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This paper considers environmental effects both on the ground-state 
charge distribution and on the different energy levels of a hydrogen atom. 
The medium is represented by a continuous dielectric, and the effect of 
the polarization of this medium is computed, using both a simplified self- 
consistent-field variational treatment, and also a perturbation calculation. 
The dielectric effects of the medium are compared with similar results based 
on discrete molecular models, taking into account both dispersion and overlap- 
repulsion forces. The dielectric effects on the ground-state charge distribu- 
tion are of the same order of magnitude as the effects due to dispersion forces. 
The dielectric effects on Rydberg-type electronic transitions lead to blue 
shifts. This conclusion is in agreement with some recent experimental 
results. 

1. INTRODUCTION 

T h e  per turbat ion of the energy levels of an atom or a molecule by a com- 
pressed gas, a solvent or a solid can in certain cases by treated by the use of a 
continuous dielectric model for the surrounding medium [1, 2]. One condition 
for the adequacy of this t reatment  must  be that the penetration of the charge 
of the t rapped atom into the medium is sufficiently great as to make the bulk 
properties of the medium applicable. This  approach, using bulk properties, 
is based on the assumption that the perturbing effect of the medium is mainly 
due to long-range interactions. 

Several related phenomena are involved. Thus  the presence of the surround-  
ing medium affects the charge distribution of a t rapped hydrogen a to m - -a  
situation that can be investigated experimentally by the use of electron-spin 
and nuclear magnetic resonance techniques [3, 4]. Further ,  a s tudy of environ- 
mental  effects on the energies of optical absorption frequencies yields information 
concerning the relative shifts of two distinct energy levels, when the nuclear 
configuration is always that of the ground state of the system. Finally, the 
dielectric medium model may be applicable for Rydberg- type transitions in the 
ultra-violet, when excitation of a bound electron causes a considerable change 
in the overlap of the charge-cloud with the medium. When  it is realized 
that for a hydrogen atom the mean radius in a state of principal quantum number  
n is almost proportional to n 2, it is clear that Rydberg transitions would be 
expected to show this effect in a pronounced manner.  

In  the present work we consider environmental  effects on the charge distri- 
but ion and excitation energy of a t rapped atom, here taken to be hydrogen.  
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452 J. Jortner and C. A. Coulson 

Application of the continuum model will invoh'e a semi-empirical reduction of a 
complicated many-electron problem to a one-electron problem. We shall 
conclude with a comparison of the results predicted by a dielectric model with 
those due to dispersion and short-range repulsion forces. 

2. APPLICATION OF DIELECTRIC MODEL TO THE GROUND STATE 

To simplify the calculations we consider the environmental perturbation 
of the energy levels of atomic hydrogen. Our model (figure 1) is that of an 
H atom located at the centre O of a spherical cavity of radius Ro in a continuous 
dielectric. The properties of this medium are specified by its static dielectric 

P -e/" 

Figure 1. Model of dielectric medium, shown shaded, with atom at centre of cavity of 
radius Ro. 

constant Ds and its optical dielectric constant Dov. This latter is the high- 
frequency dielectric constant, corresponding to frequencies higher than those 
of the nuclear vibrations. The problem of the interaction energy between 
an additional electron and a dielectric medium has already been treated in 
relation to electron trapping in the solid [5, 6, 7] and liquid states [8, 9]. 

We start with the interaction between the electron, the H nucleus, and the 
medium polarization. As a result of the polarization induced by the field of 
the moving electron, the unperturbed electron-nucleus interaction v(r)=- 1/r 
(in which we use atomic units of charge and mass and length) will be diminished 
by the medium. For r>Ro the nuclear charge contributes -1/Ds dv(r)/dr 
to the electrostatic field. Also the polarization field of the medium is (1 - 1/Ds) 
q(r)/r 2, where 

is the fraction of charge within a radius r, and r is the wave function of the 
valence electron in the ground state. Here and later we are assuming spherical 
symmetry. 

