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The excess electron and hole band structures of naphthalene, anthracene, and several polyphenyls have
been calculated in the tight binding approximation. In addition the anisotropy and the pressure dependence
of the mobility tensor has been calculated in the constant-free-time and the constant-free-path approxi-
mations. The molecular wavefunctions were represented in the LCAQ approximation using Hiickel co-
efficients with the carbon atomic orbitals represented by the best available Hartree-Fock SCF carbon 2p
ground-state function involving a linear combination of four Slater-type functions. By this choice of atomic
orbitals, we hope to account properly for the behavior of the wavefunction at the large internuclear dis-
tances relevant to this problem. All of the above compounds are characterized by a crystal structure con-
taining two molecules per unit cell. There are, therefore, two bands for both the electron and the hole cases.
The bandwidths are calculated to be of the order of 0.1 eV. In the a~! and b~ directions, the symmetric
and antisymmetric bands are degenerate at the zone edge. The electron bands are appreciably split in the
¢! direction.

Although there is no attempt to make absolute calculations of the mobility, the experimental data seem
to be in adequate agreement with the scattering models considered. Inferences can be drawn which suggest
that further understanding of the mobility will arise from a detailed investigation of the interaction of the

charge carriers and the intermolecular and intramolecular vibrations.

I. INTRODUCTION

NTEREST in the electronic properties of organic
molecular solids has steadily increased in the past
decade. The major lines of investigation have fairly
clear origins. For example, studies of the temperature
dependence of the conductivity of aromatic and poly-
meric solids have been stimulated in part by the sug-
gestion of Szent-Gyorgi' that macromolecules may
play a role in electron transfer reactions of biological
importance. Similarly, studies of the spin resonance
spectra, conductivity, and related properties of charge-
transfer complexes? owe much to Mulliken’s theory of
charge-transfer spectra® and to the observation that
charge-transfer complexes may form in biological sys-
tems.? Finally, stimulated by the recent successes of
solid state theory, important investigations of energy
transfer, photoconductance, exciton spectra, etc., in
molecular crystals have been made.’ Despite great ex-
perimental difficulty, the following has been learned:

(a) The energy gap for conductivity in molecular
aromatic crystals is quite large, typical values being
of the order of 1 to 3 eV. The magnitude of the energy
gap depends on the size of the aromatic molecules, the
pressure, and the spectroscopic ground state.®

* Gustavus F. Swift Fellow.

L A. Szent-Gyorgi, Science 93, 609 (1941).

2 See, for example, G. E. Blomgren and J. Kommandeur, ].
Chem. Phys. 35, 1636 (1961).

3R. S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952).

4 See, for example, S. P. McGlynn, Radiation Res., Suppl. 2,
300 (1960). B

® See, for example, K. J. Laidler and D. A. Ramsey, Can. J.
Chéem. 36, 1 (1955).

¢ H. Inokuchi and H. Akamatu, Solid State Phys. 12,93 (1961).

(b) Photoconductivity may be induced at a thresh-
old energy much less than the ionization energy of the
organic molecule, even when corrections for crystal
polarization are made.” One possible interpretation of
the observed facts is that the free carrier is generated
by interaction between two excitons.® Recent experi-
mental work by Silver confirms this mechanism for
the bulk generation of carriers.” Generation of carriers
at the surface of a crystal may occur by a different
mechanism.

(c) It is generally true that charge-transfer com-
plexes have much higher electrical conductivity than
ordinary molecular solids.®

(d) Evidence is accumulating that triplet excitons
can migrate more freely than heretofore supposed and
energy transfer via triplet excitons has been con-
clusively demonstrated.!

(e) The best available evidence concerning electron
and hole mobilities gives the order of magnitude of the
mobility (in anthracene) as 1 cm? sec? V™! at room
temperature, and also indicates that the temperature
dependence of the mobility is of the form T-*, with
1<n<2.t

7C. G. B. Garrett, Radiation Res., Suppl. 2, 340 (1960).

¢S, Choi and S. A. Rice, Phys. Rev. Letters 8, 410 (1962);
J. Chem. Phys. 38, 366 (1963).

9 M. Silver, D. Olness, M. Swicord, and R. C. Jarnagin, Phys.
Rev. Letters 10, 12 (1963).

10 (3) R. W. Brandon, R. E. Gerkin, and C. A. Hutchison, Jr.,
J. Chem. Phys. 37, 447 (1962); (b) G. C. Nieman and G. W.
Robinson, sbid., p. 2150.

u (a) R. G. Kepler, Phys. Rev. 119, 1226 (1960); (b) R. G.
Kepler in Organic Semiconductors Conference, edited by J. J.
Brophy and J. W. Buttrey (The Maemillan Company, New
Yorﬁ, 1962), p. 1.
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Theoretical interpretations of the experimental facts
cited have been sparse. Concerning Item (a), Evans
and Gergely,2 using a molecular orbital (MO) calcula-
tion, estimated the energy gap in polypeptides to be
about 3 eV. However, their treatment of the electron
delocalization via intermolecular hydrogen bonding is
open to criticism, as it is well known that the MO
approach breaks down for distances larger than about
one and one-half times the intramolecular separation.
These calculations should be made in the tight binding
approximation, as is used in the present paper. Other
attempts to discuss the dark conductivity of molecular
solids have used very crude models and are not, in our
opinion, satisfactory.* The only detailed quantum-
mechanical calculations concerned with Item (b) are
due to Choi and Rice who demonstrated that the two
exciton mechanism cited was consistent with all avail-
able data.® Indeed, the recent experiments of Silver’
provide quantitative verification of the Choi~Rice
theory. Theoretical work connected with (c¢) and (d)
has been primarily concerned with interpretation of
electron spin resonance spectra. Finally, the interpre-
tation of Item (e) has been attempted by LeBlanc.!

It is clear that a consistent interpretation of Items
(a) to (e) would require a complete band-structure
calculation, including the consideration of exciton
states and varying lattice states. It is the purpose of
this paper to take a first step in this direction by con-
sidering the band structure appropriate to an excess
electron and to a hole in several organic molecular
crystals. Only from a consistent discussion of the
electronic band structure can all the relationships
between Items (a) to (e) be revealed.

II. GENERAL REMARKS

The method of calculation adopted in this paper was
introduced by LeBlanc* and also used recently by
Thaxton ef al.'®* While we confirm a number of LeBlanc’s
physical deductions, it can be seen in the following that
the details of his calculation are open to criticism.
LeBlanc assumed that the anthracene crystal, with
two molecules per unit cell, could be related to a hy-
pothetical crystal with one molecule per unit cell. This,
however, is not possible. Corresponding to the two
molecules per unit cell, there are two bands (arising
from the symmetric and antisymmetric combinations
of molecular wavefunctions in a cell) for the electron
and two for the hole, whereas in the LeBlanc treatment
there is only one for each. These two bands have
interesting properties and are discussed in detail later.

The calculation of the excess electron or hole band
energies requires knowledge of the detailed behavior of

2 M. G. Evans and J. Gergely, Biochem. Biophys. Acta 3,
188 (1949).

3 D. D. Eley, Research 12, 293 (1953).

140, H. LeBlanc, Jr., J. Chem. Phys. 35, 1275 (1960).

