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Dielectric medium effects on loosely bound electronst
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The problem of electron binding in solutions is treated on the basis of a
continuum model. The polarizable medium is represented by a continuum,
which can be characterized by macroscopic properties, e.g. the static and the
optical dielectric constants. 'The motion of an additive electron is determined
by its interaction with the polarization produced by the electron itself. An
attempt is made to treat the whole system (dielectric medium and additive
electron) by employing two different approximations.

After the separation of the electronic and nuclear motion, an adiabatic
separation of the motion of the medium electrons and the additive electron
is carried out. An alternative approach involves the application of the
Hartree—Fock self-consistent-field treatment.

A comparison of these treatments is presented.

It appears that the independent particle approximation is adequate for the
treatment of electron binding in solutions.

The adequacy and scope of the continuum approximation are discussed.

1. INTRODUCTION

In recent years electronic processes in solutions have been a subject of con-
siderable interest. These investigations include the study of electron binding in
metal solutions [1, 2], electronic excitation of solvated ions [3], photochemical
processes in rigid glasses [5] and in solutions [4, 6] and primary processes in
the radiation chemistry of aqueous solutions [7]. The purpose of the present
work is the investigation of electron binding in solutions on the basis of a continuum
model. This treatment may be suitable for a physical system where the penetra-
tion of the charge distribution of the additive electron into the medium is sufficient
to justify the application of the bulk properties of the medium. According to the
continuum model the additional electron is affected by the polarization field of the
dielectric medium. In this treatment the interaction energy is determined by
long range interactions.

Previous treatments of electron binding in solutions [2, 3] were based on
models previously developed for ionic crystals. These models [8-13] involve the
application of the classical electrostatic picture for the computation of the energy
levels of the additive electrons. ILandau introduced the basic concept of the
model of an additive electron bound in a dielectric medium by polarization of this
medium by the electron itself (‘‘an electron trapped by digging its own hole *’).
It was assumed that the permanent polarization of the medium forms the field
acting on the additive electron, while the electronic polarization of the medium
merely yields a shielding effect.

+ Presented at the Quantum Chemistry Conference, Oxford, April 1961.
M.P. S
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In the present treatment the equations of motion of the additive electron are
treated considering the whole system consisting of the dielectric medium and the
additive electron. 'T'wo basic approximations are applied for the electronic wave
function of the system : an adiabatic separation of the motion of the additive
electron and the medium electrons, and alternatively a one-electron approximation.
The polarization energy of the medium is computed by application of classical
electrostatic expressions involving bulk properties, e.g. the static and optical
dielectric constants. This treatment reduces the complicated #-electron problem
to a one-electron treatment.

2. ELECTROSTATIC ENERGY OF A POLARIZED DIELECTRIC

In the present treatment the electrostatic energies of both equilibrium and non-
equilibrium states have to be considered.  In non-equilibrium states the polariza-
tion of the medium is not determined by the charge distribution and electrical
field strength in the ordinary way. The general expressions for the charging
energy of a dielectric medium were recently considered by Marcus [14] and will
be applied in a somewhat modified way.

Generally speaking, the polarization of a dielectric medium consists of
electronic, atomic, and orientational contributions. We distinguish between the
electronic component of the polarization P, due to the distortion of the electronic
shells of the medium molecules, and the atomic and orientational components
which give rise to the ‘permanent’ polarization P,. The total polarization is
the vector sum

P=P,+ P, (1)

An equilibrium state of the system is uniquely defined by the electric field
vector E (determined by the electrostatic potential) and by the displacement
vector E, (determined by the charge distribution p). The polarization is a
function of the field and in the absence of dielectric saturation

P=«E, 2)

where o is the polarizability of the medium. Denoting by «, and «, the electronic
and permanent polarizabilities, then for an equilibrium state

P,=«E, (3a)
P, =u,E (34)
where the polarizabilities can be expressed by
L = (+a)
ap=2 008, (+5)

where Dg and Doy are the static and the optical dielectric constants of the medium.
The general expression for the charging energy of a dielectric medium in
equilibrium is

1 1
- . E2du.
|14 8waE”d7J_87rDsf L dv (5)
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This expression is subjected to the conditions

SW 0 3w
8P, 7 8P
the variations being performed under conditions of fixed charge distribution.
A non-equilibrium state is specified by the polarization P, the field strength E,
and the field strength E, produced in vacuum (Ds=Dyp=1) by the same charge
distribution