Thus the total field acting on the electron in the ls-state is derived from 
a potential Vls(r), where 

1 dr(r) q(,) (2) 
- g r a d  V~(r)= Ds dr ~Sre  
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Environmental effects on atomic energy levels 453 

with the abbreviation, which we shall frequently use: 

1 
as = 1 - D--s" (3) 

Integrating (2) with the condition that V l s ( ~ ) = 0  , we have 

Vls(r)= Dsr as dr. (4) 

Assuming continuity of Vls(r) at r = R o ,  and setting 

p(r )= i - q ( r ) =  f~14~(r) ] ~ dr, (5) 

we obtain the final expression 

V l s ( r  ) = - -  - -4- a s  ( r ) r  -2 dr, r > Ro 
r 

_ 1 Fas (r)r -2dr ,  r<Ro .  (6) 
r ~ o 

The Schr6dinger equation may now be written down. It  is an integro- 
differential equation since the potential energy function Vls(r) itself involves 
the wave function according to (5) and (6). This eigenvalue problem may be 
solved by a restricted form of variational self-consistent-field technique [1, 7]. 
If  we begin with the one-parameter wave function 

~o(r) = ~ exp ( - txr ) ,  (7) 

where/x is yet to be determined, we soon calculate from (5) that 

p(r) = (1 + 2~r + 2/x2r 2) exp ( - 2/~r). (8) 

Then,  by use of (6), and dropping the suffix Is for the moment,  

1 (1 +/xr) exp ( - 2/~r) 
V(l~, r) = - - + as , r > Ro 

r T 

1 (1 + tzRo) exp ( - 2txRo) 
- I - a s  , r > R o .  ( 9 )  

r Ro 
The  wave equation is 

where 
w =  - v ( m  ,). (10) 

We solve this equation variationally, putting 

~ = ~ l ( r ) =  ~ exp ( - A r )  (11) 

and choosing )t so that 

dr=0.  (12) 

Self-consistency is now achieved by choosing/x in (7) so that the corresponding 
value of A determined from (12) is such that h=br This  gives the foIlowing 
equations to determine ;~ and E: 

h =  1 - a s~i-6 ~- x / n  •177 7- j exp ( -  4X), (13) 
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454 J. Jortner and C. A. Coulson 

E00=�89 + X )  exp ( - 2 X )  - ( 1  +~X+~X2+X 3) exp ( - 4 X ) }  (14) 

in which X=,~Ro and, as before, as= 1 -  1/Ds. 
More refined calculations could be made, choosing more complicated and 

flexible functions than the simple exponential (7). We have not made them, 
since although they would lead to a more accurate wave function and energy, 
it is most unlikely that they would significantly alter our main conclusions. 

The special case of Ro-- 0 is of some interest. It corresponds to the ' inter- 
stitial ion ' model, formerly treated using a somewhat different approach [7, 9]. 
Our present treatment leads to the results: 

~= 1 __ll~as, E(A):  ~A2-A+ sSasA. (15) 

The reference state in this system is a free electron located at infinite distance 
from the cavity, while the medium is polarized and produces the potential given 
by equation (6). 

An alternative method of getting the same results as in (6)-(14) is to use the 
general expression for the total energy V/of  the system consisting of dielectric 
medium plus trapped H atom. 

w=  j'Do' a., (16) 

where the dielectric displacement vector De satisfies 

div De--47r Ir ]2, (17) 

and then solving the variational problem 

8W=O for all 8~b such that | r 1 6 2  
! 

3. PERTURBATION OF THE GROUND-STATE ENERGY 

Let us define the perturbation energy of the ground state due to the dielectric 
medium as the energy change 

AE(1 s) -- EH(is ) -- E(A), (18) 

where En(ls ) is the energy of an isolated hydrogen atom in its ground state, 
and E(A) is given by (14) using the value of A given by (13). 

The dependence of AE(ls) on the parameter as is shown in figure 2. Dielec- 
tric effects appear to decrease the binding energy. For the ground state this 
effect decreases sharply with increasing Ro, and obviously depends on the total 
amount of the valence electron charge-cloud that penetrates into the medium. 
]'his effect is qualitatively similar to the effect of short-range repulsion forces 
between two ground-state hydrogen atoms. A comparison of the two energies 
is of some interest. It is well known [10, 11] that the interaction energy of two 
H atoms with randomly oriented spins can be estimated by using the concept of 
pseudo-valence forces. This mutual energy E(R), at separation R, is 

E(R) = 1 1E(R) + ~ ~E(R), (19) 

where 1E(R) is the energy of the lowest leg state of the H 2 molecule, and 3E(R) 
is the energy of the lowest aXu state. The use of spectroscopic data [17] for 
these two states yields the values presented in table 1. 