& G, D. Thaxton, R. C. Jarnagin, and M. Silver, J. Phys. Chem.
66, 2461 (1962).
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the molecular wavefunctions at large distances. To
obtain numerical results, LeBlanc used 3.08 A1 as the
value of the orbital exponent « in a Slater-type wave-
function for the carbon 2p atomic orbitals from which
the molecular wavefunctions are constructed. We shall
show that this value seriously underestimates the
magnitude of the tails of the wavefunctions, and thus
the use of a single Slater orbital is inappropriate.
Clearly, the effective nuclear charge acting on an
electron in a neutral atom or molecule decreases
toward unity with increasing distance. The question
of a proper representation of atomic and molecular
wavefunctions at large distances is, in fact, not new.
In 1931 Slater and Kirkwood!® showed, in a classic
calculation of the polarizability of the helium atom,
that considerable improvement in quantities dependent
on the tail region of the wavefunction can be achieved
by using Slater-type wavefunctions with the effective
nuclear charge Z=1.0 and the effective quantum
number #=0.745 (instead of the values Z=1.69 and
n=1 obtained from the simple variational treatment).
The discrepancies between the more recent theoretical
calculations of the quadrupole moments of simple
polyatomic molecules?? and the meager experimental
datal® are probably mainly due to the approximate
representation of the molecular orbitals by linear com-
binations of Slater atomic orbitals (one on each atom),
thereby seriously underestimating the charge dis-
tribution at large distances. A knowledge of the be-
havior of molecular wavefunctions at large R is also of
great importance in current theoretical and experi-
mental problems among which are the treatment of
triplet excitation migration,’® and the calculation of the
Mulliken-type intermolecular charge-transfer inter-
actions.® Clearly, the use of SCF atomic wavefunctions

F16. 1. Schematic representation of the unit cell showing the
approximate orientation of the two molecules in the unit cell.

18 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931;.

17 A. Duncan and J. Pople, Trans. Faraday Soc. 48, 217 (1953).

18 J. O. Hirschfelder, Cp F. Curtiss, and R. B. Bird, Molecudar
Theory of Gases and Liguids (John Wiley & Sons, Inc., New
York, 1954), p. 1033.
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for the construction of the molecular orbitals in the
LCAO scheme should lead to much more accurate
predictions. By the choice of these SCF atomic orbitals
we hope to account properly for the behavior of the
molecular wavefunctions at the large intermolecular
distances relevant to the problem considered in this
paper.

We find that the excess electron and hole bandwidths
are very sensitive to the form of the wavefunctions and
our calculations lead to bands about five times wider
than found by LeBlanc. From the band structure thus
obtained the mobility tensor is derived using primitive
scattering models. We use these results to crudely
account for electron and hole mobilities in aromatic
crvstals.

IIT. METHOD OF CALCULATION

All of the compounds discussed in this paper have
crystal structures”® described by the symmetry Col=
P,/a. This structure has a monoclinic unit cell con-
taining two molecules, one at the corner and the other
in the center of the ab face. A schematic drawing of the
unit cell is displayed in Fig. 1. Because there are two
molecules per unit cells, we expect the electronic bands
to have two branches corresponding to the symmetric
and antisymmetric combinations of the basic molecular
wavefunctions within the unit cell. We assume in the
following that the concentration of excess electrons
or holes is very small so that a one-particle treatment
may be used. This condition is satisfied in all experi-
ments conducted to date. Inasmuch as the binding
energy of the molecular crystal is very small relative to
the excitation energies of the various excited electronic
states of the molecule (and crystal), the tight binding
approximation may be employed. In this method one-
electron crystal wavefunctions (unnormalized) are
constructed from linear combinations of one electron
molecular wavefunctions. The possible linear combina-
tions, adapted for the translational syvmmetry of the
crystal, are

¥, (k) =t§exp(ik- r)[e(r—r)£Co(r—r,—8)], (1)

where the index / labels the unit cells and 0<I< N, N is
the number of unit cells (one-half the number of
"molecules), the vector r; locates the corner of the unit
cell, 8 is the vector from the corner to the center of the
ab face and ¢, § are the wavefunctions of molecule at
the corner and the center of the unit cell, respectively.
The constant C is a phase factor. It is clear that ¢
and 6 are identical except for orientation in space.
E, (k) is a double valued function corresponding to the
two bands mentioned above. This behavior is to be
expected since the two molecules of the unit cell are
distinguishable (by virtue of orientation).

1 A, 1. Kitalgorodskif, Organic Chemical Crystallography (Con-
sultants Bureau, New York, 1961).
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The phase factor C may be obtained from the
condition that ¥, (k) and ¥_(k) be chosen to diago-
nalize the Hamiltonian. The general method of obtain-
ing symmetry-adapted wavefunctions can be found in
standard group theoretical textbooks.® It is found
that C=exp(ik-B), whereupon Eq. (1) becomes

aN_1
T (k)= (D) 'exp(ik-r)o(r—r), (2
=0

where the index / labels the molecules which are now
numbered so that the molecule at the corner of the cell
has an even index while the one at the center of the cell
has an odd index. Such a notation is less cumbersome
than the customary notation where a double index
notation is used to designate the unit cell and the
molecule in the unit cell. Thus, in Eq. (2) the vector 1,
is the vector to the center of each molecule, and one
needs to recall that ¢(r—r,;) has a different orientation
in space depending on whether / is even or odd. LeBlanc
and Thaxton ef al. used only the symmetric function
W, in their calculations.

The Hamiltonian appropriate to an excess electron
(or hole) has the form

H=(—#/2m)V+V(r), (3)

where V(r), which determines the crystal field, will be
approximated by

V(r)=2_Va(r—r,) €Y

with V, the Hartree potential of an isolated neutral
molecule. For an isolated molecular ion the Hamil-
tonian is

Hp=(—/2m) VP4V, (5)

from which it follows that
o= [ 4*Hopdr (6)

is the energy of the isolated negative ion relative to
infinite separation of the electron and the neutral
molecule. The energy is a double valued function of k
and is calculated from

E+(k) = /‘I/*4~H\I/+dT / /\p*+‘P+dT,

E(k) = f v*_HY_dr / / v v dr, (7

after simplification by the use of several systematic ap-
proximations. With the neglect of three-center inter-
molecular integrals and overlap integrals multiplied
by e, or e;, the substitution of Egs. (3), (4), (3) and

%S, L. Altman in Quantum Theory, edited by D. R. Bates
(Academic Press Inc., New York, 1963), Vol. 2, p. 143,

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1686 KATZ, RICE,

(6) into Eq. (7) leads to
E.(k) =eo+Z'en+;(d:1) Lcos(k-1i)er, (8)

where the sums are taken over all molecules except
the one with center located at the origin. Note that we
neglect only those three-center integrals whose centers
lie on three different molecules. All other three-center
integrals are calculated and included in our treatment.
The new symbols appearing in the above equation are
defined as follows:

= [¢*Hgdr, 9)
o= j¢*(r> Va(r—r.)(r)dr, (10)
e,=/¢*<r—r,) Vir—r)é(Ddr.  (11)

In order to discuss the k variation of the energy
bands, it is only necessary to examine the last term in

Eq. (8):
B (R)=E (k) —e— Y en=2 (1) cos(r-k))e,.
n !

