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Speculation Concerning the Nature of
Binding in Xenon Fluorine Compounds

Josmua JOoRTNER, STUART A. RicE, aAND E. Guy Wirson*
Department of Chemistry and Institute for the Study of Metals,
University of Chicago, Chicago 37, Illinois
(Received 6 February 1963)

HE nature of the binding in the recently discov-

ered compounds of xenon and fluorine' is of par-
ticular interest since their stability seems to violate
one of the oldest and most widely accepted rules of
valence theory. If a conventional bonding scheme em-
ploying sp hybridization is applied to XeF; the pro-
motion energy of Xe[*S(5s25p%)—1P1(5535%s) ] is so
large (9.57 eV) that the gain in bonding energy in
the resultant molecule is likely to be small relative to
the level spacing in the atom. Allen has recently
proposed? that binding in these compounds is deter-
mined by correlation effects, but it is not evident
that this scheme will give bonding at all.

Bonding schemes involving decoupling of electrons
in closed-shell systems upon molecular formation were
encountered in the MO formulation of ligand field
theory? and in the use of delocalized molecular orbit-
als! to account for the geometry and nuclear quadru-
pole coupling constants® of the polyhalide ions. The
analogy between the polyhalide ions and the case
under consideration (since XeF: and XeF; are isoelec-
tronic with IFy~ and IFy® respectively), was inde-
pendently pointed out recently.” Our work was com-
pleted before publication of the other work cited.

It is proposed to describe the bonding in the xenon
fluorides in terms of delocalized molecular orbitals
formed mainly by combination of pe type Xe and F
orbitals. A similar scheme was independently proposed
by Rundle™ and by Pitzer.™ The use of delocalized
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bonding orbitals must be viewed with caution,® but
it can be shown that the delocalization model will
lead to binding, if long-range attractive forces are
operative. For the case of Xe+F, dispersion forces
and charge-transfer forces are predominant at large
separations, thus validating the use of delocalized
molecular orbitals. The semiempirical treatment of
the xenon fluorides is reduced to a single LCAO theory
equivalent to the treatment of heteroatomic 7 electron
systems except for the different symmetries of the or-
bitals involved.

The three appropriate o-type molecular orbitals for
the linear XeF, are given by

Kb(aZu_) = ((I_./V'Z) (Pa'_Pb) +b——Zsz;
‘»b(alo) = (1/¥2) (Pa+pb) y
¥{aw®) = (a4/V2) (pa—p) +b1pxe-

The three roots of the secular equation are E, = E(a*)
and E(ay,). The ground state of XeF; is (az,~)%(ay,)%
It should be noted that the ground-state wavefunc-
tion may be described by a Slater determinant which
reduces to a form characteristic of two localized XeF
bonds. Thus the term delocalization should not be
interpreted in a literal sense.

Some approximate evaluations of the energy levels
and the charge distribution were carried out. The
Coulomb integrals were taken as the atomic ionization
potentials ax.=—12.1 eV and ar=—17.4 V. The
exchange integral B was taken as $=K Sx.r, where
the proportionality parameter K is* K=/ Sxor(ax.+
ar), with f=2.0. This recipe is based on Mulliken’s
approximation. The overlap integral Sx.r was evalu-
ated using Slater-type atomic orbitals.

This simple treatment leads to the following conclu-
sions: (a) The bond energy per XeF bond in linear
XeF; is E_—ax,; with the assumed bond length of
2 X the calculated energy is of order 4 eV. (b) The
first allowed optical transition in linear XeF;is ¢(a;,)—
¥ (aa*); the estimated transition energy being 8.2 eV.
(c) The bond energy in the XeF radical is 2E_+4-E.—
2ox.—ar being less than the bond energy per bond in
XeFs. (d) The bent structure (bond angle of 90°) of
XeF; is less stable than the linear structure. {e¢) When
the effects of = bonding are introduced the binding
energy in Xel; attains a maximum value at Rx,-r=
1.85 A. Conclusions (c), (d), and (e) are consistent
with the available experimental data.!

The results obtained indicate substantial migration
of negative charge from Xe to F in the ground state.
An independent estimation of the charge distribution
was made using the w technique."* The general conclu-
sions are the same, but the predicted charge migration
is somewhat smaller. It is found that: (a) The charge
migration from Xe to F is of the order of one-half unit
of charge per F atom; (b) charge migration in XeF,
is larger than in XeF; (e.g., 0.5 electrons transferred
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in XeF; and 0.42 in XeF,); {(c) the charge distribution
cn the F atom should resemble ionic compounds; (d)
in high-dielectric-constant solvents or where special
solvent bonds may be formed (e.g., HF;~ in HF),
ionic dissociation of XeF; into the ions XeF* and I~
is feasible; (e) in keeping with the large charge trans-
fer, the vibrational frequency should be low as in the
ionic alkali halides; (f) the heats of sublimation of
solid XeF; and XeF, should be high due to electro-
static interactions.

Conclusion (c) is confirmed by the observed NMR
chemical shift of F in solid XeF,'? while conclusion
(d) is supported by an observed broadening of the F
resonance when XeF, is dissolved in HF. Conclusion

(e) is consistent with the known vibrational frequency
of XGFQ.

Full details of this investigation will be reported at
a later time.
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HE electric-field gradient at the site of a nucleus

is zero in a perfect crystal of the NaCl lattice type.
Substituting a lattice ion for an equally charged im-
purity ion, the change in field gradient at the distance
r from this ion is proportionall:? to the difference Aa
between the ionic radii of the substitutional and origi-
nal ions and to the inverse cube of 7. The field gradient
eq at the nucleus of an ion at 7 is also proportional to
the ionic amplification factor A.

The second-order quadrupole shift Av of the central
component of the NMR signal for a nucleus with
half-integral spin I and electric quadrupole moment
eQ may be written!-?

9 243 Qg

= —=(1—9 c0s%) (1— cos*
v 64 4[2(2[_1) h2V0 ( COs 0)( COSs 0)’

(1)
where » is the resonance frequency and 6 the angle
between the direction of the magnetic field and the
largest principal axis of the field gradient tensor. This
axis for a nucleus situated in a [100] direction from
the substitutional ion is parallel to the same direction.

Kawamura e al.® observed the second-order shifts
of the Na® resonance in mixed crystals of NaBr and
NaCl. The shifted signals originate from the nearest
neighbors of the impurity ion but, even so, the effect
could only be observed as an asymmetric broadening
of the main resonance. To obtain larger shifts permit-
ting a measurement of field gradients at nuclei farther

KI
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—
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Fi6. 1. The I resonance spectrum at po=8.0 Mc/sec. The
central resonance has been attenuated 30 times.
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