In order to obtain the total interaction energy by this means, the mutual 
pair energy shown in the table should be multiplied by the number of nearest 
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Environmental effects on atomic energy levels 455 

n e i g h b o u r  a t o m s  Z.  T h u s  in  a f a c e - c e n t r e d  c u b i c - s o l i d  t h e r e  are  t h ree  pos s ib l e  
si tes  [3]: a s u b s t i t u t i o n a l  s i te  for  w h i c h  Z =  12, an o c t a h e d r a l  s i te  for  w h i c h  
Z = 6 ,  and  a t e t r a h e d r a l  s i te  for  w h i c h  Z = 4 .  O t h e r  s i tua t ions  can  be  dea l t  
wi th  s imi la r ly .  

AE(Is) AE(2p) 
8 . I 

7 
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~ -3 

- 2  
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Y :'2J 
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0 0.5 

Figure 2. The dielectric effect on the energy levels of a hydrogen atom: Solid curves: 
the effect of the energy on the l s  ground state, calculated by the variation method;  
dashed curves: the effect on the energy of the 2p excited state, calculated by the 
perturbation method. Energies are in ev. 

Table 1. 

R and 2Ro 
(ao) 

3 
4 
6 
8 

E(R) 
(ev) 

0"123 
0"0268 
0'000628 

-0-000395 

AE(Is) 
(ev) 

0"862 
0'326 
0"044 
0"006 

Interaction energies for the ground state of H, using spectroscopic data (E(R)) 
and the dielectric model (AE(ls)) with Ds = 2. 
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456 J. Jortner and C. A. Coulson 

In comparing the values of E(R) with the dielectric medium values E(A) the 
chief difficulties are (i) the number Z of neighbours involved in E(R), and (ii) 
the unambiguous determination of the relation between R, the distance of the 
neighbour atom from the central atom, and Ro the cavity radius. It seems 
reasonable to identify Ro with one half the distance between the nuclei, 
setting 

Ro -~ �89 (20) 

This is the relationship adopted in table 1. It appears from this table that, 
when allowance is made for the factor Z, the perturbation energies resulting from 
the dielectric model treatment are of the same order of magnitude for small 
distances as the short-range repulsion forces; but for larger distances the 
dielectric model yields larger long-range repulsion forces. 

4. CHARGE DISTRIBUTION IN GROUND STATE 
We have already stated that the unpaired electron-spin density at the proton 

can be experimentally measured [3, 4]. Such data have recently been applied 
[3] to the theoretical evaluation of the interaction of ground-state H atoms with 
rare gas matrices [4]. It is of interest, therefore to see what density is predicted 
by our continuum model. As we shall show, the dielectric effect leads to 
expansion of the charge-cloud of the unpaired electron. 

This latter follows from (11) and (13), since 

I 4,(o) - -  and A<I .  (21) 
~r 

The relative change in the unpaired electron density at the nucleus is defined by 

[ ~b(0) ] 2 - I ~bo(0) I ~ (22) 
P = I 4,o(O) I 

where ]~bo(0)12=l/,r is the unperturbed density. Thus the effect of the 
medium is to cause a relative change 

pd = A a -  1. (23) 
Since A < 1, pd is negative. 

We must now compare this with the results of the discrete molecular model. 
If, as we shall suppose, the medium is non-polar, so that ionic effects need not 
be taken into account, we shall have to include both dispersion forces and 
overlap repulsion forces. An approximate expression for the perturbed wave 
function of the system of two interacting H atoms can be obtained from the 
general--and accurate--expression {see, e.g. reference [12] } for the perturbed 
wave function by inserting in it the Uns61d approximation. In this we replace 
all energy level differences by an approximate mean excitation energy E n. If  
the unperturbed wave function of the system is $o and if 4~ is the corresponding 
perturbed wave function, and H '  is the perturbation potential, then 

{ 1 , 1 _ (H,~)o0]) = 1 + ~ [H - (H')0o] + 4-fill 2 [(H') ~ ~bo. (24) 

For dispersion forces (H')00, which is the mean-value of the perturbation 
potential in the ground state, vanishes identically. 

