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In this paper we consider some features of vibrational relaxation of a guest 
molecule in a host matrix. The model system involves a harmonic molecule 
interacting with a harmonic medium. The molecule-medium coupling was 
handled by the rotating wave approximation considering linear terms in the 
intramolecular displacements and high terms in the medium displacements. 
Three specific models for the molecule-medium coupling were considered, 
which involve single phonon decay, vibron-phonon decay and multiphonon 
decay. Within the framework of the random phase approximation the 
Heisenberg equations of motion for the system could be expressed in terms of 
a unified scheme which is valid for both single phonon and multiphonon 
processes. Explicit solutions were derived utilizing the Wigner-Weisskopf 
approximation. This generalized formalism was applied for the study of the 
time evolution of the distribution, the cooling and the heating processes of the 
oscillator by a thermal field and for the coupling between vibrational 
relaxation and infra-red emission. 

1. INTRODUCTION 

This  paper is concerned with the problem of vibrational relaxation of a vibra- 
tionally excited or electronically and vibrationally excited molecule in a dense 
medium. Non equilibrium vibrational distributions in ground or in excited 
electronic states can be prepared by several methods : (a) infra-red excitation in 
the ground state [1 ], (b) Raman scattering resulting in a vibrationally excited ground 
state [2], (c) Optical excitation to electronically-vibrationally excited states [3], 
(d) Electronic relaxation from an electronically excited state of a large molecule to 
highly excited vibrational levels of a lower electronic configuration [4], (e) Electronic 
energy transfer from the host matrix or from an excited donor atom to electroni- 
cally-vibrationally excited states of an acceptor molecule [5]. To  date, several 
experimental spectroscopic methods have been applied for the study of vibrational 
relaxation, which involve spontaneous Raman anti-Stokes scattering [2], time 
resolved absorption [4 (b)], time resolved emission [6], and the recently developed 
techniques of picosecond spectroscopy [7, 8], all of which are applicable to monitor 
molecular vibrational relaxation in a dense medium. 

To  describe the features of vibrational relaxation of a guest molecule in a host 
matrix we shall adopt the simplest possible picture involving a harmonic molecule 
interacting with a harmonic medium, which is represented in terms of a phonon 
bath. The  molecule-medium coupling will be recast in any order in respect to 
the medium displacements. 

The  problem under consideration is closely related to vibrational relaxation of a 
localized vibration in a crystal due to anharmonic interactions, which was previously 
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714 A. Nitzan and J. Jortner 

handled utilizing perturbation theory [9]. For the general problem of the quantum 
behaviour of a harmonic oscillator subjected to linear coupling with a ' loss 
mechanism' one can directly solve the Heisenberg equations of motion for the 
coordinate and momentum [10] (or for the creation and annihilation operators 
[11, 12]) of the oscillator. This approach was introduced by Senitzky [10] and 
has since then been extensively utilized in quantum electronics, in particular, in 
relation to the problems of the dynamics of coherent quantum states [12] and noise 
in lasers [13]. Similar techniques were applied in solid state theory for the study 
of neutron scattering [14] and anharmonic phonon relaxation [11]. 

In the present study the effect of the molecular oscillator on the medium is 
considered as a small perturbation, but the effect of the medium on the oscillator 
is handled to 'infinite order '  within the framework of the Wigner-Weisskopf 
approximation [15], as applied to the Heisenberg equations of motion for the opera- 
tors of the molecular normal modes. We were able to demonstrate that within the 
framework of the random phase approximation (RPA) the features of the vibrational 
relaxation for a general molecule-medium interaction can be described in terms of 
a unified set of equations of motion, and we were able to provide a general solution 
for these equations. Our general approach will be then applied for the study of 
several specific cases which were previously handled [10-14, 16] only by the use of 
special models (i.e. linear or anharmonic coupling) for the molecule-medium 
interactions. 

2. MODEL SYSTEM 

We consider a harmonic polyatomic molecule where each mode is specified by 
the creation operator %+, the annihilation operator a/~ and the frequency ~ .  The 
molecular vibrational hamiltonian is thus 

H m = ~ hoJuat,+ %. (2.1) 

The medium is described in terms of a set of harmonic oscillators, each of which 
is characterized by the frequency oJ, and by the creation and annihilation operators 

,g 

tO 

E 

g i 

, o ~  ~  = ~ . , . /  ~ c u p .  ~ y 

Phonon states Vibron-phonon 
States 

Schemat ic  dens i ty  of states in a p h o n o n - v i b r o n  system, cod is the  Debye  f r equency  of the  
p h o n o n s ;  ~o~? is the  v ib ron  f requency,  o~p. cor responds  to an in t ramolecu la r  
f r equency  of a gues t  molecule.  
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Vibrational relaxation of a molecule in a dense medium 715 

b~ + and b~. The density of states of the medium frequencies (figure) will be 
denoted by p~ = p(%). Thus the zero order medium hamiltonian is 

HL= y " ?uofl +b~. (2.1 a) 
v 

The total hamiltonian of the system is 

H= Hm + HL + HmL , (2.2) 

where HmL denotes the molecule-medium coupling. 
At this stage we shall invoke the following simplifying assumptions : 

(a) Each molecular oscillator decays into its own phonon bath, whereupon the 
molecular vibrations are not coupled to each other via their interaction with the 
medium. 

(b) The molecule-medium coupling is linear in the molecular displacements. 
Interaction terms of the form 

( ~  a~a~, b~+h. c) 

which lead to medium assisted intramolecular energy redistribution, will be 
disregarded. 

