solutions, Assuming that the electrons are bound by
polarization of a continuous dielectric medium the
values of Ej, and II obtained in this paper are probably
somewhat overestimated as the extrapolation of Lan-
dau’s potential was carried out up to the cavity radius.
A more refined treatment using the self consistent field
method is now carried out.

Another approximation involved in this treatment is
that the static dielectric constant was used in the whole
region and the effects of dielectric saturation in the
vicinity of the electron cavity were neglected.

The main difference between our approach and the
work of Pekar,® Dawydow,!® and Deigen! is the form
assumed for the potential well. These authors assumed
that Landau’s potential well is adequate for representa-
tion of V(r) for values of r approaching zero. This
approach utilizes the concept of continuous dielectric
constant for distances smaller than molecular dimen-
sions, and the neglect of atomic structure of matter is
driven to an extreme limit. This approach is incon-
sistent with the experimental results concerning the
volume expansion of metal ammonia solutions, and
leads also to the overestimation of the rearrangement
energy which these workers assume to be half of the
potential energy of the bound electron. According to
those results®® the thermal dissociation energy of the
‘“polaron” in ammonia which may be identified with
the solvation energy of the electron is one third of the
binding energy in the ground level, about 0.54 ev, in
disagreement with our interpretation of the experi-

JOSHUA JORTNER

mental results. Dawydow’s treatment does not present
an adequate interpretation for the temperature de-
pendence of the absorption band. For the 1s—2p transi-
tion Pekar’s model® yields the result hy=1.958% ev,
thus diw/dt=4X107* ev/deg in disagreement with the
experimental results. Another difference is that in that
treatment the contribution of the electronic polariza-
tion to the total binding energy was not introduced.

The proposed model indicates the existence of higher
excited states. The higher energy levels are only
slightly influenced by the form of the potential well at
small distances and can be adequately represented by
hydrogen-like states.”

Ex (in ev) =~ (13.568/n2) — (¢/2r)[1— (1/Dyy) ;

n>2. (31)

The short wave region of the main absorption band
should consist of a series of bands leading to a con-
tinuous absorption. This continum corresponds to the
ejection of the bound electron into the conduction levels
of the liquid. The measurements of Blades and Hod-
gins® indicate that the pronounced asymmetry and the
continuous absorption in the short wave region of the
main absorption band may represent these higher
transitions leading finally to the complete ejection of
the electron. The low temperature measurements of
Bosch? show that Li and Na-ammonia films show at
20°K two bands at 1 ev and 2 ev. Potassium films show
two bands at 1 ev and 1.6 ev. The high energy levels
may represent transitions to higher states.”!!

An alternative explanation may attribute these
bands to the effects caused by large concentrations of
the alkali metals and the low temperatures. Fowles
et al’® proposed that these conditions favor the forma-
tion of ; centers. On the other hand, these conditions
may favor the cation-electron pair formation and
dimerization of these species as proposed by the cluster
theory.! The problem of the interpretation of the
properties of alkali metals solutions at high concentra-
tions and in media of low dielectric constant such as
aliphalic ammines is still open.

ACKNOWLEDGMENT

The author wishes to thank Professor G. Stein for
his valuable advice and continued interest in this work.

%7 Reference 8, p. 82.

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