Now the usual power-series expansion of H '  shows that we may treat it as 
zero on each hydrogen nucleus. Thus the unpaired spin density at either 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
T
a
n
d
F
 
t
i
t
l
e
s
]
 
A
t
:
 
0
8
:
4
2
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Environmental effects on atomic energy levels 457 

nucleus is given by 

I r ~ 1 - (H'~)~176 I s (25) 2EH2 j 1r 

correct to terms of the fourth order in H'.  But the van der Waals interaction 
energy is given by 

E v _  (H'2)00 
2EH 

Thus equation (25) shows that the contribution of dispersion forces to the 
relative change in spin density at the nucleus is 

z ( -  Ev'~ (26) 
pv= \ EH/" 

It  follows from (26) that the van der Waals forces cause a reduction in the 
charge density. Since the presence of these forces results in a partial excitation 
of the electron to higher energy levels, in which it is removed further from the 
nucleus, this reduction is not surprising. Our conclusions are similar to some 
results recently obtained by Adrian [4]. The main difficulties in relation both 
to the present treatment and that of Adrian, are (i) the doubt about the value of 
the coordination number Z, and (ii) the problem of the additivity of dispersion 
forces. These forces are additive in the approximation of second-order perturba- 
tion theory, which is as far as we have carried the analysis. But application of 
third-order perturbation theory does not lead to additive energies. It seems 
probable, however, that this error is not large in most cases of physical interest. 

Short-range repulsion forces are caused by the overlap between the charge 
density of the trapped H atom and the charge distribution of the particles which 
constitute the medium. This effect can be approximately allowed for by ortho- 
gonalizing the wave function ~bo of the unpaired electron to the wave functions 
of all the other electrons f t  of the medium. This is conveniently done by 
Schmidt's orthogonalization process. Thus, if ~h ~ is the orthogonalized wave 
function corresponding to r then 

r Ysif  
~b ~ = ' (27) 

/ \ 1 / 2  

in which Si is the overlap integral (fro I fi}. Equation (27) shows that ~b ~ 
mixes into ~bo small parts of the wave functions of all the electrons of the medium 
having the same spin. If the overlap integrals are small the contributions from 
the f i  are additive. 

Let us consider the interaction of the trapped H atom with a second H atom. 
Then for relatively large separations R, the change in electron density at the 
nucleus due to these exclusion forces is 

pe = S 2 - 2S exp ( - R). (28) 

Since pe > 0 for large R, this means that exclusion forces increase the charge 
density at the nucleus. 

The various relative effects--pal, pv, pe--are shown in table 2. In this 
table the dielectric value pa is calculated with Ds=2 .  

The results in this table indicate that, just as in the energy changes of table 1, 
the dielectric contribution to p is of the same order as that of the dispersion forces, 
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458 J. Jortner and C. A. Coulson 

and rather smaller than that of the overlap forces. But there are reasons for 
believing that our simple result (28) slightly over-emphasizes the exclusion 

R (or 2Ro) 
in c o 

Table 2. 

pa 

-0"081 
- 0.021 

-0'0027 

(1/Z)pv 

- 0.0164 
- 0.00296 
- 0.000768 
- 0.000257 

(1/Z)pe 

0-0865 
0.0287 
0.00794 
0.00199 

Relative changes in spin density at the proton. 

effect. For in some practical applications [4] for rare gases and molecular 
matrices containing trapped H atoms, their contribution to pe is smaller than in 
table 2. 

5. OPTICAL EXCITATION ENERGIES 

Vertical electronic transitions are subject to the restrictions of the Franck-  
Condon principle. This requires that immediately after the excitation the 
nuclear configuration of the medium is the same as in the ground state, whereas 
the core electrons of the medium have adjusted themselves to the new field 
resulting from the excited-state charge distribution of the trapped atom. This 
latter is not spherically symmetrical, because allowed transitions will be of the 
form ls+np. We ought therefore to deal with an effective potential more 
general than (9). This turns out to be rather complicated, so we shall make the 
assumption, entirely analogous to that usually made in atomic self-consistent 
field calculations, that the potential function Ve in the excited state is entirely 
spherically symmetrical. Without  this simplification the problem of true 
self-consistence is almost insoluble. 