Thus  the mathematical formulation of the problem is reduced to a single 
harmonic oscillator (characterized by the creation and annihilation operators a + 
and a, respectively, and by the frequency oJ) interacting with the phonon bath. 
The Hamiltonian for this system is 

H = hom+a + y. h%b~+b~ + HmL (2.2 a) 
v 

(c) The interaction term HmL will be recast in terms of the rotating wave (or 
resonant) approximation [17]. The rotating wave approximation corresponds to the 
replacement of the hamiltonian for a system of linearily coupled oscillators 

H= ~i h~ +ai + �89 + ~ hGij(ai+ + a')(a~+ + aj) (2.3) 

(where ai+ and a i now represent the creation and the annihilation operators of the 
ith oscillator characterized by the frequency oJi, while Gij are the coupling con- 
stants), by the approximate hamiltonian 

H=~/ko i (a i+a i+  �89 + ~ hG,~(ai+ai+aiaj+ ). (2.3 a) 

Thus terms of the form ai+aj+ and aiaj are neglected. The argument [17 (a, b)] 
justifying this approximation is as follows : the free time evolution of the terms 
neglected in (2.3) is 

aiajoc exp [-i(r ; (2.3 b) 

ai+aj + oc exp [i(oJ~ + wj)t] J 
while the operators of the form aia~+ retained in (2.3 a) exhibit the time evolution 

aiaj+oc exp [ -  i(wi-%.)t ]. (2.3 c) 
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716 A. Nitzan and J. Jortner 

When the coupling terms Gij are sufficiently small, transitions will take place on a 
time scale which is long relative to the rapid oscillators of the terms (2.3 b). These 
neglected terms undergo many oscillations on the time scale of interest, whereupon 
their average value is expected to be small, as compared to the average value of the 
slowly varying terms (2.3 c). Thus the high frequency off resonance terms are 
neglected retaining only the near resonance low frequency contribution. Detailed 
numerical calculations [17 (c)] have demonstrated that the rotating wave approxi- 
mation is adequate provided that Gij/o~ ~,.~ Go/oJ i <~ 0.5. In the case of vibrational 
relaxation this condition is always satisfied. 

Up to this point we have been concerned with linearily coupled linear oscillators 
(equation (2.3)). In what follows we shall adopt the rotating wave approximation 
in the general sense, assuming that under the conditions of sufficiently weak coupl- 
ing one can neglect high frequency terms which will average out on the time scale of 
interest. 

Three simple model hamiltonians will be advanced to account for the medium 
induced vibrational relaxation of a single vibrational mode : 

Case A : Single phonon decay. The molecular oscillator interacts with the 
medium via linear terms in the medium displacements, so that the interaction term 
is 

HmL = Z h(C~a+b~ + G~*ab~+) , (2.4 a) 
v 

where G~ is the coupling parameter with the uth phonon mode. This interaction 
hamiltonian was extensively studied by Glauber and others [12, 16]. The 
interaction (2.4 a) is adequate provided that the molecular frequency oJ overlaps 
the frequency spectrum of the oscillator, i.e. p(oJ) # 0. If this condition is violated, 
this interaction term does not conserve energy. For the relaxation of molecular 
frequencies (oJ~ 100-3000 cm -1) in a monoatomic lattice (%max~ 100 cm -1) the 
single phonon decay model is usually inadequate. 

Case B : Double phonon decay. We consider vibrational relaxation in a h o s t  
matrix consisting of polyatomic molecules. The vibrational states of the medium 
involve a continuous spectrum of low frequency phonon states and ' isolated ' high 
frequency intramolecular vibrations which form narrow vibrational ' exci ton '  
bands (see figure). These high frequency medium modes, which will be referred 
to as ' vibrons ', cannot be considered as an effective decay channel for intra- 
molecular vibrations. However, low frequency medium phonons superimposed on 
a single medium vibron may provide us with a legitimate dissipative continuum 
which overlaps the intramolecular vibrational frequency. The interaction 
hamiltonian is now 

HmL = h Z ~ (G~va+b~% + G~v*ab.+c~+) , 
v "q 

(2.4 b) 

where c + and c represent the vibron creation and annihilation operators, and G~, 
corresponds to the two phonon coupling term. 

Case C : Multiphonon decay. The general form of the interaction within the 
framework of the rotating wave approximation can be expressed in terms of a 
multiphonon (i.e. n phonon) decay process. 
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Vibrational relaxation of a molecule in a dense medium 717 

HmL = a + ~ hGvl~ ... bnb~ ~ ... b~ n 
vl, v2~ . . .  v n  

+ a X hG~,~. . ,  bn+b~+.., b~= +. (2.4 c) 
vx~ v2 . . .  v n  

vx  : / :  v~  r  v n  

We have disregarded in equation (2.4 c) the terms which involve two or more equal 
indices in the medium phonon modes. This approximation is entirely justified 
as the number of these neglected terms in a continuous phonon spectrum is 
relatively small. It should be noted that from the formal point of view, case B is 
just a special example of case C. We have made a distinction as cases B and C 
correspond to different physical situations. 

To complete the exposition of the model system two further simplifying assump- 
tions will be introduced : 

(d) The medium states do not change appreciably during the relaxation process. 
The thermally averaged occupation numbers of the phonon or vibron modes 

(n~)T:  [exp (3rio.,.)- 11 -x (2.5 a) 
and 

(n~) w = [exp (fl/k%)- 1] -t, (2.5 b) 

where ( )w denotes thermal average and f l = ( k B T )  -1, provide a good approxima- 
tion for the medium states throughout the relaxation process. 