(12)

We have calculated all the integrals among the mole-
cules on the corner and side centers of the unit cell.
This is equivalent to the calculation of the integrals
between the molecule in the position numbered 1 in
Fig. 2 and the molecules in Positions 2 through 13.
Because of its location, we have also included Molecule
14 in the calculation. Neglecting the interactions
with other molecules (the nearest neglected molecule
has no atoms closer than 7.5 A) the energy dependence
onkis

E. (k) =2E, cos(k-c)+2FE;cos(k-b)
+2E[cosk+ (b-+c)+cosk- (b—c) ]
+2E5 cos(k-a)+2E; cosk: (c+a)
+2E;[cosk: (a+Db) +cosk: (a—b)]
+2E5 cosk+ (a+b+-¢) +cosk: (a—b+c) ]
+2E[cosk-3(a+b)+cosk-i(a—b)]
+2E[cosk-[3(a+b)4-c]+cosk:-[3(a—b)+c]}
+2F; {cosk-[3(b—a)+c]+cosk-[c—1(a+b) ]}
+2E[cosk: (c—a)
+2E[ cosk+ (b—a+¢) +-cosk- (¢c—~a—b) ]
+2E[cosk-4(a+3b)+cosk-3(a—3b)], (13)

where the 13 E; are the resonance integrals between
Molecules 1 and ¢ such as given by ¢; in Eq. (11).
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The band can be readily visualized if we consider
now the special cases when Kk is parallel to a reciprocal
lattice vector a~1, b= or ¢ L

E/ (k|| a*)=A4+4Bcos(k-a)4-C cos(k-a/2), (14)
E/(k || b™) =D+E cos(k-b)+F cos(k-b/2)

+ Hy cos(k-3b/2), (15)
E/(k]lc)=G+H cos(k-c),
E_'(k|| ¢t =I+J cos(k-c), (16)

where we have defined 4 through J by the relations

A=2(Es+Es+-2E,),

B=2(Es+ Es+2E+-2Es-+ En+-2Ers),

C=4(Ey+ Ew+ En+Ew),

D=2(Ey+ Es+ Est+ Er),

E=2(E;+2E+2E+2E+2Ey),

F=4(Es+EwtEn),

G=2(Es+ Es+2E+2E+2Ey),

H=2[ Ex+2E+ Es+2Fg+ Eig+2Ei3t+2( EvotEu)

I=2(E3+ Es+2E;—2FE,—2Ey),

J =2[ Ey+2Es+ Es+2Es+ Eip+2Ei—2( Evo+ En) .
(17)

It might seem, from Egs. (14) and (15), that E(k)
has a periodicity of 4ra~' and 4wb~l. It should be
noted, however, that this is not so by virtue of the
relations

¥y (k+-2ra™) =v_(k),

V_(k+4-2ra) =¥, (k), (18)
v, (k-+2rb) =¥_(k),
V_(k+27b71) =¥, (k), (19)

and when k==a"1 or k==b™., from Eq. (1) we see

N1

W, (K) = - exp(ilm) [¢r+exp(i/2)6,]=¥_*(K), (20)
1=0

which proves ¥, and ¥_ have the same energy at ra™*

and wb~!, Thus in going from the first to the second

Brillouin zone ¥, and ¥_ cross and interchange roles

in the a~! and b~ directions, and there is therefore

the expected periodicity of 2ra~ and 2xb~!. The

16, 2. Schematic repre-
sentation of the unit cell
showing the numbering of
the molecules used in this
paper.
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second half of the band calculated by LeBlanc! is

the second band mirrored through an axis at 2ra—" or
2zbL,

IV. NUMERICAL CALCULATIONS

The first step in making numerical calculations from
the equations of Sec. II is the selection of a suitable
molecular wavefunction for the molecular ion. The
simplest approximation to the molecular wavefunction
would place the extra electron in the first unoccupied
molecular orbital of the neutral molecule and describe
the electronic motion as if the interaction between
electron and molecule caused no change in the orbital
in question. Thus, Balk et al.** have shown that the
properties of isolated negative aromatic ions can be
understood if the orbital occupied by the excess electron
is described by the Hiickel coefficients characteristic
of the first unoccupied orbital or the neutral molecule.

It is interesting to note that Hiickel functions are not
unreasonable approximations to self-consistent field
functions with differential overlap neglected. The Balk
approximation rests on two considerations:

(a) Pople*® proved that the Coulson and Rushbrooke
theorem?® remains valid in the more general SCF
scheme, i.e., the r electrons are uniformly distributed
in the ground state and in singly excited states.

(b) Given the uniform charge distribution cited, it
may be guessed that the addition of one electron will
not grossly change the charge distribution of the
original electrons. Certainly this will only be even
approximately true if the r-electron system is large.

In the mononegative ion, excitations are then de-
scribed in terms of promotion of the extra electron, the
remaining system being considered to be the original
molecule in the ground state or in an excited states.
It should be noted that even if the suppositions made
were exactly true, the neglect of exchange between
the extra electron and the core electrons prevents the
orbital described from becoming the one electron self-
consistent field orbital.

It is clear that the Balk approximation will be best if
the neutral core remains the same and only excitations
of the extra electron are considered. Indeed, these are
just the terms considered in our present calculation of
E(k). Before proceeding, however, it is necessary to
remark that the Pariser-Parr or Pople theories of
hydrocarbon spectra fail in the calculation of ionization
energies although they are very successful in describing
electronic spectra. Hoyland and Goodman® have

2P, Balk, S. De Bruijn, and G. J. Hoijtink, Recueil Trav.
Chim. Pays Bas 76, 860 (1957).

22 (3) J. A. Pople, Proc. Phys. Soc. (London) A68, 81 (1955);
(b) C. A. Coulson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 36, 193 (1940).

2 (a) J. R. Hoyland, Thesis No. 61-6790, University Micro-
films, Inc., Ann Arbor, Michigan, 1961. (b) J. R. Hoyland and
L. Goodman, J. Chem. Phys. 36, 12 (1962).
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traced the difficulties to three factors:

(a) The effect of m-electron ionization or capture on
the framework of the molecule;

(b) The changes in 7 basis functions upon w-electron
ionization or capture;

(c) Changes in the w-electron molecular orbitals
through construction of a new Hartree-Fock Hamil-
tonian for the resulting ion and subsequent reminimi-
zation of the energy.

By combining the Pariser—Parr formulation of =
electron theory* with Roothaan’s self-consistent field
theory and deformation of orbital assumptions, ex-
cellent agreement between computed and measured
ionization potentials is obtained. The wavefunctions
also differ from those characteristic of the Hoijtink
approximation.

Because of the importance of the choice of the
molecular wavefunctions, we have made calculations
using both the Balk approximation and the wave-
functions computed by Hoyland and Goodman when-
ever possible (naphthalene and anthracene). In general,
it is found that there is little difference between the
results obtained from the two different wavefunctions
(see Tables II through V). This fact supports the
general conclusions drawn from the simpler wave-
functions used for all compounds considered in this
papet.

At this point it is convenient to consider the ap-
proximations involved in obtaining numerical results
from Eq. (12). The molecular orbitals of a positive or
negative ion are approximated by a linear combination
of neutral carbon 2p, wavefunctions #;

b= Z.Cm“i, (21)
14

where the C,; are Hiickel coefficients without overlap
or the coefficients given by Hoyland and Goodman.?
As already mentioned, the use of single Slater orbitals
characterized by a single orbital exponent is inap-
propriate. The Slater-type function has only one ad-
justable parameter and this is chosen to minimize the
energy of the atom. Since the tail (large R) of the wave-
function makes only a small contribution to the energy
of the atom, it is very poorly represented by the usual
Slater function. The integrals of greatest interest in the
present calculation involve atoms centered on different
molecules, and it is the large R portion of the wave-
function which is of interest to us. One expects that the
Hartree~-Fock wavefunction would be better every-
where, and in particular better in the tail.