So when calculating the wave function Cp and energy Ep in the excited state, 
we use the potential function (c.f. (4)) 

Ve(r)- Dsrl ( 1  ~ /)sl) fi q,s(r)r-  dr 

( 1)c 
- 1 - ~  drqp(r) r -2dr, r>Ro, (29) 

where the charge distribution qp in the excited state is given, as in (1), by 

qp(r)= f i  l cp12 4~r'~ dr. (30) 

The second term in (29) arises from the nuclei of the medium, whose polarization 
is still determined by the ground-state electron density; but the third term 
comes from the electronic polarization associated with the excited-state electron 
density. 

We may write (29) in the form 

f> r>Ro, Ve(r)=--l+ ~ s - ~ o p .  ( ) dt 1 r  12d~ - 
r t 

+ ~ov t -2 dt ]Ce [2 dr, 
r . t 
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with 

1 + (a s -  ~op) t 2 d t  [ r 12 dr r < R o ,  V e ( r )  = - r 

+ aop t -~ dt ICe [2 dr, 
J R  o t 

(31) 

~op = 1 - 1/Dop, as = 1 - 1/Ds. 
We have made some calculations for the ls-+2p transition, employing the 

perturbation technique proposed by Coulson and Brown [1], who showed that i f  
we write 

Ve(r) = - 1 + V~ert, 
r 

then we may calculate Vpert on the supposition that in the integrations of (31) 
~e is given its unperturbed form, and then u s e  Vpert as a perturbation. For  
reasonable values of the cavity radius Ro the resulting error was small, and almost 
certainly much smaller than that due to inadequacies in the whole model. 

We choose for ee the normalized one-parameter radial wave function 

r ~ r e x p ( - v r )  with v=�89 (32) 

The  perturbation potential gpert due to the medium becomes 

,1 + Ar exp ( - 2vr) (33) Vpert(r) = (as - aop)--7-- exp ( - 2•r) + aop 1 + ~vr + v2r: + ~var a 
r 

for r > Ro. The  value for r < Ro is obtained from (33) by simply putting r = Ro 
in the formula. Thus  the perturbation energy is 

AE(2p)= f ~~ ~b2p [2Vpert(Ro) dr + f R~ ~b2p ,~Vpert(r) dr. (34) 

Numerical calculations using this formula have been carried out for a non-polar, 
medium, and are shown in figure 2 for various values of the cavity radius R~ 
and for 1 - 1 / D s  varying from 0 to i and with Dop =Ds.  The environmental 
effect on the transition energy AEtr~n s is obtained from 

AEtran s = AE(Is) - AE(2p). (35) 

The dependence of AEtran s on Ro for Ds = Dop = 2 is given in figure 3. Th i s  
shows that for relatively large Ro the medium exerts a larger influence on the 
excited state than on the ground state. There is a blue shift for Ro > l'5ao. 

6. H I G H E R  EXCITED STATES AND PHOTOIONIZATION 

We have treated the problem of higher excited states by considering a non- 
polar medium for which Ds=Dop,  and so as=~op. In this case the second 
terms in (31) vanish identically, so that (31) is effectively the same as (6). This  
implies that, unlike the situation when as r aop, there is no subsequent relaxation 
of the medium polarization, following the vertical excitation. We may therefore 
say that the energies of the vertical and equilibrium transitions are the same. 

It  is not easy to decide on suitable wave functions ~be for the excited states, 
though we still adhere to the approximation of spherical symmetry.  But  
probably good insight will be obtained if we adopt Slater-type atomic orbitals. 
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4"60 J. Jortner and C. A. Coulson 

These are defined by 

~be= Nr" - l  exp ( - c r ) ,  c= l/n,  N2= (2/n)2"+1 (36) 
41r(2n)! " 

a EeV 
5 

! 
- 1 1  t ] I 

0 1 2 3 

L 

I l 1 
4 5 o 

I~o a . u  

Vnp(r)= - r  + -~oo , r > Ro 

r>Ro.  
1 

- Door, (39) 