(e) The random phase approximation (RPA) [18] will be utilized to simplify 
the equations of motion. As we have assumed (see (d)) that the medium states 
are not appreciably affected by the relaxation process we shall replace the products 
of the medium boson creation and annihilation operators by the appropriate 
ensemble thermal averages. This approximation neglects the contribution of 
innumerable terms corresponding to off diagonal elements which are randomly 
out of phase with one another. The RPA method involves a generalized self 
consistent field procedure [18] which incorporates the effect of the average oscil- 
latory field of the medium particles. Applying the RPA to the problem at hand 
we replace the products of boson creation and annihilation operators by the appro- 
priate thermal averages, so that 

RPA 
b~,b~ +.- > 3~,(<n~>w + 1), (2.6 a) 

RPA 
c~,%+ , $~,((n~)w + 1) (2.6 b) 

and 
R P A  

b~+b~, .- > 3~,(n~)T, (2.7 a) 

R P A  
c~+c~,-------~3~,,(n~) T. (2.7 b) 

3. TH~ m~LAXATION VaOCESS 

3.1. Equations of Motion 

The equations of motion of the creation and annihilation operators (in the 
Heisenberg representation) for the three relaxation models outlined in w 2 can be 
written in a straightforward manner. 
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718 

3.1.1. 

A. Nitzan and J. Jortner 

Single phonon decay 

d = (i/h)[H, a] = - k o a -  i ~. Gyb,,, 
v 

by = (i/h)[H, by] = - i % b , -  iGy*a. 

(3.1) 

(3.2) 

3.1.2. Two phonon decay 

d = - i toa -  i ~ Gyvb~%, (3.3) 
Vj ~7 

by = - iz%b. - i ~ G,w*a%+, (3.4) 
77 

e~ = - iw,~c,~ - i E G,,~* ab~ + (3.5) 

We shall also require the time evolution of the product of the medium operators 

d 
(b,%) = (i/h)[H, b,%] = (i/h){[H, b , ] % -  by[%, H]} 

= b.G + b/~ = - ~ . b ~ % -  i ~ G.~.*a%,+c~- ioJ~b.%- i E G..~*ab.b.. (3.6) 
, Vn 

Invoking now the RPA and utilizing equations (2.6) and (2.7) we get 

d 
d~ (b"G ) = - i(o)~ + % ) 6 . % -  iG,,~*( ( n . )  T + <n,i) + 1)a. (3.7) 

3.1.3. Multiple decay 

The hamiltonian is now 

H=hom+a+~ hco.b.+b.+~, h [G{v}a + I-I b.+G*{v}a ~ b.+], 

where we denote phonon sets by {v} = 1, 2 ... N. 
a r e  

= - koa - i --~ --.G(v}IIb,, d 
{,,} 

b., = ( i /h) [n ,  b.,] = - i~o.,b.,-  i E a * { . } a  1-I b.+ 
{ v - l }  v ~ v '  

and 

(3.8) 

The relevant equations of motion 

(3.9) 

(3.10) 

d 

where we denote {v}= {v-1}v' .  
Utilizing equations (3.8), (3.10) and (3.11) we have 

a 

t . { v - l }  v~:v' ..J 

(3.11) 

(3.12) 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
T
a
n
d
F
 
t
i
t
l
e
s
]
 
A
t
:
 
0
8
:
1
2
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Vibrational relaxation of a molecule in a dense medium 719 

Invoking again the random phase approximation (equations (2.6) and (2.7)) we get 

... (n,,_l}[(n,,+l}+ 1 ] ... [(n2v}+l]G{*v}] a, (3.13) 

where the index T in ( }T has been omitted. 
From equations (3.1)-(3.8) we conclude that the three different cases for vibra- 

tional relaxation considered herein can be described by the following unified 
hamiltonian : 

H = hwa+a + Z h%b~ +b, + Z (G,Bv a+ + G,,*B, +a) 
v v 

(3.14) 

and by the following set of linear equations of motion in the Heisenberg represen- 
tation 

where the number n, is 

~i= - iwa- i ~, G,B,, (3.15 a) 
v 

[3~ = - iz%B.- in~G~*a, (3.15 b) 

n, = ([B,, B,+]}T. (3.16) 

Thus, for case A, B.=b~, G v = G .  wv--% and n ~ = l ;  for case B, B.=b~%, 
G~=G~, w,=w~+% and n~=(n~)+(n~)+l; while for case C, B,=Hb~, 

v 

Gv=G{v}, w~=~w~ and nv=~(nl) (n~) . . .  (nv,_l)((nv,+l)+l) ... ( ( n u ) + l ) .  
v v" 

We can now proceed to consider the solutions for these unified equations of motion 
without referring to the specific models. The decay characteristics for the three 
interaction models considered by us will have the same functional form. 

3.2. Solutions of the equations of motion 
The set of the equations (3.15) has been studied by Gordon et al. [17(a)] in 

their treatment of quantum statistics of masers and attenuators. We shall provide 
a slight generalization of their solution. The essence of the treatment [17 (a)] is 
that equation (3.15) involves only commuting operators. Thus, for the purpose of 
the mathematical manipulations these operators may be handled as simple c 
functions. Defining the Laplace transforms 

a(s)= ~ exp (-st)a(t) dt, 
0 

B,(s)= ~o exp ( - s 0 B , ( t )  dt J 

(3.17) 

we have 
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720 A. Nitzan and J. Jortner 

S exp ( - st)d(t) dt= sa(s) - a, 

5 exp ( - st)B~(t) dt= sBv(s ) -  By, 

where a=a(0)  and Bv=B,(0 ) are the corresponding Schrodinger 
Equation (3.15) now yield 

(3.18) 

operators. 

sa(s) -- a = - icoa(s)-- i E G,Bv(s), 
w 

(3.19) 

sBv(s ) - B v = _ icovBv(s ) -  iG *nva(s ). 