One possible method to obtain a reasonable approxi-
mation to the tail of the wavefunction is to try to fit a
single Slater-type function to the atomic SCF functions,
adjusting the orbital exponent to give the best fit at

2 R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 (1953).
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large distances. However, using the best available
neutral carbon atom SCF 2p function we found that
a good fit cannot be obtained in the region 1-4 A using
a wavefunction characterized by a single orbital ex-
ponent. Since the resonance and overlap integrals are
very sensitive to the detailed form of the wavefunction,
we used in our calculations the best available carbon
atom wavefunction represented in the form of a linear
combination of four Slater wavefunctions®

ui(r)=(n;r) Zlai(a.?/r)% exp(—ayr). (22)

Here n; is the unit vector defining the direction of the
2p orbital. The coefficients a; and orbital exponents a;
are those given by Clementi and Roothaan.?

The potential energy of the molecule is a linear
combination of neutral-carbon-atom potentials. These
are derived from classical electrostatic arguments in
the spirit of the Hartree method by averaging over the
four (2s, 2p., 2p,, and 2p.) electrons. We thus ap-
proximate the potential energy of a neutral molecule by

Va=2_Vs, (23)

where V; is the Goeppert-Mayer and Sklar®*® potential
of Carbon Atom 4.
Using Eq. (22) for #; we obtain

P aa b %a.005 0\ 1
Vi= -— _<Z M) Z exp( — 26“1’,‘>
k!

ri\%e: B
akak%alaﬁ
B

where ﬁ“:%(ak-i-az) .
On expanding the intermolecular integrals using
Eqs. (22) and (23) one finds

o= [6(DV(D)e(r—1)dr

(3(Bur) 3 +4(Buri)*+6(Birs) +41,  (24)

=X CaiCor [l =1 Vi (1= T) (£ 11— 1)

i,75m
(25)

LeBlanc and Thaxton ef ¢l. neglected those terms in the
sum where ¢ does not equal m. In other words, they
only calculated two-center integrals and neglected not
only those three-center integrals in which the centers
are on three different molecules (in which case since
all the interatomic distances are very large these are
truly negligible terms) but also those terms in which
the potential and one wavefunction are on the same
molecule, while the other wavefunction is on a different
molecule. Since the nearest interatomic distance is
only 1.4 A these terms are not small, and there are many

% E. Clementi and C. C. J. Roothaan, Phys. Rev. 127, 1618
(1962).

( 26 M. Goeppert-Mayer and A. L. Sklar, J. Chem. Phys. 6, 645
1938).
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of them. As can be seen from Table II these integrals
change the energy by about 25%. Both the two and
the three-center integrals were calculated numerically
using an IBM 7090 computer. The two-center integrals
we simplified by expanding in the form

n,--R,--) (n'R,)
____n,—]( ]Iaii? 1 7 Sij

(ns-Ryj) (n;-Ryy)
where n; and n; are the unit vectors defining the direc-

tion of orbital #; and #;, R;; is the vector from Atom ¢
to Atom 7, and

+21r‘1[(n,--n,-) - ]Cﬁ, (26)

Si= [ ra; cosy: cos'iji[Zalaz5’2 exp{—ari) ]
l

X[ man®? exp(—amr;) Jdr,

C,','= frm- siny; sin'y;Vi[Zazaz5/2 EXp( _alri)]
1
XD tmen®? exp(—amr;) Jdr, (27)

where v; and v; are the angles r; and r; make with R;;.
Both S;; and C;; are cylindrically symmetric and can
therefore be reduced to a double integration. By a
careful choice of coordinates, one of the integrations
can be performed analytically leaving only a one
dimensional integration. All integrals involving co-
ordinates of atoms closer than 10 A were included.
However, none of the above simplifications were pos-
sible with the three-center integrals. These were per-
formed by a three-dimensional Gaussian integration
using 6000 points. Only those integrals in which the
potential and wavefunction on the same molecule
were on near-neighbor atoms were performed, and of
them, only those where the distance between the two
wavefunctions was less than 6.5 A. Even with these
limitations several hundred such integrals had to be
performed for each compound. Such a program re-
quires approximately 1 h of computing time on an
IBM 7090. In contrast, all the two-center integrals
for a compound are calculated in 1 min. It should be
noted, however, for the case of atomic orbitals repre-
sented by a single Slater-type function, that the
equations given by LeBlanc and also used by Thaxton
et al. for S;; and C;; are incorrect. For this case Eq.
(27) is reduced to the form

(1/1) S5;(1) = (— e/ 218) e=t( 1386+ 138646932

—1596£54-53684),
(1/21) Cii(£) = (— e/ 2°83) e~ (13861386t
—2120241072), (28)

where t=aR;;.
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Tasre I. Crystal constants.

a b c 8
Naphthalene®» 8.235 & 6.003 A 8.658 & 122°55'
Anthracene®® 8.561 A 6.036 A 11.163 A 124°42'
Bipheny]®e 8.12,£0.02 & 5.63;+0.01 A 9.513+0.02 A 95.1°+0.3°
Terphenyl2ed 8.08 A 5.60 & 13.59 & 91°55’
Quaterphenyl?e 8.05+0.02 A 5.55+0.02 & 17.81+£0.05 A 95.8° (approx.)
Terphenyl?t 8.14 4 5.64 A 14.10 & 105°

(Hertel and Rémer)

When a standard approximation such as the Mulliken
approximation,”

corner of the unit cell, and the other 13 neighbor mole-
cules (Fig. 2). We have thus included all integrals
between molecules containing carbon atoms closer

=1

. $:9=25:i(6’+97), (29) " than 7.5 & from each other. For naphthalene, anthra-
is used where cene, and biphenyl we give the results of calculations
including the contribution of the three-center integrals
Siy= / Gipidr; (30)  comparing them with computations where only the
two-center integrals were considered. Calculations
or, if the Sklar approximation® were also performed using Hoyland and Goodman’s
) coefficients® instead of Hiickel coefficients® for the

b= Supr* (31)

is employed, where ¢r is a function centered at a
point F located midway between points ¢ and j, poor
numerical predictions of the three-center integrals are
obtained. The approximations mentioned (Mulliken
and Sklar) are useful only when the three centers are
not far apart and when the potential is a slowly de-
creasing function of distance.

V. NUMERICAL RESULTS FOR BAND STRUCTURE
CALCULATIONS

The crystal data for the aromatic compounds® used
in our numerical calculations are listed in Table I. The
experimental data are best for napthalene, anthracene,
and biphenyl. The naphthalene and anthracene data
are accurate to at least 0.02 & as can be inferred from
the reported standard deviation in the atomic co-
ordinates. The available data for terphenyl and quater-
phenyl are very poor, certainly no better than 0.4 A.
The claimed experimental accuracies are listed in
Table 1. However, as can be seen from the two sets of
data given for terphenyl, the differences between the
measurements of different investigators are great.
We have used the first set of data including atomic
coordinates given by Pickett.”

