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Transition strengths have been measured for the weak 2330 A band in XeF.: (f=0.002) and for the two
weak bands in XeFy at 2280 A (f=0.009) and 2580 & (f=0.003). To investigate the origins of these weak
transitions, the possibilities of vibronic and singlet-triplet transitions in XeF; and XeF, were examined.
Using the Herzberg-Teller theory of vibronic transitions and a molecular orbital treatment of excited
electronic states, estimated strengths of the relevant vibronic transitions have been calculated to be f=0.001
for both XeF: and XeF,, The vibronic band in XeF; borrows intensity from the symmetry allowed 14,,—'44,
transition at 1580 A (f=0.45), while in XeF, the major contribution to the vibronic band is from the sym-
metry allowed 14;,—!E, transition at 1325 & (f=0.8). A temperature dependence of the intensity of the
2330 A band in XeF: has been observed and found to be less than that predicted by the Herzberg-Teller
theory.

The estimated strength of the singlet-triplet transition in XeF: corresponding to the singlet-singlet transi-
tion at 1580 A is shown to be small (f<10™) in spite of a heavy atom effect; the small transition strength
persists because of the lack of nearby excited states of the required symmetry. In XeF, the triplet excited
state 3F, corresponding to the singlet-singlet transition 141,—'E, at 1840 A (f=0.22) is permitted by group
theoretical selection rules to mix with its own singlet state. Using an intermediate coupling scheme the esti-
mated intensity of this singlet-singlet transition is calculated to be f=0.007. The theoretical estimates of the
symmetry and spin forbidden transition strengths are used for the assignment of the weak electronic transi-

tions in the xenon fluorides.

1. INTRODUCTION

HE ultraviolet spectra of XeF; and XeF; have been

reported previously.l? In those investigations, the
spin and symmetry allowed transitions were classified
on the basis of a semiempirical LCAO theory and may
be considered to be fairly well understood.® This paper
is concerned with the nature of the several weak transi-
tions which were also observed.!* Two possibilities
are considered herein. First, that the weak transitions
are due to symmetry forbidden singlet-singlet transi-
tions which become allowed due to vibronic coupling
with u-type molecular vibrations; the general theory
of vibronic coupling, due to Herzberg and Teller,? is
used to calculate the oscillator strengths of the vibronic
transitions expected in XeF; and XeF; Second, we
consider the possibility that singlet-triplet transitions
are responsible for the observed weak transitions
and estimate the expected singlet-triplet transition
strengths. Comparison between theory and observa-
tion is based on experimental values of the transition
strengths determined from a profile analysis of the
spectroscopic absorption curves and a study of the
temperature dependence of the intensity of the weak
XeF, band.
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II. GENERAL THEORY OF VIBRONIC COUPLING

In recent years several investigators™3 have used
the Herzberg-Teller theory for estimating the strength
of vibrational induced electronic transitions. Benzene®~7
has been the most widely studied molecule, but calcu-
lations have been reported for formaldehyde® and cer-
tain transition metal complexes.®* In this work a
charge-dipole model was used in a molecular orbital
framework. Pople and Sidman?® have used this combina-
tion successfully to calculate the intensity of the
14— 14,(n—7*) transition in formaldehyde. In the
following we give a brief general summary of the
theory as it is used in this paper.

In the Born-Oppenheimer approximation, the vi-
bronic wavefunction of a molecule is expressed in the
form

W= 04 (%, q) i (), (1)

where « and ¢ refer to the complete set of coordinates
required to locate all of the electrons and nuclei, re-
spectively, 6;(x, ¢) is the electronic wavefunction of
the kth electronic state for fixed ¢, and &;;(q) is the
vibrational wavefunction of the jth vibrational state

5 J. N. Murrell and J. A. Pople, Proc. Phys. Soc. (London) A69,
245 (1956).
A. D. Liehr, Can. J. Phys. 35, 1123 (1957); 36, 1588 (1957).
A. C. Albrecht, J. Chem. Phys. 33, 156, 169 (1960).
J. A. Pople and J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
(192)7.) G. Holms and D. S. McClure, J. Chem. Phys. 25, 1686
(1;'5%'_1. Ballhausen and A. D. Liehr, Phys. Rev. 106, 1161
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ELECTRONIC TRANSITIONS IN XeF,

of electronic state k. The coordinates g are taken to
be zero at equilibrium.

The substitution of the right-hand side of Eq. (1)
into the general expression for the transition moment
M, 1; between vibronic states described by the quan-
tum numbers gi, kj gives

Myisi= [, (QMa(@)B)dg, ()

where

Ma(0) = [6,*(x, 9mu(@ 0w dx (3)
is the variable electronic transition moment, g denotes
the ground state, and m, is the electronic contribution
to the electric dipole moment operator. The contribu-
tion of the nuclear term to the transition moment
operator vanishes by virtue of orthogonality relations.
The total transition probability from state g to state &,
invoking the quantum-mechanical sum rule, is found
to be

8mrimc

32 Ek*—aZB Z , Maz ki ] ’

fk'—o

81r me
Y Ek'-oZB /@at*(Q)Mak (@ ®i(g)dg, (4)
where B; is the Boltzmann weighting factor for vibra-
tional state ¢ and FEj., represents a mean transition
energy.

In the Herzberg—Teller theory it is assumed that the
electronic wavefunction can be expanded in the follow-
ing form:

0:(2, 9) =0 () + 2 Ma(9) 0N (2),  (9)
where 0,%(x) is the ground state electronic wave-
function for the molecule in the equilibrium nuclear
configuration and the summation is over all excited
states 5. The coefficients cited above are given by
perturbation theory in the form

Ne(q) = f 0. (x) H'(q)0(x)dx, (6)

E kg Ligeg
where H'(g) is the perturbation Hamiltonian. Then,
from Eqgs. (3) and (5),

M, (g) =Mu'+ Z)‘M(Q)Maao‘{" Zkat(Q)Mﬂco- (7a)
8 13
We are interested in the cases where M, vanishes.
We also assume that the ground state does not mix
appreciably under vibronic perturbation, so that the
final summation also vanishes. Equation (7a) then
reduces to
= Z)\k,(q)Mggo.

M.i(9) (7b)

AND XeF, 2019
In order that M;(g) be nonvanishing, some A, (g) and
M,.? must be nonvanishing. A nonvanishing M, re-
quires the purely electronic transition to be allowed
under spin and symmetry selection rules. A nonvanish-
ing M.(g) requires the integral in Eq. (6) to form the
basis of a representation which contains at least once
the totally symmetric irreducible representation of the
group of the molecule. This latter requirement may be
used to determine which vibrations are capable of
mixing two electronic states of known symmetry.

For small vibrations the perturbation Hamiltonian
may be expanded in powers of the nuclear displacement
coordinate ¢. For each normal vibration a, when non-
linear terms are dropped,

H'(9)a=qa(0H/3q,). (8)

Replacing the effective Hamiltonian, H, by a Coulomb
potential and carrying out a transformation from nor-
mal to Cartesian coordinates one obtains

H'(q)a=—4s(3/8g0) 2.2 (Z:8%/1:)

=0a 2222 (31./3¢a)o(Tu/ i) (9)
In Eq. (9) the electrons are labeled by 4, the nuclei
by o, and T, is the vector from electron ¢ to nucleus o.
The derivatives (91,/3¢,)0 are evaluated for the ground
state and are the elements of the matrix which trans-
forms from normal coordinates to Cartesian displace-
ment coordinates.