From equation (3.20) we obtain 

iGvBv(s)=i Gv B,  ICvl~v a(s). 
s+imv + s+z~ v 

(3.20) 

(3.21) 

Inserting this result into equation (3.19) we get 

iC, l c.B  a(s)[s-l-ko-l-~ s -~ - : -~ . . l=a- iX  v s+ix% 

which may be recast in a more transparent form 

a(s)  = u(s)a + X vv(s)Bv' 
V 

where 

and 

1 
, , ( , , )  = 

IGvl nv 
s+i zo+~ s+izOv 

(3.22) 

(3.23) 

(3.24) 

- iGv 
v~(s) (3.25) 

Taking now the inverse Laplace transforms we may write equation (3.23) in the 
form 

a(t) = u(t)a + Z v,(t)Bv (2.26) 
V 

with the functions u(t) and v.(t) being given by 

and 

1 ~ +ic 1 
u(t)=2-m" ~+i~ dy exp (iyt) (3.27) 

- y + o ~ - ~  IG" IZn" 
y+COv 

1 oo +i, Gv 
v,(t)=~--~ -oo+i,S dyexp( iy t )  (y+cov) [ y + o ~ - ~  IG'I~" 7 (3.28) 

y+c% j 
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Vibrational relaxation of a molecule in a dense medium 721 

and where we have defined s = iy. At this point Gordon Walker and Luisell apply 
a somewhat oversimplified procedure in order to evaluate transforms (3.27) and 
(3.28). The rigorous mathematical procedure which has been provided by 
Goldberger and Watson [19], yields the following results 

u(t) = exp [ -  iw ' t -  7t], (3.29) 

- iGv 
Vv(t) = i (w ' -  o~) - y [exp ( - ~ , t )  - exp ( - io~'t- fl)], (3.30) 

where the modified oscillator frequency is 

w '=oJ+  &o. (3.31) 

In equations (3.29)-(3.31) we have defined the level shift &o and the level width y 
by the relation 

& o - i y = l i m  ~ ]Gv}Z% (3.32) 

so that 

&o=PP E ]G'[~n', (3.33) 
v r 1 6 2  

~,-- II y~ I G ~ l ~ ( o ~ - ~ O v ) .  (3.34) 
v 

To conclude this formal discussion it is important to mention the normalization 
condition (sum rule) for the functions u(t), equation (3.29), and v(t), equation 
(3.30), 

lu(t)]~+E [%(t)lz%= 1 (3.35) 
u 

which insures (within the framework of the random phase approximation) that 
the commutation rule [a(t), a+(t)] = 1 holds at every instant t. To demonstrate 
this point we make use of equation (3.27) to get 

[a(t), a+(t)] = [ua + ~ vvB v, u*a + + ~ vv*B, +] 
v v 

R P A  

= lull+ E B,,] = lul +Z Iv l (rBv, B,+]}T. (3.36) 
v~ v t v 

Utilization of equation (3.16) yields 

[a(t), a(t)+] -- l u I S + Y~ Ivy(t) I~nv -- 1. (3.37) 
v 

Equations (3.26), (3.29) and (3.30) specify the general functional form of the 
vibrational relaxation without referring to specific models for the molecule-medium 
interaction. It should, however, be born in mind that the specific form of the 
level shift (3.33) and of the level width (3.34) are different for single and for multi- 
phonon decay. In particular we should note that for a single phonon decay y is 
temperature independent, and exhibits temperature dependence for the case of 
multiphonon decay. 

m.v. 3 A 
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722 A. Nitzan and J. Jortner 

4. SOME APPLICATIONS FOR VIBRATIONAL RELAXATION 

We have just demonstrated that externally induced vibrational relaxation via 
single and multiphonon processes can be incorporated within the framework of a 
unified theoretical scheme (see equations (3.14), (3.15), (3.26), (3.29) and (3.30)). 
It will be useful to apply this generalized formalism to derive some features of 
vibrational relaxation which were previously handled by the application of specific 
models for the molecule-medium coupling. 

4.1. The time evolution of the population 
Let p(0)= PosePB be the initial density operator of the system, where Pose is the 

initial density operator of the oscillator and PB is the initial density operator for the 
thermal bath (or phonon field). The average population n(t), of the oscillator at 
time t may be computed from the general expression 

n(t) = Tr  {a+(t)a(t)p(O)}. (4.1) 

The initial density operator will be diagonal in the population number representa- 
tion under the following conditions : (a) The oscillator is initially in a pure In} 
state and the medium is in thermal equilibrium. (b) Both the oscillator and the 
medium are initially in a thermal (Boltzmann) distribution. Provided that either 
condition (a) or (b) is satisfied we have 

n(t)= Tr  {[u(t)l~a+ap}+ Tr { ( ~  ]v,(t)laB,+B,)p}. (4.2) 

In equations (4.1) and (4.2) Tr  represents the trace over the oscillator and the bath 
states. A partial trace over bath states taken for the first term in equation (4.2) 
gives TrBp n = 1, and a partial trace over the oscillator states taken for the second 
term in (4.2) yields TrosoPoso= 1. Thus we get 

n(t)=Trose{a+apose}lu(t)[ 2+ TrB { ( ~  ]v~(t)I~B~+B~) PB} 

= lu(t) [Zn( 01 + Z Iv,(t) I~<B,+B,}T, 
v 

(4.3) 

where n(0)" is the initial population of the oscillator. Consider now the second 
term in the r.h.s, of equation (4.3). For a thermal bath (B,+B,}T is just a thermal 
average, yielding (n,} T in case A, (n~}T(%) T in case B and [ I  (n~}T in case C. It 

v 

may be easily verified that for every one of the three relaxation models considered 
by us we have 

<B +B,}T l--I, (n~}T 1 
= (4.4) 

<[B., B,+])T - ,  exp (hto./kBT)- 1 

This is trivially true for cases A and B and may be proved by induction in the general 
case C. Now, as the function vv(t ) (as a function of , )  is sharply peaked at toy = to 
we may write 
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Vibrational relaxation of a molecule in a dense medium 723 

• E Iv.(t)l~n, = <n>w( 1 - ] u ( t ) l ~ )  
V 

(4.5) 

in which (n)T is the thermally averaged population of the oscillator. Utilizing 
this result, equation (4.3) finally yields 

with 

n(t) = [u(t) l~n(O) + (1 - [u(t)l~)<n>,r (4.6) 

[u(t) I"= exp ( - 27t ). (4.6 a) 

Equation (4.6) implies that the time evolution of the population of the oscillator 
(which is characterized by a diagonal initial density operator) involves two con- 
tributions : an exponential decay of the initial state characterized by a decay time 
27, and a built up of the thermal distribution of states. This result was previously 
obtained only for single phonon coupling [12, 16]. 