In Table II we display the resonance integrals
calculated between the molecule at Position 1, the

27 R. S. Mulliken, J. Chim. Phys. 46, 497 (1944).

28 A, L. Sklar, J. Chem. Phys. 7, 984 (1939).

# (a) D. W. J. Cruickshank, Acta Cryst. 10, 504 (1957); (b)
V. C. Sinclair, J. M. Robertson, and A. M. Mathieson, ibzd. 3,
251 (1950); (c) A. Hargreaves and S. Hason Rizvi, ibid. 15, 365
(1962); (d) L. W. Pickett, Proc. Roy. Soc. (London) A142, 333
(1933); (e) L. W. Pickett, J. Am. Chem. Soc. 58, 2299 (1936);
(f) E. Hertel and G. H. Romer, Z. Phys. Chem. 22, 292 (1933).

two-center integrals.

For a proper comparison of our results with those of
LeBlanc and of Thaxton e al., we also include the
case where the carbon atom wavefunctions are char-
acterized by a single Slater-type exponent, o= 3.08 A,
The difference between these values and those of
LeBlanc is due to the use of the corrected Eq. (28) and
to the inclusion of all integrals between atoms from
5.0 to 7.5 A apart, which they neglected. In Table III
we present the intermolecular overlap integrals calcu-
lated using the SCF functions and also for a single
Slater-type function with «=3.08 -1, For the case of
anthracene we have also included the results for a
single Slater-type function with =3.072 A1 to permit
correction of the overlap integral calculated by Mur-
rell®! who included only those atom pairs 4.5 A or less
apart. These results demonstrate the effect of using the
SCF wavefunction, thus accounting properly for the
tail of the molecular wavefunctions. In Figs. 3 to 8 we
have plotted the excess electron and hole band structure
in the reciprocal crystal axis direction for naphthalene,
anthracene and biphenyl, including the contribution of
the three center integrals. We have not plotted the
shapes of the bands for any of the other cases; however,
these can be easily calculated using Eqs. (14), (15),
(16), and (17) and the data given in Table II. In
Table IV we display the values of the widths of the
bands in the a1, b, and ¢! directions. Whenever the
bands in the ¢! direction are split we have also given
the appropriate splitting.

% Dictionary of Values of Molecular Constants, edited by C. A.
Coulson and R. Daudel (Centre de Chemie Théorique de France,

Paris), Vol. L.
3 J. N. Murrell, Mol. Phys. 4, 205 (1961}.
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TaBiE II. Intermolecular resonance integrals in units of 104 eV.»

Two-center integrals only

Molecule Naphthalene Anthracene
number Naphthalene Anthracene Biphenyl Terphenyl Quaterphenyl (H. and G. coefficients)
Hole
2 ~0.33 —0.30 —81.61 —46.10 —29.95 —0.31 —0.27
3 —96.46 —111.85 65.35 77.82 89.43 —96.90 —104.21
4 -1.76 -0.17 0.15 0.08 0.04 —-1.75 —-0.15
5 0.27 0.20 —0.51 —0.51 —-0.41 0.27 0.02
6 8.22 —3.53 -2.11 0.00 0.00 8.12 —-3.69
7 0.32 0.03 0.00 —0.01 —12.17 0.32 0.00
8 0.05 —0.03 —0.10 0.00 0.01 0.05 —0.03
9 29.26 —85.45 15.18 ~2.85 12.17 27.39 —80.00
10 —33.51 29.89 26.44 0.01 1.06 -~32.20 24.91
11 ~0.02 0.01 —0.01 15.34 12.61 —0.02 0.01
12 0.00 0.00 0.00 —1.08 —0.55 0.00 0.00
13 0.00 0.00 0.00 —0.07 —0.03 0.00 0.00
14 0.04 0.01 0.00 0.00 0.00 0.04 0.01
Electron
2 —5.27 0.19 —3.65 4.07 5.53 —4.91 0.21
3 21.77 67.04 90.57 124.95 154.49 23.82 70.29
4 0.16 -0.03 0.00 0.03 0.03 0.20 —0.02
5 0.00 0.25 0.21 0.43 0.37 —0.02 0.23
6 1.92 —0.80 0.61 0.00 0.00 1.78 —0.54
7 ~0.05 0.04 0.00 0.10 0.12 —0.05 0.02
8 ~0.03 0.02 0.02 0.00 0.00 —0.03 0.01
9 —54.00 —115.56 —48.39 —68.73 —65.72 ~55.19 —115.82
10 —3.44 2.25 —11.91 —0.05 —0.04 —2.66 1.20
11 -0.03 0.02 —-0.07 —8.07 —8.35 -0.02 0.02
12 0.00 0.00 0.00 0.37 0.22 0.00 0.00
13 0.00 0.00 0.00 0.02 0.01 0.00 0.00
14 0.01 0.00 0.01 0.02 0.02 0.01 0.00
Two- and three-center integrals Two-center integrals only
Molecule Naphthalene Anthracene Biphenyl Terphenyl
number Naphthalene Anthracene Biphenyl a=3.08 a=23.08 a=3.08 a=3.08
Hole
2 —0.36 —0.47 —104.12 —-0.07 0.07 —12.24 —7.01
3 —120.97 —132.44 78.01 —14.19 —20.71 10.08 13.92
4 —1.76 —0.17 0.20 —0.01 0.00 0.00 0.00
5 0.27 0.20 —0.51 0.00 0.00 0.00 0.00
6 11.18 —4.39 —-2.72 0.20 —0.09 —0.03 0.00
7 0.32 0.03 0.00 0.00 0.00 0.00 0.00
8 0.05 -0.03 -0.10 0.00 0.00 0.00 0.00
9 39.30 —93.05 19.65 —0.24 —18.35 0.59 —-1.51
10 —~42.50 36.61 32.88 —3.90 4.15 2.55 0.00
11 —-0.02 0.01 —-0.01 0.00 0.00 0.00 1.59
12 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.04 0.01 0.00 0.00 0.00 0.00 0.00
Electron
2 —5.60 0.15 ~1.23 —1.20 0.38 —0.83 0.73
3 22.77 71.61 100.49 4.84 15.63 15.32 22.58
4 0.16 —-0.03 0.00 0.00 0.00 0.00 0.00
5 0.00 0.25 0.21 0.00 0.00 0.00 0.00
6 3.51 —0.74 0.87 0.06 —0.03 0.01 0.00
7 —0.05 0.04 0.00 0.00 0.00 0.00 0.00
8 —0.03 0.02 0.02 0.00 0.00 0.00 0.00
9 —~52.46 —124.79 —-59.11 —13.46 —24.82 —11.40 ~16.77
10 —-3.37 2.48 —12.99 —0.68 0.67 —1.42 0.00
11 —0.03 0.02 —0.07 0.00 0.00 0.00 —0.99
12 0.00 0.00 0.00 0.00 0.00 0.00 0.01
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.01 0.00 0.00 0.00 0.00 0.00 0.00

# Unless otherwise noted the entries in these tables refer to the case where the atomic wavefunction is represented as a sum of the four Slater functions and the
molecular wavefunction is constructed of Hiickel orbitals. When the Hoyland and Goodman wavefunction is used, the column is headed: H. and G. coefficients.
‘When only a single Slater function is used for the atomic orbital, the appropriate value of c is entered at the head of the column,
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TasrE III. Overlap integrals in units of 104,