—0, (6)

div E,=4mp. (7)
For a non-equilibrium state where the electronic polarization is in equilibrium

with the field and thus given by (3 a), while the permanent polarization attains
an arbitrary value P, the electrostatic charging energy is expressed by [14]

W = JEzdv——JI:PE +P, ( ):Idv, (8)

subjected to the condition
sw’
5P, =0. 9)
The polarization energy of the dielectric medium U is readily obtained by

subtracting from W the charging energy of the system in the same charge dis-
tribution in vacuum, which is given by

1
— | E2dv.
Sﬂfc‘h)

U= — __1_ (1 - Di>fEcz dv  for an equilibrium state, (10)

877 g

Hence

U= - %I[PEC—F P, (E) - )] dv for a non-equilibrium state.  (11)

%D
Equation (11) can be transformed to an equivalent form by using the relations :

E,—4nP
E=-—<¢ "D 12
e (12)
1 1 1
P=—(1- E,~(1- — )P,
4‘7T< Dop) ‘ <1 D0p> (13)
thus leading to
1 1 1 272D

= — 1—-—)|E2dv— — |P, E dvo+ ———>_— _ | P, 2dv.

v 877( DOD)f A LE ot Dop(Ds— Dop) b
(14)

Another expression required for the treatment of vertical excited states is the
energy change y involved in a transformation of a system which is in equilibrium
with a charge distribution p to a non-equilibrium state where the permanent
polarization is in equilibrium with another charge distribution p° It can be

shown that
1 1 5
x5 (0~ s) [ (B BP e (1)

divE,=4np and divE=4=p".

where

S2
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3. THE HAMILTONIAN AND THE ELECTRONIC WAVE FUNCTION
We consider the general system consisting of the dielectric medium, a fixed
additional charge % (or generally positive charge distribution p,), and the additive
electron. 'The general form of the Hamiltonian for this system will be given by

%:Tn+h+Te+‘Uze+z@zi+ z‘vzzL+z7}ei+ 27J87l’ (16)
1 n t n

where 7, is the kinetic energy of the nuclei, & represents the Hamiltonian of the
medium in the absence of 2 and of e, at fixed nuclear configuration

1 Z Z 7 1
= e P n n—m . 1
== 28 2=t 2 A= (17)

n<m|rn_'rm| i<j it

7; or r; represent the coordinates of the medium electrons, and 7, or 7,, are the
coordinates of the medium nuclei of charge Z, or Z,,.

T, is the kinetic energy of the additive electron, the coordinates of the electron
being represented by 7,

Te = % Are >
v,, represents the interaction energy between z (located at r,) and the additive
electrone
2

|re - rzl
v,;and v, represent the interaction energies between the charge z and a medium
electron 7, or a medium nucleus 7 respectively. v, and v, represent the inter-
action energies between the additive electron and a medium electron 7 or a medium
nucleus #; thus

Voo =

. P4
2t Irz—rz ’
A
‘Uzn lrz__rml
. 1
el
Z,
Ve = — Ife“7'n|

The energy of the medium is given by
Bp=h+ D0+ > Ut D0+ D Vs (18)

and consists of the self-energy and the part due to polarization.
Thus setting

H =T, +h,+T,+v,=T,+H (19)
the total energy E of the system will be obtained from the equation
HY=EVY. (20)

The nuclear motion is separated by application of the adiabatic approximation
[15,16]. 'The eigenfunction ¥ can be represented in the form

V(170 70) =P (705 re)w(ry)- (21)
The electronic wave function ¢,, depending on the nuclear coordinates as para-
meters is obtained from the equation

Hy,,=E(r,) ¢y, (22)
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while the total energy of the system is obtained from the expression
(T + E(r,) — E)w(r,)=0. (23)

For the sake of simplicity it is convenient to consider the limiting case of infinitely
heavy nuclei, when nuclear vibrations can be neglected. The total energy of the
system is obtained from the condition

SE(r,)
or,,

As equation (22) cannot be accurately solved approximate treatments of the elec-
tronic wave function have to be applied.