It is also interesting to note that the non-radiative decay of the average distribu- 
tion initially being at the nth level is determined by the rate 2y rather than by the 
width of the nth states, which is just 2n 7. This feature originates from the fact 
that the interaction of the oscillator with a thermal bath results both in excitation 
and deactivation processes, providing the non-radiative analogue of the well known 
harmonic oscillator paradox [16], which will be briefly discussed in w 5. 

4.2, A description of a cooling process 
We shall now consider the decay of the oscillator from an initially excited 

vibrational level, which may be prepared by optical excitation from a lower elec- 
tronic state. Let [m)= 1/~/m !(a+) m [0) be the initial state of the oscillator and let 
the phonon field be at zero temperature, so that its state may be described by the 
product ]--I ]0~). The state at time t has the form 

v 

J00 > ~b(t) = exp [ -  iH(t/h)]~b(O) = exp [ -  iH(h/t)] (a+) m 

= V'm!l exp [-iH(tlh)](a+) m exp Jill(t/h)] [0, r l  o > , .  (4.7) 

The last step in (4.7) is legitimate provided that virtual processes are neglected so 
that we set 

Thus  we have 

exp Io, = Io, H o, (4.8) 

~b(t)=-~ml.(a+(t))m ]O, O 0v >" (4.9) 

3 A 2  
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724 A. Nitzan and J. Jortner 

We are interested in the probabilityp(m, n, t) to find the oscillator in some state 
In) at time t, which is given by 

I< >1 ' p(m, n ; t)=ff4 n, ~ n,l~(t ) = (r (4.10) 

where ~ represents a sum over all final bath states. Inserting equation (4.9) 
{n,} 

into equations (4.10) we get 

' (  )( ) p(m, n ; t )=~. .  0 ; I10,]a(t)mln nl(a+(t))ml 0 ; I-[ O, . 
v v 

Utilizing now equation (3.26) we obtain 

which leads to 

(a(t)) m= (u(t))m-ka m-k vv(t)B , 
k=o k!(m-k)! 

mt (O[am_kln)(nl(a+)m_klO) p(m,n; t )= h=o ~ (k!)~[(m-k)l] ~ 

('u(t)' =)m-kx ( ~ O~ I (~%(t)B.) k (~v**(t)B. +) 117[ O~ > 

m ! v,(t)B,) m--~ =[(m_n)!]2n ! (]u(t)Iz)'~ ( ~ O~ [ ( ~  

) . 

To evaluate the bath matrix elements we make use of the following relations : 

(4.11) 

to obtain 

E v.(t)B~ = a(t)- u(t)a, 
V 

[a(t), a+(t)] = [a, a +1 = 1, 

[a(t), a +] =u(t) ; [a, a+(t)] =u*(t) 

(4.12) 

E~v,(t)B,,~v,*(t)B,+]=l-lu(t)l~. (4.16) 

Making use of the relation we may recast the bath matrix element in the following 
form : 

=(m-n)! (1- lu(OI2)  m-~ (4.17) 

(4.14) 

(4.15 a) 

(4.15 b) 

(4.13) 
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Vibrational relaxation of a molecule in a dense medium 725 

so that we finally obtain 

with 

m! 
p(m, n ; t )=(m_n)in]  ([u(t)12)n(1 - lu(t)[=) m-" 

[u(t)]2= exp ( -  2yt). (4.18) 

An alternative derivation of this result utilizing coherent state representation is 
given in Appendix A. 

Finally, we note at the risk of triviality that equation (4.18) is meaningful only 
provided that n < m. Also note that 

p(m, n ; t )=  ([u(t)l~+ 1 - lu(t)l=y"= 1 (4.19) 
n = 0  

which provides a good consistency check. 
From equation (4.18) we assert that (a) the decay of the initial m state is expo- 

nential, characterized by the decay time 2my ; (b) the decay of the lower levels is 
non-exponential, characterized by superposition of a decay component having the 
lifetime 2ny and a built -up term [ 1 -  exp ( -2y t ) ]  m-n ; (c) the population of the 
oscillator levels is given by a Bernoulli distribution. These results confirm a simple 
kinetic analysis [9] and were previously obtained quantum mechanically for the 
special case of two phonon decay. Our results demonstrate that the general muli- 
phonon interaction handled by the RWA and the RPA approximations result in the 
conventional kinetic decay scheme [9]. 

4.3. A description of a heating process by a thermal field 

From the point of view of general methodology it is interesting to consider the 
evolution of the population of different states of the oscillator, initially located in 
the ground ]0) state. This treatment will elucidate the details of the rate of 
vibrational excitation of the oscillator by the medium. We start with the oscillator 
in the ground level [0) and the field in thermal equilibrium at a temperature T. 
The  bath states can be represented as a superposition of Glauber's coherent states 
]/3,). We shall thus make use of the Glauber's P representation [20] of the density 
matrix for a chaotic phonon field 

PB = 1-I 1 l d2/~ { -  1/3~[2'~ 1/3~)(/3.1, (4.20) exp \ (n~)] 
v 

where 

~1,, gl' I/3~)=exp ( -  11,8,,[= ) ~ ~ .  In) 

so that the initial density operator for the oscillator-field system is 

1 
p(o) = p (0)po o(0) = H 77a7> I 

x Iexp ( -  [ ~ 1 ~ " ~ \  7 - ~ ]  [~)<{jS~l"] [0)(0[. 