Using Egs. (4), (6), (7), and (9) and carrying out
the summation over vibrational levels the general ex-
pression for the oscillator strength of a ‘““forbidden”
band may be written in terms of the characteristics of
the intense bands from which it borrows intensity:

Ekq—a
wg= 2 _fov coth
fies ;f Eyeg(Ereg— Eoey) Z

(Wka)a ]
(10)

where W, is the vibrational-electronic interaction
energy matrix element between the electronic states
k and s. For each normal mode of vibration a, the con-
tribution to Wy, is given by

r’bﬂ‘

(W)= [0t EX2{55) 2200 ortar o,
(11

where (Q.2)s} is the root mean square displacement of
the normal coordinate of the g¢th normal mode in the
zeroth vibrational state of the ground electronic state.
The temperature-dependent factor in Eq. (10) arises
from the application of the harmonic oscillator approxi-
mation to the ground and excited states.’10:

All the terms in Eq. (10) except (Wis)s may be
evaluated empirically. When molecular orbital theory
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Fi16. 1. Molecular orbital energy-level diagram for XeF, showing
symmetry-allowed and vibronic transitions.

is used to represent the electronic wavefunction Eq.
(11) can be simplified, since the expression in brackets
is a one-electron operator. The matrix element there-
fore vanishes if the configurations of 6,° and 6,° differ
in more than one molecular orbital. Equation (11) can
then be written in the form

9 o

W= fort) Eze ) Zeiana utoran, (12

T,
a%z Tio

where Y1 and ¢, are the unmatched molecular orbitals
in 6,° and 6,°. In the following calculations Eq. (12) was
represented by the interaction energy between a set of
dipoles, w,, defined by

Yy, =2se (al'a/aQa) 0 <Q02 )Av%

and the electron density distribution, efaye.
In the barmonic oscillator approximation to the
vibrational wavefunction, (Q.2)a} is found to be

(02 0t=(h/87,)}.

The quantities (9r,/9¢.)o, obtained from a normal co-
ordinate analysis, are the elements of the matrix
[M—Bt(L-1)1]. The elements of the diagonal matrix
M are the relevant atomic masses. B is the matrix
which transforms from Cartesian to symmetry coordi-
nates and L is the matrix which transforms from normal
to symmetry coordinates.’? L is further defined by the

(13)

(14)

Normal Vibrations

. *O——O0—0+ «O———O»a-0
o. XeFy ry >

Z9 6 Zu
(1
+ +
e XK
-~
+X_ % % %
Toby * baq M 8
2 E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibra-
tions (McGraw-Hill Book Company, Inc., New York, 1955).

F16. 2. Normal vi-
brations of (a)
XeF,, point group
Dy and (b) XeF,,
point group Daa.
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following matrix equation:
L'FG=ALt,

G=LL*t, (15)
where F and G refer to Wilson’s potential and kinetic
energy matrices. All the matrices can be evaluated by
standard methods.!?

III. VIBRONIC COUPLING IN XENON DIFLUORIDE

Figure 1 displays the results of a semiempirical
LCAO molecular orbital treatment of the XeF; mole-
cule.® An intense absorption band at 1580 & ( f=0.45)
is ascribed to a singlet-singlet 14;,— 14,, transition
representing the transfer of an electron from the ay,
molecular orbital, made up mostly of fluorine 2p sigma
orbitals, to the nonbonding a,, molecular orbital, made
up mostly of the xenon 5p sigma orbital. The symmetry

0.Coordinate System For Xe F,

F16. 3. Cartesian
coordinates and in-
ternal  coordinates
for (a) XeF; and
(b) XeF,.

forbidden transition A3~ 1Ey, corresponding to an
excitation of an electron from the ¢;, molecular orbital
to the @, molecular orbital would become allowed by
mixing of the 14, and 1E;, excited states. From the
symmetry requirements placed on the perturbation
Hamiltonian by the considerations following Eq. (7b)
mixing of the '4,, and 'Ey, excited states is possible
only by interaction with the doubly degenerate bending
vibration, IT, [see Fig. 2(a)].

Figure 3(a) defines the Cartesian coordinate system
used herein. The internal coordinates are the changes
in bond lengths and bond angles in the xy and xz planes:

ARy =x— %2,
ARy= —x14a3,
Aa=— (2Zy/r0) + (32/70) + (35/10)
AB=— (2z1/10) + (z2/70) + (23/0), (16)
where 7, is the XeF; equilibrium internuclear distance.’3

B P. A. Agron, G. M. Begun, H. A. Levy, A, A. Mason, C. G.
Jones, and D. F. Smith, Science 139, 842 (1963).
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ELECTRONIC TRANSITIONS IN XeF: AND XeF, 2021
TasLe I. B matrix for XeF,.
Xe F, Fs
x ¥ 2 x ¥ 4 x y s
S, 0 0 0 —0.7071 0 0 +0.7071 0 0
S(z4*) 1.414 0 0 —0.7071 0 0 —0.7071 0 0
S(1.) 0 —1.0X108 0 0 0.50X 108 0 0 0.50X108 0
The corresponding symmetry coordinates are are needed. ¥ (ay,) was considered to be of the form
S(ZH) =(1/V2) (ARHARy), ¥(ay) = (a/V2)[¢(2p.F1) +(2p.F,) ]
S(IL,) =Aa, + (8/V2) [¢(25F1) +¢(25F2) J+cp(5sXe). (20)
S(Z) = (1VZ) (AR~ ARy). A7) Solutions to the secular equation were obtained using

The B matrix and potential energy matrix, F, are
obtained by standard methods. They are shown in
Table I and Table II, respectively. F, is the bond
stretching force constant, F,’ is the interaction force
constant, and F, is the angle bending force constant.
The elements of the kinetic energy matrix, G, can be
evaluated from Wilson’s tables.”? Solving the matrix
Eq. (15) yields the matrix L71: its elements are found
to be

0:=0.5618X 1011 5(Z,;1),
0.=0.6988X 10—.5(11..),

0y =0.4941X 10-1L5(Z,+). (18)

Table III displays the values of (81,/3¢,)o for the three
normal vibrations. Only that column referring to the
II, vibration is relevant to our calculations (v=213
cm™1).8 Also given in Table ITI are the values of the
rms displacements, (Qa?), calculated from Eq. (14).
By a simple transformation of coordinates, the xenon
atom was considered fixed and the resulting vibration
dipole on each fluorine atom was calculated. Equation
(13) with Z equal to unity gives

ur=0.006 ea, (in y direction)
and

(19)
ur=0.096 eaq (in 2 direction).

As mentioned previously, these dipoles were considered
to interact with a charge density on the stationary
xenon atom, To evaluate the charge density, ey (ay,)
¥(e1.) analytic representations of the molecular orbitals

TasrE II. Potential-energy matrix for XeF:

SEM S S(10,)
Fgp+Fg' 0 0
Fp— FR'
Fp

the same approximations as employed in an earlier
study.? The coefficients were found to be: a=—0.747,

b=—0.171, and ¢=0.518. ¥(e;,) was considered to be
of the form

¢ (5p.Xe) ¢(2p,F1) +¢( ZPVFz)
‘l’ (elu) =a +ﬂ

$(5p.Xe) | |6(2p.F) +o(2p.Fs)

From Ref. 3, a=-0.284 and =0.977. To evaluate
the charge density ef(a),)¥(e1) the molecular orbitals
were expanded in terms of the component atomic or-
bitals. Contributions in the expansion similar to over-
lap terms (i.e., two-center integrals) were neglected.
Of the remaining contributions, only those transform-
ing like dipoles were kept since the interaction of
vibration dipoles with quadrupole charge densities
will be much smaller than the term retained. Expanding
the molecular orbitals in this way yields

¥(ay)¥(en) =0.547¢(5sXe) ¢ (5pXe)
+0.547¢(55Xe) o (5p.Xe). (22)

The atomic charge distributions are approximated by
a point dipole of moment e{(¢(5sXe) | r| ¢(5p.Xe) ),

TaBLE III. Values of (3r/d¢.)o and {(Q2) for XeF.»

z,t .t o,
x 0 0.0417 0
Xe vy 0 0 —0.0417
g 0 0 0
x —0.1623 —0.1428 0
F: v 0 0 +0.1428
g 0 0 0
x +0.1623 —0.1428 0
Fy 0 0 +0.1428
z 0 0 0
(ot 0.1808 0.1738 0.2809

8 Values of (97/9¢4) e are multiplied by N-¥ where N is Avogadro’s number.,
Values of (Q2)} are multiplied by N},
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Fi16. 4 Molecular orbital energy-level diagram for XeF, showing
symmetry-allowed and vibronic transitions.

where « is y or z. The atomic orbitals used were of the
Slater type, i.e.:

¢(55Xe) =0.8267% exp (— 2.0625r),
¢ (5p.Xe) =1.4317% exp(—2.06257) cosb.. (23)

(#(5sXe) | r| ¢(5p.Xe) ) is then calculated to be 1.26
eao in the a direction.