=0 for all 7,. (24)

4, THE ONE-ELECTRON APPROXIMATION

A natural approach will involve the application of independent-particle
theories. The electronic wave function of the system can be represented using the
Hartree product

Prn (ri) re) = (D(ri) i7£’(re)' (25)
The electronic energy will be represented in the form of the variation integral
E={O(r)h(r.) | H | (i) $o(r.))- (26)
Application of the variational theorem leads to
SE
— = 27
o, @7a)
SE
— = 27b
0, (270)
subject to the auxiliary conditions
(P|D)=1, (28 a)
Wlgy=1. (286)
Application of equation (19) leads to the result
E=<¢|Te+‘vze|‘/’>+<®l(hm)‘q))’ (29)

where

() =+ S0t 30,0+ [(§ S0t Zomn ).

(h,,) 1s determined by the average charge distribution of the additive electron.
The second integral in equation (29) can be represented as the sum of the self-
energy, g, of the medium and the polarization energy U :

(@} () [Py =1+ U (P, Py, (E,))- (30)

Essentially the same result can be obtained by the application of the Hartree—
Fock procedure. Considering the W.F. of the s medium electrons and the
additional electron

Prn (T2 5707 ) = [(s+1)1] 72 g (=12 Py(1) $2(2) - - - () $sa (s +1),
(25)

@il gp =0y ij=1...(s+1). (28')

where
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The energy of the system is then given by

s+1 8+1
B= 3 Gilaltdy+ 2 (4 i) = (b g |90 @69

where g;(1=1...5+1) are the one- electron operators for the med1um electrons
and for the additive electron. It is assumed that the s spin orbitals of the medium
electrons ¢(¢=1...5s) are represented by the appropriate self-consistent field wave
functions. Bysettingi=¢,_, the energy is presented in the form

E=0| T, +v,, |¢)+ SE<¢iIgil¢z~>

]r

+z<§ 1<¢1¢7 I ¢7> <¢1 ()69 I ‘l’g ¢z>
+Ei@¢ﬂrw 9) = (4 5= o0 =)

Equation (26"") is subjected to the extremum conditions 8E/d¢;=0fori=1...5+1
with the auxiliary conditions (28”).  Substitution of the unperturbed spin orbitals
of the medium electrons into (26”") leads to the expression

E:<lib| Te+7)zel¢>+:u0+ l](Pc’ PD’ (Ec)) (291)
U(P, P,, (E,)) represents the polarization energy of the dielectric medium by the
fixed charge Z and by the mean charge distribution, | % of the additive electron:

(E)=(E.)+E., (1)
where the electronic contribution is defined by
div (E,) = — 4= | %
(E.)= —gradf, r (32)
Af=dm |

f is the electrostatic potential due to the charge distribution — | |% E, is the
contribution of the fixed charge distribution, and can be represented by

E,= —gradv,,. (33)

Since E is subject to the minimum conditions (27 @) and (24), applying the
macroscopic properties of the dielectric medium we have

sU sU

— = —~ =0. 34

SP, 0, 8Py (34)
Hence the polarization energy of the medium is represented by the equilibrium
value (equation (10)).

Substitution of (31) in equation (10) leads to

E— (T, + o,y — Q——N@ * o+ gy (35)
E=(|T, + v,y — <1 - _;> f [(E)?+2(E,)E, +E2]dotpy  (36)

The integrals appearing in (36) can be transformed by application of Green’s
theorem and equations (32) and (33). Hence

.ﬂm@@=%@mw> (37)
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and
J (£ do=—smcsiri). (39)
Substitution in equation (36) leads to
1 1 1 1 1 5
<lib Te + E;‘Z)ze‘i‘ 2(1 .—D—s>f,€[l>—‘ 8—77' (1 - E'S')fEZ d7J+fL0. (39)

‘The second integral in equation (39) represents the polarization energy of the
medium by the additive fixed charge 2. By choosing a reference state which
corresponds to the self-energy of the medium polarized by the fixed charge 2
the energy is

E=(y|T,+ Disz)ze—f— %(1 - D%)f}sb)- (40)

Application of the variational treatment (equations (275) and (285)) readily
leads to

(0|7, + Dis-wze+<1—Dis>f‘¢>=o, (41)
and Sy =0.
Hence the wave function of the additive electron can be obtained from the
equation
I:Te—i- ivzﬁ(l—ﬁ)f]g/,:qb 42)
with Af=4x|.