(4.20 a) 

(4.21) 
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At time t we have [12] 

A. Nitzan and J. Jortner 

[O>-+]~v,(t)fi,>, } 

Ifl~> -+ l ~ y~,(t)fl~, > 
(4.22) 

Inserting equations (4.22) into equations (4.21) and taking the trace over the field 
states, we obtain the reduced density matrix for the oscillator in the form 

P~176 d~fl~ ~ &exp ( - [fi~[~<n~>] 
x[~flv%(t)><~%(t)fi~]. 

The probability to observe the oscillator in the n state [m> at the time t is 

P~(t)=<m]p~ ~ ~ d~fiv exp \(-~}lfl~[~ 

where 

inwhich 

1 F-lfi~[~-] F(~:, t)= I 3 (~) (~-~%(t)~) L -l-explr<n~) L ~J d2fl~ 

3(9)(z) = 3(Re Z)3(Im Z) 

The function F(~:, t) may be evaluated explicitly to give [12] 

1 [ 
F(r t) ,, y <n~>lv~(t)l~ exp 

v v 

so that equation (4.24) yields 

1 1 Pm(t)=rr Z <n~> Iv~(t)p ~ I d~$lSP'~ exp (-1~1 ~) 
v 

x exp [ 

which on evaluating the integral, results in 

Pt 1 [ B \  

7 
F, <n~>lv~(t)lU 

.7 
E <n.> lv.(t)l~J 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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Vibrational relaxation of a molecule in a dense medium 727 

where 

B = •  <nv) lvv(t)12= ( n ) T ( 1 - l u ( t ) l ~ ) =  (n )T(1 -ex  p ( -  2yt)). (4.29) 
v 

Equations (4.28 and 4.29) provide us with the time dependence of the population 
of the oscillator initially located in the ground state. As t-+oo(u(t) -+0) the equation 
(4.28) goes over to the known equilibrium form of the diagonal matrix elements of 
Pose in the n-representation. It is also easy to show that the non-diagonal matrix 
elements vanish in this limit, thus exhibiting the diagonal nature of the oscillator's 
density operator in the n representation at thermal equilibrium. 

4.4. Heating by a coherent field 

If the external field may be described as a multimode coherent (Glauber) field 
we have instead of equation (4.20) 

pB = I1 (4.30) 
v 

where/3, is given by equation (4.20 a). 
We start again from the ground state [0) of the oscillator and consider its time 

evolution. A procedure identical to that utilized in the thermal case leads now to 

so that the oscillator is excited into a coherent state of increasing amplitude. The 
probability for finding the oscillator at the mth level at time t is now given by the 
usual Poisson distribution 

Pro(t) = ~  exp [ -  ]8]"] ; 3= 2 %(t)~,. (4.32) 
�9 v 

This result is of little interest for phonon assisted excitation, however, it may be of 
considerable interest for the study of infra-red induced vibrational excitation. 

5. VIBRATIONAL RELAXATION AND INFRA-RED EMISSION 

Up to this point we have considered non-radiative vibrational relaxation (and 
thermal excitation) of a harmonic molecule disregarding the interaction of the 
system with the radiation field. When the vibrational mode of the oscillator is 
infra-red active, photon absorption and emission can take place simultaneously 
with thermal vibrational relaxation and excitation process. This problem is of 
interest because of several reasons : (a) The simultaneous interaction of the mole- 
cular oscillator with the radiation field and with the phonon bath provides a simple 
example for the decay of a metastable state into two continua, which was popular 
in the theory of electronic relaxation. (b) The simplified physical system of a 
harmonic oscillator, which consists of an equidistant spectrum raises some interest- 
ing problems concerning the features of the radiative decay�9 The radiative decay 
width of the nth state is proportional to n, while for large n the correspondence 
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728 A. Nitzan and J. Jortner 

principle implies that this width should be independent of n. This harmonic 
oscillator paradox was discussed by Weisskopf and Wigner [15] (for a special 
case n=  2) and by Zeldovich et al. [16]. 

It is easy to incorporate the effects of the radiative interactions on the decaying 
oscillator. The total hamiltonian of the system subjected both to vibrational 
relaxation and radiative decay is taken as 

H =  hom+ a + ~ hc%b~+ b~ + ~ h( G,B~a + + Gv* Bv+ a ) + ~ hoJ ~f x+ [ ;~ 
v V X 

+ ~ h(gd~+a +g**ha+), (5.1) 
X 

where the photon field is characterized by the creation operators Ix + and the 
annihilation operators f~ and by the frequencies wz (the index X specifies the energy 
and the polarization of a photon), gx represents the coupling between the oscil- 
lator and the Ath radiation field mode. In the model hamiltonian (5.1) we have 
neglected the coupling between the radiation field and the medium phonons. This 
coupling will result in a parallel decay channel for the harmonic oscillator. 
This problem is soluble within the framework of the Wigner-Weisskopf approxi- 
mation [15], however, the solution is rather cumbersome and does not contribute 
to the problem at hand. 

Following the procedure outlined in w 2 the equations of motion for the opera- 
tors of the harmonic oscillator and of the two fields take the simple form 

d = - i o o a - i E  G, B , - i E g z f , ,  
v X 

B ,  = - rio,B, - invG,* a, 

Ix = - r i d ; t  - igx*a. 

The solution for the harmonic oscillator operators takes the form 

a(t) = u(t)a + ~, vv(t)B~ + ~, wx(t)fx, 
X 

where the functions in (5.3) are (see Appendix B) 

u( t ) = exp ( -  i~ot - ~t ), 

(5.2 a) 

(5.2 b) 

(5.2 ~) 

(5.3) 

(5.4 a) 

Vv(t)-- - i c .  
i ( ,o ' - , . . ) -9 

W , ( t ) =  - i g z  
i(eo' - o J , ) -  9 

The frequency 

[exp ( - r i , t )  - exp ( - r i ' t -  ~t)], 

[exp ( - rixt)  - exp ( - r i ' t -  •t)]. 