The classical interaction energy of the vibration
dipoles with the charge density leads to (Wj,)II,=
0.0639 eV. This value is substituted into Eq. (10)
together with the following empirical data from Ref. 3:

E(El‘ﬂ—'Alg) =5.4 eV,
E(Agt—Ay) =19 €V,

f(Azu(—Alg) =0.45, (24)
so that at 7=303°K,
F(Eig—A1,) (est) =0.001. (25)

IV. VIBRONIC COUPLING IN XENON TETRAFLUORIDE

Figure 4 displays the results of a semiempirical
LCAO molecular orbital treatment of the XeF; mole-
cule.! The absorption band at 1840 A (f=0.22) is
ascribed to two singlet-singlet symmetry allowed
transitions. One represents the transfer of an electron
from a sigma by, molecular orbital to the antibonding
e, molecular orbital and the other from a pi-type ag,
molecular orbital to the same orbital. Both of these
transitions are described as '4,;,— 1E,. The intensity of
the second strong absorption band at 1325 & ( f=0.80)
is similarly ascribed to two symmetry allowed singlet-
singlet transitions, one representing excitation from the
@y, sigma-type molecular orbital and the other from a
pi-type bz, molecular orbital. Both of these transitions
are also described as 14,,— 1E,. The expected pi-sigma
transition from the ¢, molecular orbital to the e, anti-
bonding molecular orbital was not definitely assigned
to an experimental band.

One discrete weak band and traces of a second are
found on the high wavelength side of the 1840-A band.
One of these could result from the symmetry forbidden
14;,—'E, transition corresponding to the excitation

PYSH, JORTNER, AND RICE

from the @, highest filled molecular orbital to the anti-
bonding e, molecular orbital. Such a transition could
gain intensity either by mixing the !E, state with 1E,
by either the asy or b1, out of plane normal vibrations
or by mixing the !E, state and *4;,+ 'Agy~+ 1B+ Bsy
state with the two e, normal vibrations [see Fig. 2(b) ].

The reducible representation of the molecular vibra-
tions can be expressed in terms of the irreducible
representations of Dy,

I'= A10+A2u+Bla+Blu+BZg+2Eu-

Figure 3(b) defines the Cartesian coordinate system
used in this case. The internal coordinates defined were
the changes in the bond lengths R, the changes in the
in-plane bond angles v, and the changes in the out of
plane bond angles 8, where 8, is the Fi-Xe~F; angle in
the plane perpendicular to the XeF; bond, and 8. is the
Fo-Xe-F; angle in the plane perpendicular to the XeF;
bond. 7, is the internuclear distance.” We find

ARy = —ux;}x;,

ARy =y~ s,

ARz =25~ x5,

ARy=—y,+ys,

Avr=—y1/rotxs/ro— x5/V2ro+y5/V2rq,
Ava=—x5/r0— Y3/ 10+ %5/V2ro+y5/V2rs,
Ays=ys/ro—%s/roF25/V2ro— y5/V2ry,
Avs=y1/rotxs/r0— 25/ V2ro— y5/V2r,
ABy=—21/ro—23/r0+ 225/,

ABe=—2zs/ro— 21 /r0+ 225/, (26)
leading to the following symmetry coordinates:

S(A4y) =3(AR+AR+ARs+AR,),

S(Az) = (1/V2) (A81+48,),

S(By,) =3 (Avi— AyetAy;— Ayy),

S(Bu) = (1/V2) (AB:—ABy),

S(Byy) =3(AR— ARy+AR;—ARy),
S(E.)r=3%(ARi—AR,~AR;+AR),
S(Eu)y=(1/V2) (Aya—Ayy). (27)

These symmetry coordinates are normalized and mu-
tually orthogonal and transform according to the char-
acter table of the symmetry point group Di.

The B matrix and F matrix obtained are shown in
Table IV and Table V, respectively. The independent

“H. H. Claassen, C. L. Chernick, and J. G. Malm, J. Am.
Chem, Soc. 85, 1927 (1963).
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ELECTRONIC TRANSITIONS IN XeF: AND XeF, 2023

constants in the potential energy matrix are defined
as follows: « | o %;% ° @'QX o o o
F,, bond stretching constant; F/, interaction con- T T
stant of a bond with a bond at right angles to it; F,”, 3 g g
interaction constant of a bond with an opposite bond; sa|Be o o B Ro
F,, interbond angle constant for v angles; F,/, inter- i © 9
action constant of two adjacent angles in the plane of
the molecule; F,”, interaction constant of two non- elo o 88 . o o 228
adjacent angles in the plane of the molecule; Fg, inter- v X X
bond angle constant for 8 angles; Fy', interaction ! |
constant of the two § angles; F,,, interaction constant
of a bond with an angle adjacent to it; F,,’, interaction e 88 o 88 o o o
constant of a bond with a nonadjacent angle. «ISX o X
The elements of the G matrix were evaluated and e -
found to be: oalo o 8)3( © o o %)é(
wy o
G(As) =pr, ‘
_ 5 . S 8 8
G (Az) = (2up/re") + (8uxe/rd?), Bloe o ° Z2°
I
G(By,) =4ur/rd,
G(Bu) =2ur/1, eBo ¥ooo
Lard
G(Bzﬂ) == WF, 3 T ]
=
G(Eu)R:ﬂF‘*‘zI‘Xe, % ﬁ:' S § =3 = o § u8: o
£ = o o
G(Ey) y= ur/rd®) + {duxe/7s") -5 b
- : o0 ~
G(E) py=—22uxe/r0, (28a) El vlee 82o o083
wy o
where ur and ux. are the reciprocal masses of the fluorine = !
and xenon atoms, respectively. The elements of the H
M . 8 T
matrix L~ were found to be: & wlo 88 o %é o o o
0:=0.5618X 1015 (4y,), e X
- —19 = =
0:=0.6061X10"°5( 4.}, anlo o 8s _ o 38
0s=0.5391X 1025 (By,), w X s X
=0.7622X 1075 (B},
> o 8o o o BEo
(0:=0.5618 X101 5(By,), S S <
Qs=0.4585X 1014 S(E,)g—0.2311 X105 E,) ,
0;=0.0134 X101 S(E,) r+0.6643 X 107 0°S(E, )} ,. s|opeg © © o oo
-t
(28b) - X
Table VI lists the values of (9r/8¢a)o for the normal galoo © o ooo
vibrations. Also given in Table VI are the values of
{Qa2) calculated from Eq. (14). By a transformation
of coordinates the xenon atom was considered fixed o e o o g By
and the resulting vibration dipole on each fluorine e ° - ax
atom was calculated. Equation (13) with Z, equal to
unity gives
@ay, pr =0.0643 eqy (in z direction),
. . . o~ o~ —~ —~ o~ PRy
b1u, ur=0.0386 ea, (in z direction), i3 £ 4 2 E‘i g
where g, is the Bohr radius. i Y Y n
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TaBLE V. Potential-energy matrix for XeF,.