This particular potential function (39) has been used earlier by Reiss [13] to 
study the ionization processes of atoms trapped in silicon and germanium. 
If we adopt the first-order perturbation approximation, this potential (39) 
leads to an energy change AE given by 

AE= " ~  - 2cRo)fl ' 2 ~  j(ecRo)2.-j~-] RoL e x p ( -  ~ + i ~  ~ ; J "  (40) 

2.-J (2ct)~-i'~ 
p(t) = exp ( -  2ct) 1 + ~ (38) 

~=t (2n - j )  U" 
For r< Ro ,  the lower limit r in the integral of (37) is replaced by Ro. In the 
limiting case as n-+oo, p(t)-+l and the potential function reduces to the simple 
]Corm 

with 

Figure 3. The dielectric effect on optical transition energies when D s =Doo = 2. Open 
circles: transition 1 s-->2p ; full circles: photoionization process from the ground state. 

This leads to 

1 + Sop dt, r >Ro (37) Vndr)= - ;  
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E n v i r o n m e n t a l  effects on atomic  energy levels 46I 

We have made a comparison of the energy changes predicted by Reiss' 
model, using the approximate potential (39), and the complete dielectric 
treatment, in which the polarizing effect of the valence electron is taken 
into account. It is not worth while to report these calculations in detail. 
Their conclusion is that the approximate potential (39) seriously overestimates 
polarization effects in the medium when the atom is in its ground and first 
few excited states. Thus the use of a potential which does not incorporate the 
polarization of the dielectric by the central electron appears not to be justified. 

Our treatment based on the dielectric model, and taking account of the 
polarization of the medium by the centrally bound electron, indicates that the 
energy of a vertically excited state is determined partly by the charge distribution 
in this excited state. But for the potential well which is represented by equation 
(37) when n--~ov, the binding energy in the excited state is zero. Thus the 
changes in photoionization energy will depend upon the environment, through 
its influence on the ground state. This influence is shown graphically in figure 3. 

7. COMPARISON WITH OTHER EFFECTS ON THE EXCITATION ENERGY 

We shall now return to a more complete discussion of the dispersion energy 
effect upon optical transitions. It is well known that dispersion forces usually 
lead to red spectral shifts [14, 15]. This is because the interaction energy 
between the trapped atom or molecule in its excited state and the medium is 
usually higher than in the ground state, leading to a displacement of the electronic 
transition energy to longer wavelengths. Unfortunately any accurate treatment 
of dispersion forces between an atom in a Rydberg-type excited state and another 
atom in its ground state is complicated by the fact that the interaction forces 
are not strictly spherically symmetrical. However, Margenau [21] has derived 
an appropriate expression for this interaction potential. He shows that it is 
positive if the mean excitation energy of the perturbing atom is smaller than the 
excitation energy of the trapped atom. In that case dispersion forces will lead 
to a blue shift. 

An alternative to the use of Margenau's formula is to estimate the interaction 
energy using Buckingham's expression [16] for the dispersion force energy Ev 
between two atoms A and B in any chosen states a distance R apart. The: 
formula is 

E v -  4~~ "~ ,,b ( / ~ ( ~  9R 6 Z Z - -  - -  (41} 
i=1 j = l  r i 2 + r j  2 ' 

where na and nb are the total numbers of electrons in the interacting atoms,, 
and r 2 is the mean-square radius for an atomic orbital. For Slater orbitals (16) 

r 2 = ln~(2n  + 1)(2n + 2)ao 2. (42) 

For the case of two hydrogen atoms however there is no difficulty in calculat- 
ing the necessary polarizabilities to use in the conventional London expression. 
We show in table 3 a comparison between the spectral shift AEo due to dielectric 
medium polarization (for the case of Dop=Ds=2)  and the dispersion shift 
A E v .  This is given per neighbour, and so requires to be multiplied by the 
number of nearest-neighbour atoms to the trapped one. Red shifts are repre- 
sented in this table by a positive sign, and blue shifts by a negative one 
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This  table indicates that at relatively small distances (up to 6ao) the red 
shift due to van der Waals' forces is numerically of the same order of magnitude 
as the blue shift due to dielectric polarization. But at larger distances the 
dielectric effect is appreciably higher. 