(5.4b) 

(5.4 c) 

(5.5) 

is now modified in terms of the level shift 

aco=pp E IG, I% 
v ~ ~ 1 7 6  

~ Ig~l ~ 
4-1-'r ~ ~o_w~ + iT1 (5.6) 
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Vibrational relaxation of a molecule in a dense medium 729 

while the total width ~ is 

~2 = ~' + 7~rt (5.7) 

where the vibrational relaxation width ), is given by equation (3.34) while the 
radiative width is 

),irt=~r ~ [gxl~8(co-cox). (5.8) 

Equations (5.3)-(5.8) describe the parallel non-radiative and radiative decay of the 
oscillator into two independent continua whereupon the total width is just given 
as the sum of the independent contributions from two decay channels. 

It is straightforward matter to generalize the results of w 2 to incorporate the 
effects of radiative decay. Some of the pertinent results can be summarized as 
follows : 

(a) Consider a harmonic oscillator initially at the state In) interacting with a 
phonon bath and with a photon field both in thermal equilibrium at a temperature 
T. The decay of the average population is immediately obtained from equation 
(4.6) in the form 

n(t)=n exp [ - 2 ( y +  ylR)t] + ( 1 - e x  p [--2(y+~iR)t])(n)w. (5.9) 

(b) Consider the decay of an initially prepared state In, I-I 0. ~ O r} where 
v 

the phonon bath is at T =  0 while all the occupation numbers of the photon field 
are nx= 0. The probability for finding the oscillator in the m state (m < n) at a 
time t is immediately obtained from equation (4.18). 

m! 
P(m, n ; t )=(m_n)lni  exp ( - 2 n ~ t ) [ 1 - e x p  (-2n~t)]m-'k (5.10) 

(c) The optical line shape for absorption at T =  0 is : 

L(E)oc- Im (0~, 0~, laIVTG(E)VrlO,, 0 v, 1~}, 

where G(E) is the Green's function for the system and Vr represents the radiative 
interaction. Linear response theory yields 

L(E)oc-Im [ i  i exp (iEt)(O[a(O)a+(t)lO) dt~. (5.11) 

Utilizing equations (3.26) and (3.29) we get 

(5.12) L(E) oc ( E -  co)' + 

Thus the general optical line shape is lorentzian being determined by the total 
width 9. This result provides an alternative route for resolving the harmonic 
oscillator paradox as consecutive absorption occurs for all equidistant levels. 

(d) The optical line shape for emission may be obtained by considering the 
oscillator in an initial state In}, given the radiation field and the medium phonon 
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730 A. Nitzan and J. Jortner 

bath in a vacuum state. The observable of interest is now the population nx(t) of a 
radiation field mode X at time t. This is given by 

nx(t)= <n, H o. H Ox]fx+(t)Ix(t)[n, H. o. H Oa >. (5.13) 

It may be asserted (see Appendix B) that fa(t) is given in our model by 

Ix(t)= Waa+ Z Xxx'fx'+Z Yx,b~, 
k" V 

(5.14) 

where Wx is given by equation (5.4 c) and where Xxx, and Yxv are some other 
functions of t. Inserting this expression for Ix(t) into equation (5.13) and utilizing 
equation (5.4 c) we obtain 

W. 2=n ]gx]2- [1 +exp ( -  299t ) nx(t) =n ~ (a, '_wx)~+ ~2 

- 2 exp ( - pt) cos ((to' - oJx)t)]. (5.15) 

The line shape for emission L(E)= pxnx(t) (where px is the density of states in 
the photon field) takes the form 

7m [1 - exp ( - 293 0 - 2 exp ( -  ~t) L(  E)  = , ,  - o x) + 

x cos [(w'-oax)t]] (5.16) 

which for sufficiently long times exhibits again the lorentzian lineshape (5.12) 

6. DIscussioN 

In this paper we have advanced a unified approach for the study of vibrational 
relaxation in a dense medium. When the rotating wave and the random phase 
approximations are invoked, both single phonon and multiphonon vibrational 
relaxation processes can be incorporated within the same scheme. The dis- 
advantages of the present approach are : 

(a) The harmonic approximation is used both for the molecule and the medium. 

(b) The coupling terms G v are introduced as parameters of the theory so that 
no attempt is made to calculate numerically the generalized level width 9/(equation 
(3.34)) which determines the features of the vibrational relaxation. 

(c) No attempt was made to consider medium induced intramolecular energy 
redistribution. 

From the experimental point of view vibrational relaxation times vary from 
~ 1 sec for a diatomic molecule (3Z u state of N2) in tow temperature rare gas 
solids [5], to ~ 1 nsec for the ground electronic state of some polyatomic molecules 
(liquid benzene at T ~  300 K) [21] and to ,~ 6 psec for excited electronic states of 
large molecules (Rhodamine 6G) in a polyatomic solvent [6]. Obviously, vibra- 
tional relaxation of a high frequency molecular vibration in a monoatomic solid 
involves a high order multiphonon process where the corresponding coupling G v 
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Vibrational relaxation of a molecule in a dense medium 731 

terms are very small. When vibrational relaxation in a polyatomic dense host 
medium takes place the participation of the medium vibrons reduces the order of 
the multiphonon process leading to an efficient pathway for the relaxation process. 
The role of the medium vibrons will be also crucial for vibrational relaxation in an 
excited electronic state of a pure molecular crystal or in a one component liquid or 
glass where near resonance intermolecular electronic energy transfer leading to a 
vibrationally excited ground state molecule may occur. 