S (A1) S (Azs) S(B1y) S (Brw) S (Bzy) S(E)r S(Eu)y
Frp+2Fg'+Fg" 0 0 0 0 0
Fs+Fy' 0 0 0 0
F,—2F/+F," 0 0 0
Fs—Fs 0 0 0
Fp—2Fg' +Fg" 0 0
Fr—~Fr"  VI(Fry=Fry)
Fo— F7"
As in the case of XeF, these dipoles were considered represented in the form
to interact with a charge density on the stationary (20)
xenon atom. Note that ¥ (as,) has no xenon s character. 4G
Therefore, upon expanding the molecular orbitals, only = (a/2)[¢(2p.F1) +¢(2p.Fz) +¢(2p.Fs) +6(2p,F) ]
the charge density ey (ay,)¥(a2.) will have terms trans-
ge density of (mo)y {a) +b6(5p.Xe).  (30)

forming like dipoles since of all the relevant molecular
orbitals only that of ¢;, symmetry has a xenon 5s com-
ponent. The importance of the charge densities corre-
sponding to mixing the molecular orbitals by, @sg, boy
or ¢; with as, will be much smaller since they involve
contributions transforming as quadrupoles and overlap
type terms; these contributions will therefore be
neglected. The two e, normal modes of vibration are
therefore much less important and in this approxima-
tion do not enter into the calculation. For the as,
vibration y=291 cm™! and for the &y, vibration »=221
cm~1. Y (ay,) was represented in the form

¥(ay,)
=(0/2)[$(2:F1) +¢ (2p:F2) +¢(2p:Fs) +¢(2p:F4) ]
+(6/2)[$(25F1) +¢ (25F2) +¢ (25Fs) +¢(25Fs) ]
+cp(5sXe). (29)

The secular equation was solved as described above to

Solution of the secular equation gives: e=—0.293 and
5=0.925. Expanding the molecular orbitals in terms of
atomic orbitals, as in the case of XeF;, leads to

¥(a10) ¥ (a24) =0.5485¢(5sXe) p(5p.Xe).  (31)

This charge distribution was replaced by a point dipole
of the same magnitude (calculated to be 0.689 eq; in
the z direction). Remembering that four fluorine atoms
interact with the xenon charge distribution, the calcu-
lated interaction energy contributions from the two
normal vibrations are

(Wis) 32=0.1048 eV,
(Wis) b1,=0.0957 V. (32)

Equation (10) is used together with the following
empirical data from Ref. 3:

E(E+Ay)=54—48¢V,
E(E,—A1) =9.36¢V,

give: a=—0.596, 5=—0.260, and ¢=0.593. ¥ (az,) was F(E—A44) =0.80, (33)
TasiE VI. Values of (97/9¢s)0 and (Q?)t for XeF,.»
Ayy Ao By, B, By, Eur) Euey

® —0.1148 0 0 0 —0.1148  —0.0937 0.0027
F, y 0 0 ~0.1147 0 0 —0.0348 —0.1000

z 0 ~0.0912 0 +0.1147 0 0 0

x 0 0 0.1147 0 0 —0.0348 —0.1000
F, y 0.1148 0 0 0 —0.1148 —0.0937 0.0027

z 0 —0.0912 0 —0.1147 0 0 0

x 0.1148 0 0 0 +0.1148 —0.0937 0.0027
Fs y 0 0 0.1147 0 0 —0.0348 —0.1000

2z 0 —0.0912 0 +0.1147 0 0 0

x 0 0 —0.1147 0 0 —0.0348 -~0.1000
Fs ¥ —0.1148 0 0 0 +0.1148 —0.0937 0.0027

% —-0.0912 0 —0.1147 0 0 0

x 0 0 0 0 0 0.0345 0.0198
Xe y 0 0 0 0 0 0 0

z 0 0.0532 0 0 0 0 0
() 0.1762 0.2406 0.2676 0.2761 0.1832 0.1696 0.3702

8 Values of (dr/3g,) e are multipled by N-¥ where N is Avogadro’s number. Values of (01)} are multipled by N3.
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ELECTRONIC TRANSITIONS IN XeF,

so that at T=303°K,
f(Eg—A4,) (est) =0.001.

V. SPIN-ORBIT COUPLING

The study of spin forbidden (i.e., singlet-triplet)
transitions in the xenon fluorides is of considerable
interest both for the description of the excited states
of these molecules and for the insight it provides into
the intermolecular heavy atom enhancement effect.’®
The latter phenomenon is of interest in the study of
the triplet states of aromatic molecules. In the
quantum-mechanical treatment of atomic structure
both the diagonal and nondiagonal matrix elements of
the spin-orbit interaction are of the same order of
magnitude, being determined by the spin—orbit coupling

parameter
ehi? av
= ¢ )(rl )R(r) dr,

where R(r) is the radial wavefunction and V the poten-
tial. The parameter ¢ is determined from the experi-
mental multiplet splittings in atomic spectra. Oscillator
strengths and lifetimes of excited states can be accu-
rately reproduced’® by introduction of an additional
parameter which takes into account the difference
between the radial wavefunctions in the singlet and
triplet states. The theoretical treatment of singlet-
triplet transitions in polyatomic molecules originated
with the work of McClure!” and has been continued by
several other workers.’*=% In the present treatment of
intercombination probabilities in the molecular spectra
of the xenon fluorides we shall attempt to reduce the
spin—orbit coupling matrix elements to one center
terms which can then be approximated by appropriate
parameters derived from atomic spectra. This semi-
empirical treatment is advantageous in view of the
lack of knowledge of the appropriate SCF atomic
orbitals for the Xe atom. An a priori computation of
the molecular spin orbital coupling parameters is not
feasible at the present time.

It is well known that in molecules characterized by a
singlet ground state the perturbation resulting from
spin—orbit coupling leads to mixing of the triplet ex-
cited state with some singlet states and thereby to a
finite transition probability from the ground state to
the excited triplet state. In the approximation employed
in this work the molecular spin—orbit coupling operator
is given by

H,=(chi/4m’¢*) 3 8(i) - P(i) X ViV,

where é(¢) is the Pauli spin operator, p the linear

(34)

£= (35)

(36)

15 S, P. McGlynn, R. Sunseri, and N. Christodouleas, J. Chem.
Phys, 37, 1818 (1962).

5G.W. King and J. H. Van Vleck, Phys. Rev. 56, 464 (1937).

1 D. S. McClure, J. Chem. Phys. 20 682 (1952).

18 M, Mizushima and S. Koide, J. Chem Phys. 20, 765 (1952).

1 J, W. Sidman, J. Chem. Phys. 29, 644 (1958).

% H. F. Hameka and L. J. Oosterhoff, Mol. Phys. 1, 358 (1958).

AND XeFqy 2025

Taste VII. Spin-orbit coupling in XeF; (D.s symmetry).

Mixing Contribu-

Triplet state operators tion to f

Singlet state

342, (01,—00) 1 Eyu(e1,—02) a5 a4y ~I107
1En[ern—a1,(Xebs) ] Qe Oy 0
1Er[m 1. (Xe6p) ] Qs Oy ~107
14 . [ern—e, (XeSd) ] @y 0
1 Evlei—eso (Xe5d) ] s 0y 0

SEw(eg0m) Eiu as ~107
LAz, (@15—024) az, Gy ~10™*

momentum, V; the gradient operator, and V the poten-
tial due to all the nuclei and all the other electrons.
The sum is taken over all the electrons. The interaction
between the spin of one electron and the orbital motion
of the others is neglected, so that the spin-orbit cou-
pling Hamiltonian, H,, can be displayed in the form of
a sum of one electron operators. Introducing a system
of Cartesian coordinates, H, is given by

1ehi?
4 22

E[o'z(i) az(1) +oy (1) 4y (4) +o.(3) a,(3) ], (37)

where the operators a., gy and ¢, are:

. oV.a av a
a(l)=—" ————
0y: 03;  0%:9y:’
() = oV 8 av o
a, (4 ———
v az. ox; 0% 0%
av.a dV 9

a,(i) = — ——— — (38)
dx; 9y; 0y; 0w

When the eigenfunctions of the spin independent
Hamiltonian are employed as zero-order wavefunctions,
the matrix elements of H, between the triplet wave-
function ¥r and a singlet wavefunction ¥g will vanish
unless the two configurations differ only in the spin of
one electron, and in the occupancy number of a single
molecular orbital. In addition, a symmetry restriction
is imposed: the direct product ¥rX¥s must belong to
the same irreducible representation of the molecular
point group as one of the spatial components @z, a, or
a, of the operator H,. As a., a, and a, transform like
the rotation operators R;, R, and R,, respectively, at
least one of the three direct products R.X¥rX¥g,
R, X¥rX¥g, or RX¥rX¥s must contain the Ay,

.representation.