Molecule number Naphthalene Anthracene Biphenyl Terphenyl Quaterpheny!
Hole

2 —0.31 0.76 42.63 23.79 14.85

3 51.14 51.84 —34.07 —36.78 -39.25

4 2.36 0.26 —0.18 —0.08 —0.04

5 ~0.30 ~0.24 0.67 0.65 0.56

6 —8.20 3.33 2.48 0.00 0.00

7 —0.48 —0.06 0.04 0.01 0.01

8 —0.06 0.03 1.78 0.00 0.00

9 —24.17 34.98 -12.21 -1.02 4.12

10 21.46 ~17.27 —18.34 —-0.01 -0.01

11 0.04 —-0.02 0.02 —10.24 —17.50

12 0.00 0.00 0.00 1.22 0.64

13 0.00 0.00 0.00 0.11 0.06

14 —-0.07 —0.03 0.00 0.00 0.00

Electron

2 1.45 1.04 1.91 9.92 —2.13

3 —8.63 ~25.73 —43.31 —0.26 68.09

4 -0.20 0.04 ~0.03 0.17 —0.06

5 0.08 —0.22 —0.30 0.04 —0.66

6 —-1.71 0.62 —0.62 0.00 0.00

7 0.08 —0.03 —~0.03 0.01 -0.21

8 0.03 —0.02 ~0.02 0.00 0.00

9 18.84 46.84 18.35 33.34 24.27

10 1.62 —~0.68 7.07 —0.18 0.06

11 0.05 —0.03 0.12 —-7.42 4.31

12 0.00 0.00 0.00 0.70 -0.22

13 0.00 0.00 0.00 0.05 —0.01.

14 ~0.02 0.00 0.00 —-0.02 0.00
Molecule Naphthalene Anthracene Anthracene Naphthalene Anthracene Biphenyl Terphenyl
number (H. and G. coefficients) a=3.072 «=3.08 a=3.08 a=3.08 a=3.08

Hole
2 —-0.31 0.65 —0.040 0.098 —0.040 11.081 6.311
3 51.24 47.34 16.526 12.956 16.219 —8.881 —11.201
4 2.35 0.23 0.003 0.049 0.003 —0.007 —0.004
5 —-0.29 —0.02 —0.008 —0.010 —0.007 0.014 0.016
6 —8.11 3.64 0.227 —0.476 0.219 0.090 0.000
7 —0.49 0.00 0.000 —0.006 0.000 0.000 0.000
8 —0.07 0.04 0.001 —0.002 0.001 0.001 0.000
9 —23.34 30.49 13.437 —2.526 13.205 —1.366 0.806
10 2,08 —14.77 —3.859 3.913 —3.779 —2.872 0.000
11 0.05 —0.02 0.000 0.000 0.000 0.001 —1.726
12 0.00 0.00 0.000 0.000 0.000 0.000 0.049
13 0.00 0.00 0.000 0.000 0.000 0.000 0.000
14 —0.07 —0.02 0.000 0.000 0.000 0.000 0.000
Electron

2 1.39 0.75 —0.224 0.946 —0.222 0.478 —0.661
3 —9.67 —27.23 —10.807 —3.435 —10.629 ~13.069 —18.309
4 -0.25 0.03 0.000 —0.007 0.000 0.003 0.001
5 0.12 —0.02 —0.008 —0.001 —0.007 —0.007 —0.012
6 —1.55 0.35 0.064 —0.132 0.062 —0.034 0.000
7 0.09 —0.02 —0.001 0.001 —0.001 0.000 0.002
8 0.04 —0.02 —0.001 0.001 —0.001 0.000 0.000
9 19.26 47.13 18.299 8.879 17.984 7.697 10.960
10 1.20 —0.20 -0.384 0.493 -0.378 1.474 0.001
11 0.04 -0.02 0.000 0.000 0.000 0.001 1.004
12 0.00 0.00 0.000 0.000 0.000 0.000 —0.021
13 0.00 0.00 0.000 0.000 0.000 0.000 0.000
14 —0.02 0.00 0.000 0.000 0.000 0.000 0.000
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TasLE IV. Bandwidths and splitting in ¢ direction in units of 107 eV.

Two-center integrals only
Naphthalene Anthracene

Naphthalene Anthracene Biphenyl Terphenyl Quaterphenyl (H. and G. coefficients)
Hole
A lower 20.0 235.5 177.8 56.9 2.4 17.4 235.2
a ypper 53.9 208.8 155.1 43.0 6.0 55.7 205.4
b jower 413.7 670.9 95.3 261.3 335.9 417.6 638.5
b lupper 380.2 226.6 428.2 361.3 359.6 379.6 198.1
C iower 286.2 222.3 546.0 311.4 222.9 275.5 182.1
€ Lupper 250.4 256.1 123.1 65.8 21.0 240.1 216.6
C L titting none 444.3 none none none none 440.6
Electron
a Mower 222.8 455.0 238.0 303.2 292.9 225.1 459.4
A lypper 236.9 451.4 244.9 311.5 299.8 237.8 4357.5
b ower 142.1 184.8 121.0 193.8 323.0 135.2 177.1
b lupper 317.5 721.5 603.8 808.3 915.6 327.6 739.7
C Mower 40.1 15.7 107.9 46.8 43.8 32.7 8.3
€ upper 15.4 20.7 83.8 83.1 90.4 10.4 11.2
C Teplitting 404.1 906.3 291.1 484.8 458.5 419.9 916.8
Two- and three-center integrals Two-center integrals only
Naphthalene Anthracene Biphenyl Terphenyl
Naphthalene Anthracene Biphenyl a=3.08 a=3.08 a=3.08 a=3.08
Hole
A jower 34 243 223 15.7 57.2 12.4 0.2
a lypper 39 209 197 17.4 56.4 12,7 0.4
b ower 511 757 139 73.5 139.7 52.9 56.0
b ypper 485 329 524 41.5 35.8 28.7 55.4
C ower 311 272 689 30.8 33.1 28.7 15.4
€ lupper 369 314 163 31.6 33.3 69.5 40.9
C Lplitting none 452 none none 113.6 none none
Electron

A Lgwer 209 491 284 56.4 96.7 51.3 71.0
a lypper 237 487 293 56.8 96.5 51.4 71.1
b ower 131 209 165 37.2 37.3 20.7 33.2
b lupper 316 775 690 76.0 159.1 112.6 161.4
C Mower 34 17 105 10.0 6.8 14.7 5.0
C lupper 20 22 102 0.9 4.0 8.1 10.9
C lplitting 392 979 369 102.2 193.3 79.8 126.2

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



BAND STRUCTURES IN POLYPHENYLS

| [ I
2 YILL A
08— -—Xzk-0 R ent?
weeXzkb =
=k '.‘-'
07— T~X=k-c _
— ]
06 |- - —
-
. ~
05— T -
2 / —~
g o s —]
w o A
03— ~-
~
\\
02— ~ -
~. .
\\
Ol —~ \\ -~
~
o S e———d
] B ]
‘w4 ir/)% 3x/4 r

F16. 3. Shape of the excess hole band of naphthalene in the
a™! (solid line), b~ (dotted line), and ¢! (dashed line) direc-
tions.