This equation is not a usual eigenvalue problem as the potential energy depends
on the wave function of the electron itself. This integro-differential equation
can be solved by the self-consistent variation method as suggested by Mott and
Gurney [10].  Alternatively, the total energy of the system may be obtained from
equations (40) and (41).

From equations (40) and (42) we calculate the polarization energy of the
medium required for the formation of the potential well in which the additional
electron is bound:

— ;(1 - 51;)<¢|f|¢>. 43)

5. THE ADIABATIC APPROXIMATION

An approximate solution for the electronic wave function can be obtained by
assuming that the average velocity of the additional, loosely bound, electron is
small compared with those of the core and valence electrons of the medium
particles. The binding energy, and thus by the virial theorem the average kinetic
energy of the additive electron, is relatively low. Tentatively an approximation is
applied which is equivalent to the adiabatic approximation in molecular physics.
The additive electron is considered to be temporarily at rest at some position 7,.
The medium electrons are affected by a potential of a fixed point charge at 7,.
On the other hand, the loosely bound electron ‘sees’ a potential due to the
average distribution of the medium electrons. This method is similar to Bethe’s
treatment of the excited states of He [17].
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This discrimination between the tightly bound medium electrons and the
loosely bound additive electron can be formulated in the form

Frn (ri) re) = ¢(ri; re)i/’(re)' (44)
é(r;; 7,) is the wave function of the medium electrons and depends para-
metrically on 7,. (r,) represents the wave function of the additive electron.
Following the general approach of the adiabatic approximation [15, 16] the
wave function ¢ for the medium electrons is obtained from

hm¢(ri; re):e(re) rn)?l’(ri; %) (45)
This equation describes the states of the medium electrons for fixed 7, and all 7,,.
The total energy of fixed nuclear configuration will be obtained from

[Te+v..+e(r, r) b =E(r.)p (46)
and the application of the conditions (24) to E(r, ) leads to the total energy of the
system.

Equation (45) can be treated by application of the variation-perturbation
treatment [17]. Consider the eigenvalue problem (45)

(h+ M —e)p=0, (47)
where A =h,—h. (48)
The eigenfunctions and eigenvalues are expanded in terms of
e= S e, $= 3N, 49)
n=0 n=0
whence
h‘;bn + h/¢n—1 - nz em¢n—m =0 for all n (50)
m=0
leading to
e={bolhlpo ) +<Bol'[$o) + {bolW 1) +- - -, (51)

thus u,={¢,|h|do) represents the self-energy of the unpolarized medium, while

U={goll|po) + (ol P> +- - -

represents the polarization energy of the dielectric medium.
Thus we set

€= <¢|hm|¢> =pot U( P, PD’ Ec) ) (52)
e is obtained from
de
£ —0: =1; 53
55 =05 H =13 (53)
E, is the field produced in vacuum by the point sources at 7, and 7, :
E.=E,+E, (54)

where E, is given by (33) and
div E,(r)= —4nd(r—r,), (53)
where 8 is Dirac’s delta function.

The variation problem (53) is equivalent to the condition U/6P,=0. 'Thus
we have to consider the polarization energy of the medium for the case when the
electronic polarization only has attained its equilibrium value. Equation (46)
will be solved by the variation method

E(r,) =T+ 0o+ URE) + oy (56)
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where U is now given by equation (14). Substitution of equations (14) and (54)
in (56) leads to the result

1 1 \
Blr) =T oy~ - (1= 5 ) [GHE+ 26 B By o
1 27Tl)s f
~ oo [HPIE Byt D (R (57)

Application of equations (55), (33) and Green’s theorem leads to

[ cole Bty do = saato. o (58)
while using the definition (32) and equation (55) we get
[Pty o [y (E ) . (59)
The energy integral is given in the form
1 2
E(yn) <"/‘ T + Y% ¢> 877 <1 - -D—(;)) fEe dv
27D
— — [P, [E,+(E)do+ — "5
DOJ olEH BT 5D D)
1 1
P 2dy— E? 7
f do— o (1 D()p)f do + iy, (57')

The integral JEf dv is infinite.  This is due to the present model of a charge

point source in a continuous dielectric medium. However, the value of this
integral is independent of #, and 7. Thus as long as states within the medium
are considered this integral is merely an additive constant.