The Hermitian matrices for the components of ¢(1)
and ¢(2) for a basis set consisting of two electron spin
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eigenfunctions are given by

a2(1)
i=[a(1)B(2)+a(2)B()INVZ| 0 INZ 1/V2
Ye=a(1)a(2) 1/V2 0 0
¥:=B(1)8(2) 1M2 0 0
¥i=[a(1)8(2)—a(2)B(1)INZ] 0 —1N2 12
¥i=[a(1)B(2)+(2)8(1) JV2| O 1/\/;(2)1/‘/7
Yo=a(l)a(2) i/\/f 0 0
¥s=5(1)8(2) 1Mz 0 0
U=[a(1)B(2)—a(2)B(D)INZ| 0 1N2 —-1/2

Hence, the singlet function is mixed with the M,=0
component of the triplet function by o,(¢) and with the
M_.=41 triplet components by ¢;(¢) and by ¢,(4).
Carrying out the summation over the electronic spin
coordinates and applying the molecular orbital approxi-
mation, the molecular spin—orbit coupling matrix ele-
ments are reduced to one-electron integrals.

When the separations between the triplet state and
the perturbing singlet states are large compared with
the off diagonal matrix elements of H,, the application
of perturbation theory is legitimate and the oscillator
strength for the spin-forbidden transition is given by

Egor | (Ur | Hs | ¥g) |?

fG*T:%:fG*S Eo.s (Eows—Eq.r)®’ 4
where
| (Wr | Hs | ¥s) 2 = (eh*/4m*c?)*(| (| @z | ¥0)
+ 1 Walay [0} P+ Wala: ) ). (41)

V. and ¥, are the unmatched molecular orbitals in ¥r
and ¥g and G, T, and S refer to the ground, triplet,
and singlet states, respectively. When | (¥r | Hg | ¥s) |
is of the same order of magnitude as Eg.s— Eg.r an
intermediate coupling scheme has to be employed.

In our treatment the spin-orbit perturbation of the
ground singlet state by excited triplets will not be con-
sidered. For the xenon fluorides this mixing is expected
to be small.

VI. SINGLET-TRIPLET TRANSITIONS IN XeF,

The perturbation treatment will now be used to
obtain an order of magnitude estimate of the singlet—
triplet transition probability in XeF,. In the symmetry

AL, Goodman and V. G. Krishna, J. Chem. Phys. 37, 2721
(1962).

PYSH, JORTNER, AND RICE

Uu(l) Uz(l)
0 0 i/NZ —i/V2 0 0O 0 0 1
~ANI|—iNZ 0 0 iNZl 0 1 0 0
V| N2 0 0 NIl 0 0—1 0
0 0 —i/NV2 —i/V2 0 i 0 0 0O
o'ﬂ(z) 0'2(2)
0 0 NI—iNI 0] 0 0 0-—1
1/V2 | —i/N2 0 0 —¢V2 0 1 0 O
“INE| iNZ 0 0 —ipZ] 0 0-1 0
0 0 NI iNZ 0 |-1 0 0 o
(39)

group D_; of the linear triatomic molecule (Fig. 3) q,
and g, transform like E;, while g, transforms like A4,,.
The lowest triplet state of the molecule is expected to
be a 34,, state corresponding to the a;;,—as, transition.
The 345, state can be mixed with £, states by q,
and ¢, and with 14y, type states by @.. It is interesting
to note that the mixing of 34, with the corresponding
14,, state is symmetry forbidden and no intensity
borrowing can occur from the strong 1580-A band of
XeF,. Other singlet excited states which can be mixed
with the 34,, state are listed in Table VII. We con-
sider states arising from excitation to orbitals mainly
involving the Xe atom orbitals, as these are expected
to lead to the greatest effect.

The mixing of the 45, state with the singlet Rydberg-
type excited states e —a1, €€, and e —ey is
negligible since the singlet and triplet states differ by
the occupation of two orbitals. The Rydberg state 1Ey,
arising from the excitation aj;—en. (Xebp) was not
experimentally observed up to 13 eV and the corre-
sponding excitation energy is expected to be about
15 eV. The oscillator strength for this singlet-singlet
o—w*-type transition is expected to be low (probably
of the order of 107! to 10~2). The spin-orbit coupling
matrix element can be estimated by considering only
one-center terms. The two unmatched orbitals in these
two excited states are the az and the en (Xe6p)
orbitals, so that the one-center terms are of the order of

(ieh?/4m*c*) [ (¢ (6p, Xe) | a. | p(5p. Xe) )
+(¢(6p. Xe) | a, | ¢(5p2 Xe) ) 1.

The absolute value of this matrix element is expected
to lie between £x.(5p)/2=0.37 eV% and £x.(6p)/2=
0.33 V.2 A reasonable order of magnitude estimate

% C. E. Moore, Natl, Bur. Std. (U.S.) Circ. No. 469 (1949).
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AND XeF, 2027

will be 0.1 to 0.2 eV. Hence, the transition strength to the A4,, state due to the intensity borrowing from the
En, (Xebp) state is expected to be of the order of 107,

Consider now the intensity borrowing from the !E, state (due to the ey—a,, excitation). The spin-orbit
coupling parameter for this mixing can be displayed in the form:

<¢(ala) l Hl l ‘l/(ela) >= ((1/‘/2)[:(1’(2?: F3) —¢(2Pz F2)] \ Ha l (1/\/2)[4’(2?: Fﬂ) —95(21’: F2)._.]>

R (il /4m*c”) [ (b (29 F2) | a: | 6(2py F2) )+ (6 (2= F2) | 0y | $(2p. o) )].

These terms involve only the contribution of the
fluorine atom, and each of the one center terms can be
approximated by &r(2p)/2=135 cm~'.2 The intensity
of the singlet-singlet #—¢* type transition is expected
to be low. It has not been observed experimentally! and
is probably masked by the transition to the !4,, state.
A reasonable estimate for the oscillator strength for this
singlet-singlet transition is ~0.01. Taking the energy
difference between the triplet and singlet state as 2 eV,
its contribution to the transition strength of the
144> 343, transition is only ~10~7. Our estimate of
the contribution does not include the mixing of the
Xedd orbitals in the @i, and e, molecular orbitals, but
this mixing has been shown to be small.® A rough esti-
mate indicates that a 109}, admixture of d character
leads to a contribution of 1079 to the oscillator strength
for the 144, 345, transition.

Another singlet—triplet absorption in XeF, which
should be considered is the 14~ 3F), transition arising
from the excitation e;;— @o,. Mixing with the 14,, state
is possible; the spin-orbit coupling matrix element is
again given by Eq. (42). Using the experimental
spectroscopic data for the 14;,— 44, ( f=0.45) transi-
tion and assuming that the energy separation between
the singlet and triplet states is ~2 eV, the expected
intensity borrowing will be of the order of 10— It
should be noted that the 3E,, state can interact with
the corresponding !E,, state. The problem of spin—orbit
coupling in orbitally degenerate states will be treated
in detail in the next section, and we do not here repro-
duce in detail the computation for XeF,. It is found
that the spin-orbit coupling parameter is again deter-
mined by the F atom spin-orbit coupling, and the
transition strength due to intensity borrowing is of the
order of 10— to 1077,

We conclude that the singlet—-triplet transitions in
XeFy, i.e., 141, 344, and 41— 3Ey,, should be char-
acterized by a relatively low oscillator strength f<1074,
This is a surprising conclusion since it indicates that in
spite of the presence of the heavy atom, the symmetry
restrictions imposed and the lack of nearby excited
states leads to a low singlet-triplet transition
probability.

% 1. L. Lohr and W, N, Lipscomb, Noble Gas Compound (Uni-
versity of Chicago Press, Chicago, Illinois, 1963), p. 347.