It should be noted that for all the compounds
considered the electron band splits appreciably in the
¢! direction. In all cases the hole band either does not
split or has a much smaller splitting. The a—! and b~!
bands meet at 7a~! and wb™! as we have shown. At
k=ra! and vb~, the two bands are expected to be
degenerate. Because of the existence of a twofold
screw axis in the b direction and a glide plane in the a
direction, the group of k has only a two-dimensional
irreducible representation at k=7ra~! and #b—1%

Obviously, the calculation described herein is very
sensitive to the form of the wavefunction. A 19,
change in the orbital exponents produces a 10% to
159, change in the resonance integrals. We do not
claim our numbers are accurate to better than a multi-
plicative factor of 2 or 3, but we do feel that it cannot
be denied that the bandwidths in anthracene and re-

E(X) eV

/4 x/2

F16. 4. Shape of the excess electron band of naphthalene in
the a=! (solid line), b~ (dotted line), and ¢! (dashed line)
directions.

2YV. Heine, Group Theory in Quantum Mechanics (Pergamon
Press, New York, 1960), Chap. VL.

E(X) ev

/4 /2
X

3v/4 ”

F1G. 5. Shape of the excess hole band of anthracene in the a™
(solid line}, b~ (dotted line), and ¢! (dashed line) directions.

lated compounds (about 0.01 to 0.1 eV) are about five
times larger than those found by LeBlanc.

The largest predicted splitting of the electron bands
in the ¢! direction is for anthracene (0.1 eV). This
splitting is large enough compared to kT to be readily
observed at room temperature if a suitable experiment
could be designed.

E(X) eV

F16. 6. Shape of the excess electron band of anthracene in the
a1 (solid line), b~? (dotted line), and ¢! (dashed line) direc-
tions.
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F16. 7. Shape of the excess hole band of biphenyl in the a™
(solid line), b7 (dotted line), and ¢! (dashed line) directions.

Besides all the other approximations already men-
tioned, we have, it should be noted, neglected polariza-
tion and vibration effects. It is not clear whether these
effects would increase or decrease the bandwidth.

VI. MOBILITY CALCULATIONS

The evaluation of the mobility tensor was carried out
in the relaxation (or collision) time® approximation.

_9E_
(o) = [ [ S exp BB 5=

Ok; Ok; ok; Ok,

where 3=1/kT. The reader should note that the energy
of a hole is measured downward from the top of the
band. For convenience, both the zeros and the sign of
the energy in Figs. 3, 5 and 7 have been changed.

Since the bandwidths are of the order of several 2T
at room temperature, the average values of (v3;) and
(ow;/| v(K) |) over the bands were calculated nu-
merically. Evaluation of mobility tensors for the
cases of constant relaxation time and constant free
path were carried out simultaneously applying the
trapezoidal integration rule (using 123=1728 inte-
gration points) on an IBM 7090 computer. Such
calculations, for both the electron and hole for a given
compound, require only 2 min of computer time.
Errors inherent in the numerical integrations are
probably in the fifth decimal place and thus are very
much smaller than the errors introduced by the ap-
proximations made.

5 F. J. Blatt, Solid State Phys. 12, 199 (1961).

AND JORTNER

Two simplified models for the relaxation time were
considered: (a) constant isotropic relaxation time, i.e.,
7(k) =ro; (b) constant isotropic free path A=
7(K) | v(k) |. Here v(k) is the group velocity as-
sociated with ¥ (k) and related to the energy bands by

v(k) = (1/R) Vi E(K). (32)

The mobilities calculated by these methods involve
either the constant relaxation time or the constant
free path as a parameter. These parameters may be
estimated by comparing the calculated mobility values
with the experimental data. Such comparison may
provide ad hoc justification for a treatment of the
conductivity in the framework of the band theory
of charge carriers.

We choose an orthogonal coordinate system whose
axes are parallel to the a and b unit cell vectors and
the vector ¢’ (i.e., ¢) which is perpendicular to the
ab plane. The components of mobility tensor are

wij=ero{va; )/ kT, (33)

and

uij=(eN/kT) (wiv;/| V(K) |),

for the constant relaxation time and constant free
path approximations, respectively. In the above equa-
tions v; as the ith component of the velocity vector
v(k) and the bracket indicates an average over the
Boltzmann distribution of electrons in the energy

bands. Thus

(34)

eXp[—BE—(k)]}dk /12 texpl 8.0 - expl - BE (0 T}k,

(35)

E(X) eV

F1c. 8. Shape of the excess electron band of biphenyl in the
a1 (solid lineg, b™! (dotted line), and ¢! (dashed line) direc-
tions.
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TasLe V. Components of the mobility tensor in the constant-free-time approximation in units of 10* cm?/sec?.
Naphthalene Anthracene
2-center integrals 2-center integrals
2- and 3- H. and G. 2- and 3- H. and G.
center center
Hiickel Hiickel Coeff. Hiickel Hiickel Hiickel Coeff. Hiickel
4a's 4a’s 4a’s a=3.08 4a’s 4a’s 4a's a=3.08
Hole
{(Va2) 14 9 8 0.006 87 79 7 5.3
{(Va?) 217 146 147 3.46 251 191 170 9.5
(Vo) 28 18 17 0.30 29 21 15 0.6
(VaV.) 3 2 2 0.04 11 8 6 0.2
Electron
{(Va?) 39 42 43 2.80 186 163 162 9.8
(V?) 25 26 28 1.81 119 107 111 8.4
(Vo) 1 0.8 0.7 0.04 0.3 0.3 0.1 0.02
WAL —0.5 —-0.5 —0.4 —0.02 0.05 0.04 0.01 0.005
Biphenyl Terphenyl Quaterphenyl
2- and 3- 2-center integrals 2-center integrals 2-center integrals
IEI?inctkegl Hiickel Hiicke! Hiickel Hiickel Hiickel
4a’s 4a’s a=23.08 4a’s a=3.08 4o’s
Hole
(Va) 16 11 0.12 4.2 0.07 5.7
(V) 98 69 1.55 87 2.85 112
(Ve?) 424 267 6.22 178 4.19 131
(VoVe) —38 —~24 -0.57 5.5 0.14 13
Electron
(Va?) 35 25 1.88 41 4.04 33
(Vi?) 139 115 4.24 199 9.28 283
(Ve?) 0.2 0.6 0.03 1.5 0.05 4.9
(VaVer) —0.4 —0.4 —0.01 0.05 0.00 0.02

It should be noted that the mobility anisotropy
derived from the present approximations contains
only the contributions from the anisotropy in the
energy bands. In Tables V and VI we present the
components of the mobility tensor at 300°K (not
including the constant multiplicative factors ero/RT
and eN/kT) calculated assuming constant free time
and constant free path, respectively. For naphthalene,
anthracene, and biphenyl, we list the mobility com-
ponents evaluated from the energy bands which
include the contributions of the three-center integrals
and those in which two-center integrals only were
included. For terphenyl and quaterphenyl only mo-

bility values for the “two-center integral” bands are
listed. The mobility components which are not listed
are at least 100 times smaller than the smallest terms in
Tables V and VI.

In order to show the effect of the tail part of the
atomic orbitals used, we also give the components of
the mobility calculated from the bands which result
from the single Slater-type atomic orbital with its
exponent, a=3.08. These values are different from the
values of LeBlanc and Thaxton et ¢l. This difference
primarily arises because our method differs from theirs
in two points: (i) a minor mistake in Eqgs. (A10) and
(A11) of LeBlanc’s paper was corrected in deriving
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TasLE VI. Components of the mobility tensor in the constant-free-path approximation in units of 105 cm/sec.