The integral E(r,) is subjected to the conditions 8E/S¢y=0 and SE/Sr,=0.
As the order of these operations is immaterial the condition (24) will be applied
first.  This condition is equivalent to 8E/6P,, =0 thus leading to

1 DS Dop
= _——_—=[E,+(E)] 60
D 4'77 DS [ z+( e)] ( )
This result indicates that in the adiabatic approximation the permanent
polarization is determined by the average distribution of the bound electron.
This was the basic assumption used in previous models [8-13].
Thus the energy of the system at equilibrium nuclear configuration is given by

P

B=(iT,+ vl %,(Dip - 5) [[€r+2EE a0
- %7(1— DLOp) fE,;varp,O. (61)

The reference state of the energy is chosen as corresponding to the medium
polarized by the point sources 2 and e. Application of equations (37), (38) and
(61) leads to the result

E= <¢IT+ v“+;<D10p Ds> l¢> (62)
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Application of the variation treatment to equation (62) finally leads to the eigen-

value problem
1 1 1
T, vt — — =« 63
[ 6+DS7/98+<DOD Ds>f]l7[l E/I’ ( )

where Af=A4x|]2.
The polarization energy of the medium is in this approximation
171 1
T= = —— — — . 64‘
=3 (5~ 1) W (64)

The results of (62)-(64) are identical with the approach based on Landau’s
theory [8].

6. APPLICATION TO EXCITED STATES

The treatment of excited states in equilibrium with the nuclear configuration
is almost straightforward, and the corresponding energies can be readily obtained
by inserting in equations (40)-(42) or (62) and (63) the wave function #; rep-
resenting the excited state. A difficulty arising in relation with this treatment is
due to non-spherically charge distribution in the excited state. This would
lead to an angular dependence of (E,(y;)) and of fi(if;) corresponding to the
excited state. In the present treatment this difficulty is disregarded, and an
average spherically symmetrical charge distribution in the excited state is con-
sidered. A similar averaging process is carried out in the solution of the Hartree—
Fock equations for atoms [18]. The following results are obtained for excited
states which are in equilibrium with the nuclear framework.

For the one electron approximation

aevfre pea(toa) e
and b (65)
|

[Tﬁ;@,ﬁ( >ﬁ]¢l eilii Af=4aly P

For the adiabatic approximation the result is of the same form but
(1/Dop—1/Ds) has to be substituted for (1 1/Dy).

Electronic transitions are subject to the restrictions of the Franck—-Condon
principle. Within the limits of the semi-classical formulation [19] immediately
after the electronic transition the excited state is formed in the nuclear con-
figuration corresponding to the ground state. Thus in the vertical excited state
the electronic polarization has adjusted itself to the new charge distribution
— |4;|?, while the permanent polarization is still determined by the ground state
charge distribution —|)]>. The energy E,” of the vertically excited state is
related to the equilibrium energy of this state by

El’U:E1‘+X’ (66)

where y is the energy required to transform the nuclear framework which is in
equilibrium with the charge distribution — |%;]* into the nuclear configuration
which is determined by — [¢[2. Application of equation (15) leads to

=5 (pc ~ 7) [ (B~ (EP et (67)
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where (E,) is given by equation (32) and
div (E) = — 4=l ]
(E}y= —gradf, L (68)
=4[
As x is a positive definite quantity the energy of the vertically excited state is

higher than the corresponding equilibrium state. The energy of the additive
electron in the vertically excited state is obtained from

SE;?
&ﬁz =0, <¢'1|(/;z _1 (69)

For the one-electron approximation the following result is obtained for the
vertical state resulting from the transition :

b1 ) )9
-3 (5 — ) (70)

Application of (69) leads to

[TﬁDisvzﬁ(l——)fl ( ol (71)

and =472

Application of the adiabatic approximation readily yields the following results
for the total energy:

Be=(| Tt ot (5 = )10 53— o) i) @)

and for the wave equation of the additive electron

(g (G i)

These results imply that within the limits of the adiabatic approximation the
energy of the additive electron in the vertically excited state is independent of the
charge distribution in this state. Thus equation (73) is an ordinarily eigenvalue
problem. On the other hand the application of the one-electron approximation
leads to equation (71) which is a self-consistent field problem.

7. DiscussioN

The continuum models previously applied to problems of electron binding
in liquids and solids [2, 8-12] were based on the electronic adiabatic approxi-
mation. A recent treatment of environmental effects on Rydberg transitions
[20, 21] was however based on the one-electron approximation. These treat-
ments were essentially based on semi-classical electrostatic considerations. It
is desirable to consider the scope of applicability of these treatments.