(42)

VII. INTERMEDIATE COUPLING SCHEME FOR XeF,

The first triplet state in XeF, is expected to be a
8L, state arising from the transition &;—e, (see Fig.
4). Consider the symmetry properties of the operators
@z, @y, and @, for this molecule. In the symmetry group
Dy, @z, and g, transform like ¢, while @, transforms
like by, Hence a 2E, state can be spin~orbit coupled
with 1414, 14w, *Bu, and 1By, states by a, and g, and
with 1E, states by a..

The spin and symmetry allowed transitions in XeF,
have been studied previously® and are found to be:
(1) brg—eu; (2) agg—en; (3) eg—eu; (4) barreu; (5) ar—¢u.
(see Fig. 4). The transitions (1), (2), (4), and (5)
are 4~ 'E,, while transition (3) is Ay~ 4+
1Agut 'Brut 'Baw. Hence, all these singlet excited states
can mix with the 3E, state. It is important to notice
that in the case of XeF, the doubly degenerate triplet
state mixes with the corresponding singlet via spin—
orbit interaction. As a first approximation configuration
interaction can now be disregarded and only the mixing
of the 3E, and 'E, excited states arising from the same
configuration. The energy separation between these
two pure spin states may be rather small (of the order
of 1 to 2 eV) so that the perturbation treatment used
in Secs. V and VI seems inappropriate and a variational
method will be used. The problem will be treated in
the intermediate coupling scheme, formally similar to
that used for the ps states of rare-gas atoms® and ps
configurations of some impurity centers in ionic crys-
tals® and for excited states of halide crystals.?

The Hamiltonian for the system is taken to be

H=H'1+H, (43)
and the wavefunction for the excited states is expressed
in terms of the singlet and triplet wavefunction

Y=o ¥('E)+¥('EJ) ]

+ilbf[w¢<aE:> FECES], (44)

# Another possible assignment is the w—¢* transition as,—e,
(*41,*E,). We reach the same general conclusions for both
transitions.

2% R. S, Knox, Phys. Rev. 110, 375 (1958).

% F. E. Williams, B. Segall, and P. D. Johnson, Phys. Rev.
108, 46 (1961).

Z R. S. Knox and N. Inchauspe, Phys. Rev. 116, 1093 (1959).
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where the three triplet states are labeled as in Eq.
(39). The subscripts x and y refer to the spatial direc-
tion of the e, orbitals [see Fig. 3(b)]. The secular
matrix takes the form

A
O
At
B
0
B+
with

1 Ez SEly 8E 2: 3 Ez”

Er| 26 2 SEf E Z
A= ) B= ’

O A E° SEM Z* E°
lEy 3E1:: 3Eaz 3E3y

1gvi BO4-2G Z* Es EY Z*
At= . Bt= .

3Ly VA E° 3By Z E°

Here E° is the energy of the pure spin friplet states:
E'=(¥;(CES) | B | W:(ES) )

=(EY) | H | W(CEY) ) i=1,2,3. (45)

The energy difference between the pure spin singlet
and triplet states is given by 2G, where G is the exchange
integral between the two unmatched orbitals in the
ground and excited states

E+2G=@(ES) | H' |Y(Es) )
=WCEY) | B | Y('ED)).
The nonvanishing off-diagonal matrix elements are
Z=U(Es) | H, | M(°Es))
=@ (Es) [H, | ¥ ('Ed))
= (U:(*E.*) | H, | ¥2(*EWY) )
=(W(°Es) | Ho [ %(ES) ). (47)

It should be noted that the diagonal spin-orbit matrix
elements

(46)

(W(E» ) | H, | ¥(EsY) )
and
<‘I’1(3Euz'y) l H, l‘I’l(aEuI'y) )

vanish due to spin orthogonality while the matrix
elements

(q’z(aEuz'”) I i, |‘I’2(3Euz'y) )
and
(W3(CESY) | Hy | W(CE2Y) )

PYSH, JORTNER, AND RICE

vanish because of the symmetry restrictions imposed
(H, involves only the a,0, operator).

Tt is at once apparent that only the triplet component
¥ (E,) mixes with the singlet ¥(*E,) and hence in
this approximation optical transitions to only this
triplet state are expected. It is clear then that we are
only interested in the wavefunction

U, =0,V (\E7) +b, 0 (CEY). (48)

The coefficients ¢, and b, are readily obtained from
the secular equation

(E4-2G—~E)e,+2Zb,.=0,
Z*ai+(E°—E)bi=0. (49)
The energies are

E =E+G£(G+|Z )} (50)

and the energy splitting between the two states is
8=E,—E_=2(G4|Z DL (51)

The ratio of the transition probabilities involved in the
two transitions is
fr_Moilas
fe hv_la_ |2’
here hv, are the energies involved in the two transi-
tions. The ratio

(52)

p=|a"/la_|? (53)
is readily obtained from the solution of the secular Eq.
(49) by imposition of the normalization condition on
the wavefunction in Eq. (48). We are thereby led to
the result

_(E42G—-E )4 |Z ]

P+ G-E) | Z P )
Let £=G/| Z |, whereupon
3

pm TS ot an(1+adh (55)

Tifa—a(l4a2)t

The oscillator strength ratio is thus found to be
determined by the ratio of the exchange integral and
the spin—-orbit coupling matrix element. For the limiting
case of extremely strong spin-orbit coupling x—0 and
p—1. When spin-orbit coupling is weak, ie., a>>1,
then p=4x2

The present treatment differs from the intermediate
coupling scheme for the atomic case in that the diagonal
spin-orbit matrix element for the pure spin-triplet
states vanishes (due to the lower symmetry of the
molecular systems).

In order to obtain an estimate for the singlet-triplet
oscillator strength ratio in XeF,, the matrix elements
G and Z must be evaluated. The spin-orbit coupling
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matrix element Z can be displayed in the form
Z= (‘I’(IE,,’) | H, l‘I’l(sEu”) )
= (‘p(euz)l l d,(l) l ‘I/(eu”)1>’ (56)

while the e, molecular orbitals in XeF, can be repre-
sented by

_[o(52s Xe)} $(20 1) +6(2p. F)
View) = {¢<5pu x)J {¢<2pz Fy)+6(2p F)

where =0.991 and 8=—0.210.

In the calculation of Z only one-center terms are
considered and the contribution of the F atoms is
neglected (8%K1 and £p<Kéxe).

Since o?x1, we set

Z={(¢(5p=Xe) | a. | $(5p, Xe) ).
Now, from Eq. (38) it readily follows that
Z =[ieh2/(2mc)¥]

|

(58)

oV a8 oV g
dx dy

X< $(5p: Xe) $(5p,Xe) >, (59)

Jdy dx

Representing the Xe5p, and Xe5p, atomic orbitals in
terms of spherical harmonics,

¢ (59, Xe) = (1/V2) Rx?(r) [yn(6, ¢) +511(6, ¢) ]
¢(5p, Xe) = (1/v2i) Rx>(r) [yu (8, ) —y11(8, ¢) ],

(60)
it is found that
1eh? ov
= (2me) 2<RX‘,51’(1') r 15; Rx35"(r)>. (61)

AND XePF, 2029

By comparing this result with Eq. (35) we may
express Z in terms of the spin-orbit coupling constant
for the Xe atom

Z=itxo(5p) /2. (62)

A detailed study of the Rydberg states of XeF, indi-
cates that the Xe atomic spin-orbit coupling parameter
does not differ by more than 209, from the atomic
value, £x.(5p) =0.75 eV.