Naphthalene Anthracene
2-center integrals 2-center integrals
2- and 3- H. and G. 2- and 3- H. and G.
center center
Hiickel Hiickel Coeff. Hiickel Hiickel Hiickel Coeff. Hiickel
4a's 4a’s 4o’s a=3.08 4a’s 4a’s 4a's a=3.08
Hole
v/ V) 0.9 0.7 0.6 0.004 4.2 4.2 4.1 1.28
&/ V) 11.6 9.6 9.7 1.58 1.1 9.5 9.0 2.09
VAV ) 1.9 1.5 1.4 0.18 1.6 1.3 1.0 0.18
VoV /I V) 0.2 0.2 0.2 0.02 0.5 0.4 0.3 0.03
Electron
V2V 4.3 4.5 4.5 1.18 9.4 8.8 8.7 2.1
VI V) 3.0 3.0 3.1 0.85 5.9 5.7 5.8 1.75
VAV ) 0.2 0.1 0.1 0.02 0.05 0.04 0.02 0.007
(VaVe/| V) —0.04 —0.04 —0.04 —0.008 0.01 0.01 0.003 0.001
Biphenyl Terphenyl Quaterphenyl
2- and 3- 2-center integrals 2-center integrals 2-center integrals
I?I?iri:tlle Hiickel Hiickel Hiickel Hiickel Hiickel
4a’s 4o’s a=3.08 4a’s a=3.08 4a’s
Hole
V&I V) 0.7 0.6 0.05 0.34 0.03 0.43
VYV 4.8 4.1 0.62 5.4 1.05 6.8
Ve |V ]) 16.1 12.7 1.98 9.9 1.46 7.8
(VaVa/I V ]) —1.4 —1.1 —0.18 0.30 0.05 0.77
Electron
Va2 V] 2.5 2.0 0.75 2.5 1.05 1.7
v/l V1) 9.1 8.4 1.49 11.0 2.16 13.7
VRV ) 0.02 0.08 0.18 0.19 0.02 0.47
VaVe/| V |) -0.03 -0.04 —0.003 0.003 0.00 —0.01

Eq. (28); (ii) in averaging over the distribution in
bands we did not neglect the Boltzmann factor.

As can be seen from comparing these results with the
experimental data (Table VII), the anisotropy of the
mobility calculated from the Clementi-Roothaan
SCF wavefunction for the carbon 2p atomic orbital
is in better agreement with experimental values than
the mobility calculated from the single Slater-type
atomic orbital with «=1.625 a.u. Although one does
not expect good agreement with the experimental data,
we observe that our calculated values of the mobility
anisotropy are definitely in better agreement with the
experimental data for naphthalene® and anthracene
(which are the only available data) than the previous
calculations.

It is important to note that the anisotropy in the ab
plane of the hole mobility in naphthalene cannot be
appropriately described in terms of LeBlanc’s treat-
ment, while the present calculations lead to quite
reasonable agreement between theory and experiment.

The mobility anisotropy is determined in the present
scheme by the crystal geometry and the symmetry of
the molecular wavefunctions. The difficult problem of
the dependence of the mobility anisotropy on the
possible anisotropy of the relaxation time should be
included in a more refined treatment.

The present treatment can be used to account for the
pressure dependence of the electron and hole mobilities
in anthracene, as studied experimentally by Kepler.
The mobility change is due to the change of unit-cell
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dimensions with compression. The compressibility of
anthracene was studied by Bridgeman®; however, the
anisotropy of the compressibility is unknown. For the
purpose of making an order of magnitude calculation,
it was assumed that the application of a pressure of
3000 atm leads to a uniform decrease of 19, of the
unit-cell dimensions without changing the angles. The
pressure effect on the mobility calculated using the
mean free time approximation is presented in Table
VIIL It is apparent that the change in the unit cell
dimensions is the predominant factor accounting for the
pressure dependence of the mobility. If the carrier
scattering mechanism involves acoustical phonons, the
pressure dependence of the Debye temperature of the
crystal will affect the relaxation time. However, a crude
estimate of this effect indicates that it is quite small.'™»

The temperature dependence of the mobility is
difficult to discuss in terms of the crude scattering
models used herein. At least three effects can be dis-
cerned: (a) the relaxation time is temperature-de-
pendent because of the temperature dependence of
the average phonon density of each vibrational mode;
(b) the thermal expansion of molecular crystals is
large, being about 3% from 77° to 300°K. As seen from
the calculation of the pressure dependence of the mo-
bility, the magnitude of the mobility is quite sensitive
to the relative separation of the molecules; (c) the
distribution of electrons within the bands is sensitive to
temperature because the bandwidth exceeds kT at
ordinary temperatures. Numerical calculations show
that Effect (b) leads to a decrease of the mobility with
increasing temperature in a manner analogous to the
pressure effect. Effect (c) leads to a comparable effect
in the opposite direction. Kepler’s experimental results
indicate that Effect (a) is of predominant importance
in accounting for the temperature dependence of the
mobility.

Finally, we must consider the adequacy of the band
model to account for electron and hole mobilities in
aromatic molecular crystals. The band model will be
valid only if the uncertainty in the energy of the scat-
tered carriers does not exceed the bandwidth W. If r
is the average relaxation time for a carrier scattered
between states of different crystal momentum, the
criterion for the applicability of the band model is given

TasLE VII. Experimentally measured components of
the mobility tensor in cm?/V-sec.

Naphthalene» Anthracene!'®
Hole Electron Hole Electron
Haa 0.9 0.7 1.0 1.7
ey 1.4 0.7 2.0 1.0
Heter 0.4 0.4 0.8 0.4

& M. Silver, J. R. Rho, and R. C. Jarnigan, J. Chem. Phys. (to be pub-
lished).

3 P. W. Bridgeman, Proc. Am. Acad. Arts Sci. 76, 20 (1944).
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TaBLE VIII. The pressure dependence of the electron and hole
mobility in anthracene.»

Electron Hole
£(3000 atm) /u(1 atm) (3000 atm) /u(1 atm)
Crystal
direction  Exptl. Calec. Exptl. Calc.
a 1.4 1.1 1.4 1.0
b 1.3 1.2 1.4 1.1
4 1.0 0.9 1.4 1.3

# The experimental data are taken from Ref. 11(b).

by W>#/r. From Eq. (33), using the experimental
values for the mobility in the ab plane of anthracene, it
follows that the relaxation time is 1.3X 10~ sec for
hole and 2.4X 10 sec for electrons. Thus #/r has an
average value of 0.05 and 0.03 eV for excess holes and
electrons, respectively, which are of the order of the
calculated bandwidths. From Eq. (34) and the experi-
mental mobilities, one estimates mean free paths of
3.5 & for holes and 4.5 & for electrons in the ab plane
in anthracene. These mean free paths are of the same
order of magnitude as the lattice constants, This raises
the question of whether the band model is the best
approach to account for carrier mobility in these
systems. The system of excess electrons or holes in
molecular crystals is probably an intermediate case
between the weak scattering approximation, where the
delocalized Bloch states have a long lifetime and the
strong scattering approximation where the localized
states are dominant. If the band description of the
charge carrier is applicable to these systems, we are
led to conclude that the next most important problem
to be considered in understanding the mobility of
charge carriers is the mechanism and magnitude of
interaction of the charge carrier with intramolecular
and intermolecular vibrations. Such a study will also
provide further information on the anisotropy of the
mobility and must be coupled with an investigation of
the effects of vibration and polarization on bandwidth.
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