A general formulation of the adiabatic approximation in molecular physics
[16] may be readily applied to the adiabatic separation of the motion of the additive
electron.
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Let ®¥(r;; r,) be a solution of equation (45). The actual wave equation is
given from (22)
[H—E(r,)]g=0. (22)

@ is expanded in the form
i 1) = 2PN (1) OV (isre)- (74)

This expansion should contain the contribution of the continuum states. By
substitution of (74) in (22'), multiplying by ®¥*(#;; r,), integrating over all
dr(i=1...5) and setting T,=p,2/2m, the following result is obtained:

[Te+e¥(r)— E(r)l" + %CN_\"‘/JN =0, (75)

where
Cay= = (G 1PV 39, + KoY | DS (76)

For a stationary state ¢¥ may be chosen as real, then

Can={$"|T.|6%)

and the eigenvalue problem is
(Tt ¥+ (7T ) — E(r )Y+ 3 Cyyip™ =0. (757
N#EN
A certain justification for neglecting Cyy in the present treatment can be obtained
by considering equation (49):

V(7 1) =V () + b (ris )+ (49')
Only a small part of ¢¥(r,; 7,) is dependent onr,. This correction term involves
the polarization effect of the additive electron on the medium electrons.

Thus Cyy={$s~ + ¢, ¥|T,|$;Y) which may be small almost everywhere.

In this treatment the coupling parameters Cyy.(N#N') are neglected.
Application of perturbation theory indicates that their influence may be negli-
gible if the electronic ground state of the medium is separated from all other states
by a large gap. These arguments will probably be completely wrong when 7, is
located within the core of the medium molecules. In this case the coefficients
Cyn- (all N') cannot be neglected.

The physical basis of the electronic adiabatic separation suggests that this
approach will be adequate when the frequencies of the motion of the medium
electrons are much higher than the frequency of the additive electron.
Thus the condition required is ¥ — > ¢, where ¥ is given by (45), ¢ is the
ground state electronic energy of the medium, and e the self-energy of the additive
electron is given by equation (63). For polar liquids (e.g. liquid ammonia) ¢
calculated on the basis of the adiabatic approximation is of the order of 1-2ev.
For liquid ammonia the excitation energy of the solvent molecule is of the order
of 5ev and the ionization energy 10ev. Thus it appears that the application of
the adiabatic approximation to problems of electron binding in polar liquids is
not a priori justified. On the other hand the binding energies of an additive
electron in polar crystals is much lower, being of the order of E=0-13 ev in NaCl
[22]. In this case the application of the adiabatic approximation has a more
sound physical basis. Another difficulty involved in the present formulation
of the electronic adiabatic approximation is the neglect of exchange. This effect
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will be again of importance in the vicinity of the cores of the medium particles.
This omission of exchange may give rise to too extended charge distribution of
the additive electron.

The one-electron approximation is based on the picture of every electron
moving in the average field of other electrons. This assumption is certainly
adequate for the trapped electron, but in certain cases may be inadequate for the
core electrons. The correlation term is not properly accounted for in this
approach.

The one-electron approximation is free from this difficulty of the existence
of a constant divergent integral obtained by the electronic adiabatic treatment.
It thus appears that the adiabatic approximation will be inadequate for the treat-
ment of the photoelectric effect. This difficulty could however be removed by
applying a hole model which implies electron binding in a trapping centre
consisting of a spherical cavity in the dielectric medium.

According to the continuous dielectric models the major difference between
the adiabatic and one-electron approximations is due to the different treatment
of the electronic polarization in these two cases. This is reflected in the results
obtained for vertically excited states. In the one-electron approximation the
nature of the many-body problem is also reflected in the wave equation for the
excited state which is a self-consistent problem. In the adiabatic approximation
the excited state energy is determined only by the ground state charge distribution.

Another interesting point involves the usual separation of electronic and
nuclear motion. In the present treatment the static approximation [23] was
employed, and the interaction between nuclear and electronic motion was
neglected. For extremely loosely bound electrons in crystals the application of
the Born-Oppenheimer approximation is open to criticism. However, for
electrons bound in polar solvents the binding energy of the additional electron is
sufficient to make the static approximation applicable.
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