The parameter « is, therefore, approximated by
£=2G/tx.(5p). It will be instructive at this stage to
make a tentative guess regarding the expected value
for the oscillator strength ratio fy/f.. in the XeF, mole-
cule compared to the intensity ratio for the atomic Xe
atom transitions !:5— 1P; and 15— 3P, arising from the
atomic configuration p%. The oscillator strengths for
the two atomic transitions are of the same order of
magnitude. The theoretical treatment of the atomic
cage is quite straightforward leading to an expression
for fi/f— which is determined by the ratio of the ex-
change integral to #x.(5p). However, the exchange
integral involved in the molecular case is expected to
be much larger than in the atomic case, as the former
will involve molecular orbitals constructed from atomic
orbitals characterized by the same principle quantum
number. Hence, the oscillator strength ratio fi/f.- is
expected to be larger in the molecular case. In other
words, the triplet band intensity is expected to be
considerably weaker in XeF, than in the above men-
tioned atomic transition. A reliable evaluation of the
exchange integral G cannot at present be given mainly
due to the lack of knowledge of the atomic wavefunc-
tions of Xe. Using the molecular orbital scheme, the
exchange integral for the transition b—e, is given by

G (big, €u) = (4%/2) {p(2ps F1) (1)¢(5p= Xe) (1) | s | $(2p: F1) (2)$(5pz Xe) (2))
+(4%/2) {6 (2py Fo) (1)$(5pe Xe) (1) | ras™ | ¢(2p, F2) (2)$(5p= Xe) (2) )
+(?/4) Lo (202 F1) (1)9(2p F1) (1) | 1157 | 6292 F1) (2)6(2p: F1) (2) )
— {$(28= F1) (1) 6(2p= F1) (1) [ 7157 | ¢(2p2 F2) (2) (28 F3) (2) )]

+(a%/2) (6(2p. F1) (1) 6 (2, F2) (1) | ris™ | 6(20: F1) (2)6 (2, F2) (2)),

where one- and two-center terms only were considered.
The molecular orbital coefficients for the e, orbital are
A=0.971, ¢=0.559.% The one-center F atom integrals
were estimated using the Pariser-Parr® approximation.
Two-center exchange terms were evaluated using
Slater wavefunctions applying a computer program
supplied by the Laboratory of Molecular Structure of
the University of Chicago. These calculations lead to
G=1.02 eV. The f,/f— ratio is quite sensitive to the
value of x, for x=1, p=35.7, for x=2, p=18 while for

# R. Pariser, J. Chem. Phys. 21, 568 (1953).

(63)

=3, p=36. From the estimate of G we may conclude
that 2”2 so that intensity borrowing from the 1850 &
allowed transition ( f=0.22)? leads to a theoretically
estimated oscillator strength for the corresponding
141 *E, of f=0.007.

VIII. EXPERIMENTAL DETAILS

A. Experimental Transition Intensities

The ultraviolet absorption spectra of XeF,; and Xel,
have been reported earlier.! Curves @ in Figs. 5 and 6
show the absorption spectra from 2000 to 3000 A. The
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XeF, Absorption Curve
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Fic. 5. The absorption spectrum of gaseous XeF; from 2000 to
3000 A&; Curves b and c represent the (Gaussian) components.

molar absorption coefficient was calculated using 3.8
mm as the vapor pressure of XeF; at 25°C® and 2.0 mm
as the estimated vapor pressure of XeF, at 25°C. The
sharply rising portion of each curve, corresponding to
the onset of the A;,—A,, transition in XeF; and the
A1 —E, transition in XeF, at 25°C, was fitted to a
Gaussian function of the form
€= €max €Xpl.— o (F—T0) ). (64)
In Eq. (64), 7 corresponds to the wavenumber at the
peak maximum, ¢% is inversely related to the half-width
of the peak, and emax is the molar absorption at the peak
maximum. This calculated function is shown as curves
b in Figs. 5 and 6. The remaining curve in XeF, was
fitted to a Gaussian (Curve ¢ in Fig. 6) and subtracted
from the total intensity. The remainder of the absorption
intensity was fitted to a Gaussian, Curve d in Fig. 6.
The parameters of the Gaussian analysis are given
in Table VIII. The oscillator strength, when a function
of the form in Eq. (64) is used, is given by

£=7.655X 10 % q503. (65)

From the Gaussian analysis and Eq. (65) we are led
to the oscillator strengths listed in Table VIII. The o

XeF4 Absorption Curve
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F16. 6. The ultraviolet absorption spectrum of gaseous XeFy;
Curves b, ¢, and d represent the (Gaussian) components.
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values for the allowed transitions in XeFs and XeF;
are in reasonable agreement with the half bandwidths
previously determined.?

B. Temperature Dependence of the Intensity of the
XeF; 2330 A Band

The theory of vibronic transitions makes a definite
prediction concerning the temperature dependence of
symmetry forbidden vibronically induced bands. As
indicated by Eq. (10) each normal mode of the re-
quired symmetry contributes a term of the form f;, coth
(hvo/2kT) with the coefficient fy, determined from
perturbation theory [Eq. (10)]. The temperature
dependent factor arises from the integration over the
Boltzmann distribution among the vibrational levels
in the ground state.”19t The 2330 A XeF, band seemed
to be amenable for experimental investigation of the
temperature dependence of the intensity of a vibroni-
cally induced band, as the m, frequency in XeF; is low
(213 cm™) so that a relatively large temperature effect
in this band intensity is expected.

2 T T T T
T+120°C Xef2

z i F1G. 7. The tempera-
§ F ture dependence of the
g | T XeFy 2330-A4 band in-
£ tensity.
(=]

o 1 1 1 1

190 20 2% 2% 270 290

A mp

An all quartz cell containing a pressure of XeF; equal
to its room-temperature vapor pressure was enclosed
in a solid copper block oven. The thermoregulated
copper block was loaded into the water-cooled sample
compartment of a Cary Model 14 Spectrophotometer.
The heating element consisted of approximately 80 Q
of Nichrome wire wound on four insulated rods. The
temperature control-indicator was a Fenwal Model
561 electronic indicating controller using a thermistor
probe and capable of controlling to within 0.05°C. With
the Model 14 Cary an auxiliary slide wire was used
which had an indicating range of 0.0 to 0.2 units of
optical density. The spectra obtained at 30° and 120°C
are shown in Fig. 7.

A Gaussian analysis similar to that described above
was carried out. The molar absorption coefficient at
the peak maximum was 75 at 30°C and 83 at 120°C;
the bandwidth parameter of Eq. (65), ¢, was 0.88X10~7
cm? at both temperatures. The temperature induced in-
crease in the oscillator strength is observed to be
0.1240.049,/deg in the region 30° to 120°C. That
expected on the basis of Eq. (10) (taking ».=213
cm~ ) would be 0.3%/deg for XeF,.
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ELECTRONIC TRANSITIONS IN XeF, AND XeF,

IX. DISCUSSION

The general scheme used for the analysis of the
vibronically induced transitions in the xenon fluorides
leads to the following conclusions:

(1) The oscillator strengths for the vibronically in-
duced transitions in both XeF, and XeF, are about 10-2.

(2) In XeF; the most important mixing of electronic
states is caused by the =, out of plane vibration, while
in XeF, the a5 and &, vibrations should be the most
important. High resolution spectroscopy may be useful
in confirming this conclusion, but possibly dissociation
may mask all the vibrational structure.

(3) A relatively large temperature dependence of
the XeF; vibronically induced band is expected.

At this point it will be useful to consider the approxi-
mations involved in the computation of the intensity
of the symmetry forbidden transitions in the xenon
fluorides.

(1) Only the vibronically induced mixing of excited
states with energies up to 10 eV with the lowest ex-
cited state were considered; the mixing with Rydberg
states in XeF, was not considered as these states are
characterized by a relatively low transition probability.
The mixing of excited states with the ground state in
XeF; was also disregarded. However, the most impor-
tant contributions to vibronic mixing have been in-
cluded in the perturbation treatment.

(2) The effect of the core potential was neglected
and complete screening of the nuclear charges by the
other inner electrons was assumed.

(3) The transition charge density functions have been
represented in the point dipole approximation.

(4) The molecular orbital scheme employed is based
on the extended semiempirical Hiickel scheme. How-
ever, 109% to 209, uncertainty in the LCAO coefficients
will not appreciably alter our conclusions.

(5) The energies of excited states were taken from
the experimental spectroscopic data.