R(or 2Ro) 
(ao) 

4 
5 
6 
8 

10 

AEd 
(ev) 

-0-551 
-0-570 
-0.592 
- 0.443 
-0.251 

mE v 
(ev) 

- 0.692 
0.179 
0-0619 
0.0106 
0.0028 

Table 3 .  Comparison of spectral shifts caused bv dielectric effect (z~Ea) and dispersion 
forces (AEv) for a ls--*2p transitiont. 

The  effects of overlap forces on the transition energy have been treated in 
some detail by Coulson and Polansky [2, 18] on the basis of a perturbat ion 
model. These  results, which are as yet not fullv published, predict  a blue shift 
at relatively small distances (for which R < 4ao). 

8 .  EXPERIMENTAL EVIDENCE FOR LONG-RANGE REPULSION FORCES 

It appears f rom the foregoing analysis that dielectric effects may lead to blue 
shifts caused by long-range interactions, and that these are too high to be attr ibu- 
ted to short-range repulsion forces. Some experimental  data seem to confirm 
this conclusion. Thus  blue spectral shifts have been obtained for benzene and 
for the 1Lb transition of naphthalene, when per turbed by helium at high pressures 
[19]. These  effects could not be at tr ibuted to dispersion forces which are higher 
for the excited state of benzene than for the ground state, when it is interacting 
with helium. They  were therefore assigned to long-range repulsive forces. 

Blue shifts have also been observed [20, 22] for the HglS0~aP1 transition 
in the gas phase, when induced by He and by H2 at high pressures. Originally 
[20] the low-density linear blue shift of the Hg absorption band in the presence 
of He was at tr ibuted to dispersion forces. It was then necessary to assume 
that  these were higher for Hg in the ground state than in the excited state. 
However  these assumptions now appear to be at variance with the calculations of 
Margenau [21] on the effect of such dispersion forces with Hg-rare  gas inter- 
actions. More  recently still, blue shifts have been reported for the same 
transition of Hg in rare gas matrices of A, Kr  and Be at 4-2~ and for the 
2S1/2--->2P1/2, ai2 transitions of Na in an argon matrix at the same low temperature  
[22]. It  is possible to provide an interpretation of these effects in terms of our 
dielectric effect, for the blue shifts due to the dielectric effect are usually 
superimposed on relatively large red shifts due to dispersion forces. We should 
therefore expect a net blue shift to be manifested in media of low polarizability, 

J'The calculations of AE~, in table 3 were made using Buckingham's expression 
[16] for the dispersion force. Alternative approximations, or--in this simple case--the 
use of exact polarizabilities, could introduce factors of the order of 2. But such factors 
are irrelevant for our present purposes. 
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and in transitions of low oscillator strength, when the effect of dispersion 
forces is relatively small. The latest experimental evidence is in agreement 
with this view. But of course it cannot yet be said to confirm in it detail. 

9. CONCLUSIONS 

We have given evidence in the preceding paragraphs to support the view that 
the energies of the ground and excited states of an atom are affected by 
the presence of a surrounding medium by virtue of three quite distinct factors. 
These are dispersion, overlap repulsion and medium polarization effects. So 
also is the charge density at the nucleus of the trapped atom. Simple calculations 
showed that in many cases the dielectric-medium contributions were of the 
same order of magnitude as the others, and ought not therefore to be 
excluded. These calculations were simple ones, involving merely a s ingle 
hydrogen atom, but  there is no reason to suppose that the situation would be 
very different if larger atoms and molecules, for which we have only much less 
accurate wave functions, were used instead. It is our opinion that these present 
calculations have shown the importance of the dielectric effect, and represent 
about as far as it is worth proceeding with such very general analysis. What  
is now needed is a more careful study of a limited number  of particular cases, 
in which considerable effort would be available to improve substantially on 
the approximate treatments used in this paper. Only then would it become 
possible to state with certainty what is the relative importance of our three 
factors. Finally, we have neglected all exchange and charge-transfer effects. 
These may be important at small distances, but  will be expected to be small 
at large ones. With molecules there will also be quadrupole forces, as is shown 
by the pressure-induced transitions of gaseous hydrogen. 
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