Another important point which has to be considered
is the possibility of configuration changes in the excited
state. The 1Ey, excited state of XeF; may be nonlinear.
For the case of a linear molecule, the Jahn—Teller
theorem is inapplicable to the degenerate lE;, state,
and detailed computations must be carried out to
establish the most stable configuration. In the 1E,
state of the XeF; molecule, the Jahn-Teller theorem
implies that the molecule will distort from the square
planar configuration. The shape of the vibronically in-
duced absorption bands (i.e., their vibrational details
if these can be observed) will be affected by the nuclear
framework distortions in the excited state. However,
the limitations imposed by the Franck-Condon prin-
ciple imply that the total vibronic band intensity has
to be calculated in terms of the ground state nuclear
configurations.

The following conclusions are reached regarding the
spin forbidden transitions in the xenon fluorides:

2031

Tasre VIIL Parameters from Gaussian analysis of spectra.

Band €0 vo 7 bAl

(X)  (liters/mole cm) (cm™1) (cm?)

Xer
1580 12 227 63 291 2.17X10% 0.64 (0.45)
2330 75 43 000 0.88X%107 0.002

Xng
1840 4 800 54 349 5.52X10°% 0.17 (0.22)
2280 398 43 750 1.20X107 0.009

2580 160 38 750 1.34Xx1077 0.003

& The f values are calculated from the o values derived from the profile
analysis. The f values for the allowed transitions previously obtained? are given
in parentheses.

(1) The transition probability for the 14;,— 344, in
XeFyislow ( f<107%) because of symmetry restrictions.
The transition probability for the 4, *F;, transition
is relatively low (f<10™*) as the spin-orbit coupling
matrix element is determined by the fluorine atom
spin-orbit coupling.

(2) In XeF, the intermediate coupling scheme pre-
dicts a relatively large transition probability to the
first excited triplet 8E, states.

The theoretical estimates of the symmetry and spin
forbidden transition strengths for the xenon fluorides
will now be applied to the classification of the weak
electronic transitions in XeF, and XeF;.

The case of XeF, is fairly simple. Since only one weak
band is experimentally observed with f=0.002 and since
the expected singlet—triplet transitions are estimated to
be extremely weak, the observed band is assigned to
the vibronic transition 'A4;,— 'E;,. The calculated
strength of the vibronic transition (f=0.001) agrees
with this assignment and the temperature dependence
study provides additional supporting evidence.

The locations of the singlet-triplet transitions
141, 344, and 14~ 3E;, are not known. These may
be hidden under the low-energy tail of the 1380 A band?
or perhaps under the low-energy tail of the 2330 &
vibronic transition, as indicated by the profile analysis
in Fig. 5. Approximate evaluation of the G(ay,, as)
exchange integral in XeF, in a manner similar to that
described in the derivation of Eq. (63) indicates that
it may be as high as 2 eV. Thus, a fairly large singlet-
triplet separation is expected. However, further experi-
mental studies are required to establish this point.

The case of XeF,; is more complicated. Two weak
bands are experimentally observed with intensities of
f=0.009 and f=0.003. The singlet-triplet transition
mixes with the corresponding singlet-singlet transition,
and its intensity should be enhanced by a heavy atom
effect. In the treatment of the spin forbidden transi-
tions in XeF,, the configuration interaction with higher
1F, states was not taken into account. This is not
serious as these spin-orbit coupling matrix elements
are expected to be mainly determined by the fluorine
atom, and will thus be small. A more serious uncer-
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Tasie IX. Assignment of the forbidden transitions in XeF, and
XeFs.

Molecule A ( A) ASSignment fexberimcntal fest imated
XeF, 2330 14, E, 0.002 0.001
XeF; 2280 14,,%E, 0.009 0.007-0.013

2580 14,,-E, 0.003 0.001

tainty in the numerical computation is that the esti-
mate of the exchange integral [Eq. (69) ]is not reliable.
The calculated value of G=1 eV leads to a singlet—
triplet separation of 2.1 eV as computed from Eq. (51).
If we assign the 2280 A band (f=0.009) to the
'4,,~ 3E, transition, the experimental separation of
the 'E, and 3E, states in XeF, is 1.48 eV. It is instruc-
tive to consider whether the experimental band separa-
tion (6=1.48 eV) and the oscillator strength ratio
( f+/f-=24) can be accounted for by the intermediate
coupling scheme. Using 8 (exptl.) and £x.(5p) =0.75 eV
we get from Eq. (51)G=0.6 eV. Hence Egs. (52) to
(55) lead to fy/f—=1T7 [i.e., f (estimated) =0.013] in
reasonable agreement with experiment.

The results of these calculations show that the
singlet-triplet transition is expected to be about one
order of magnitude more intense than the vibronic
transition. This would indicate that the stronger band
at 2280 A is the singlet-triplet transition 14— 3E, and
the weaker band at 2580 A is the vibronic transition
14, 1E,. Furthermore, such an assignment is consis-
tent with the fact that the intensities of the vibronic
transitions in XeF; and XeF, are expected to be nearly
the same. A summary of the results is shown in Table
IX.

The general criteria used in the assignment of for-
bidden transitions should be briefly considered. The
temperature dependence of transition strengths are, in
principle, a means for determining the vibronic nature
of absorption bands. In this work such evidence was
used in the case of XeF,. But in other cases, experi-
mental difficulties may be considerable. In XeF;, for
instance, the relevant vibrational frequencies are larger
than in XeF, so that the temperature effect is expected
to be smaller. Furthermore, since there are two over-
lapping weak bands, the error in the profile analysis
would be larger than the effect expected. In other cases
the relevant band may lie in the experimentally diffi-
cult vacuum ultraviolet region. It has been suggested,
for instance, that the 1475 & band in the spectrum of
COs; is due to the symmetry forbidden transition to a
bent !B, state.® A temperature dependence of the in-
tensity of the vibronically induced #—w transition in
the NO;~ ion has been reported.® However, no theo-
retical estimate of the expected temperature effect was
made.

#® R. S. Mulliken, Can. J. Chem. 36, 10 (1958).

(1306(1})' P. Smith and C. R. Boston, J. Chem. Phys. 34, 1396
961).

PYSH, JORTNER, AND RICE

The temperature dependence of the intensity of the
xenon difluoride 2330 A band was found to be about
one-half of that predicted theoretically using the har-
monic oscillator approximation. This is not an unprece-
dented discrepancy. The temperature dependence of
the weak 141, 1Bs, band in benzene has very recently
been studied by a shock-wave technique.® The tempera-
ture effect observed in that experiment was also less
than that predicted by the harmonic oscillator approxi-
mation. Thus, the best fit of the experimental data to
the hyperbolic cotangent factor of Eq. (10) is made
with the vibrational frequency set equal to 1000 to
1400 ¢cm~, But it is known that the contribution of
the €, (606 cm™) vibration is a hundredfold more
important than that of the e,(1595 cm™) vibration.®
Similarly, temperature dependence studies of oscillator
strengths in transition-metal complexes have shown
the same trend.> ! The increase in intensity is observed
but is less than that described by the hyperbolic
cotangent factor.

Singlet~triplet transitions may be identified by the
application of the intermolecular heavy atom enhance-
ment effect’® or by the interaction with a paramagnetic
electron acceptor, i.e., oxygen or nitric oxide.?3¢ The
intermolecular heavy atom effect is of little use for the
present case as the enhancement is quite small.’®
Enhancement of spin-forbidden transitions in XeF; and
XeF, by formation of charge-transfer interactions with
O, or NO are also not very promising as the ionization
potentials of the xenon fluorides are quite high.? Be-
sides, chemical decomposition of the xenon fluorides
would probably occur.

An independent confirmation of the assignment of
the forbidden transitions in the xenon fluorides will be
of considerable interest. The most promising technique
seems to be that of electron impact spectroscopy as
recently applied by Kuppermann and Raff to some
simple molecules.® This method makes possible an
unambiguous discrimination between spin-forbidden
and symmetry-forbidden electronic transitions.
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