The vibron-phonon relaxation mechanism may also partially account for some 
features of intramolecular energy redistribution involving the interaction terms 
(a~+a#by + h.c.). In this case the/x'th intramolecular vibration may be viewed as a 
vibron, with the following restrictions : 

(a) First, it must be assumed (as is usually the case) that these molecular 
vibrations are in thermal equilibrium. (b) Second, we have to limit ourselves to 
the relaxation of a single/x molecular vibration while the transient population of the 
/~' vibrational modes are not taken into account. Thus all the/~' molecular vibra- 
tions and the lattice modes are taken as a common heat bath for the relaxation of a 
single molecular mode. This point of view is useful when a single molecular 
vibrational mode is initially excited (optically in the ground or in the electronically 
excited state) and we can monitor the decay of this mode. This approach may be 
also of interest in the study of energy redistribution in organic photochemical 
processes. 

Finally, we would like to point out that the theoretical scheme developed 
herein was recently applied by us for the study of the coupling between electronic 
relaxation and vibrational relaxation in excited electronic states of large molecules 
[22]. 

APPENDIX A : TREATMENT OF THE COOLING PROCESS BY THE APPLICATION OF 

COHERENT STATE REPRESENTATION 

A considerable simplification of the formulation of the cooling process (w 4.2) 
may be achieved by utilizing Glauber's coherent state representation. To demon- 
strate this possibility we shall formulate the cooling processes in this representation, 
where for the sake of simplicity, only case (a) will be considered. 

The important feature of the coherent states, from our point of view, is that 
given the oscillator and the bath modes initially in coherent states I~) and ]fly), 
these states evolve under the hamiltonian equation (2.3 a) to give the coherent 
states I~) and ]fly) [12], where the (complex) amplitudes a(t) and fly(t) are deter- 
mined by a set of equations analogous to the set (3.1, 2) 

8(t) = - i~o~(t) - i Ev Gyfiy(t), 

s  = - i~o,fiy(t)- iGy*~(t), ] 
(A 1) 

whose solution is given by (in analogy to the solution (3.26)). 

= u(t) +Zv t 
fi (t) = + yyy , ( t ) f i y ,  

(A 2) 
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732 A. Nitzan and J. Jortner 

where u(t) and vv(t) are given by equations (3.27)-(3.28). With these relations 
at hand we start with the density matrix at time t--0 with the oscillator at the state 
Im) and the medium at T = 0  

1 P(O):[m)(~]O,)(O~])(ml-=-~d2o~d2Y(ot'm~ 

• (m] , )  ]~)( , I  (~10~)(0~[) �9 (A 3) 

The density matrix at time t may be simply obtained by replacing ]oc) by 
la(t))= Iau(t)) (as fl~=0) and ]0~)= lily) by ]flu(t))= I~v~(t)) so that the density 
matrix at time t takes the form 

1 
p ( t ) = ~  I J" d2~d2~'~~176 H I~v~(t))<~(t)l �9 

v 

(A 4) 

Taking the trace over the medium states we obtain the reduced density matrix for 
the oscillator 

Posc(t)-----I ~ ~ d2~d2~,(~[m){m]y)(N (yv~(t)]~vv(t))) 

• (A 5) 

The probability to find the oscillator at time t in the state ]n) is 

1 (mlplm) =P(m, n ; t ) = ~  S ~ d2out2y(~lm)(ml~, ) 

x (n I~u(t))(fiu(t)[n) 1-I ((five(t)]~v~(t))) 
v 

(A 6) 

making use now of the following relations for the scalar products between coherent 
states and between a coherent and a n-state 

(A 7) 

~ n  
<=[n)=exp(  11~[2)~. (A 8) 

Equation (A 6) may be recast in the form 

(mlplm)= n .mY lw.rr~SSd~~ {exp [ - �89  la [2(1 + lu] ~ ) 

2 @ m m n :~ ~ n F ~  -�89247 ) (f lu ) exp 7*~lvv] 2 

Inserting the relation equation (3.35)) Z Iv~(t) I a= 1 - lu(t)I ~ we obtain 
v 

(A 9) 
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P(m, n ; 

Vibrational relaxation of a molecule in a dense medium 

t )= [uI2 I d%cd27 exp [-I=1 ~- [71~ n !m [~.2 

+ ~ * ~ ( 1 -  lu I~)](=*)m=-y-(B*) - 

expanding now 

1 
exp (f i*a(1- lul l )= ~ N. (fi*),a,(1-lull) , 

l=0 

and making use of the relation 

I d~a exp ( -  ]~]~)(~*)"*an+i= m !~-3m, n+, 

we readily obtain 

m! 
P(m, n ; t )=n!(m_n)!  lul~(1-lull) m - -  

which is equivalent to equation (4.18). 
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(A 10) 

(A 11) 

(A 12) 

(A 13) 

APPENDIX B: SOLUTION OF EQUATION (5.2) 
Starting from the set of coupled differential equations, equation (5.2) and 

following closely the procedure outlined by equations (3.17)-(3.28) we easily 
obtain 

where 

a(s) = u(s)a + E v,(s)Bv + Z w~(s)fa, (B 1) 
v X 

u<,)--[,+ ;~ + z jc.l~,.,+,~. ~ ,--7~,,Ig'J' l-" (B 2 a) 

(B 2 b) 

~ , ~  = _ ig, [~s + ~,~ (, + i~ + ~ I~l~..s+,~. +~ =~,.Ig~l~ ~l -~ (B 2 c) 

so that, taking the inverse Laplace transform, equations (5.3)-(5.4) are obtained. 
We note that inserting equation (B 1) into the Laplace transform of equation 
(5.2 c) 

1 ig, 
fa(s) = s + i ~  f~t- s + io~------~x a(s) (B 3) 

we obtain 

1 h(S)=s+~I~--- igx* Fu(s)a + ~ vv(s)bv+ ~ Wx.(s)[~] 
s + ioJz t.. v x" 

_ ig,* u(s)a+ E Xxx,(s)fx+~ Yav(s)b~ 
s+iw~ x" ,, 

(B 4) 
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734 A. Nitzan and J. Jortner 

which, taking the inverse transform, leads to equation (5.14) where Wx is given 
by equation (5.4 c). (Note that g~ is replaced by gK* which has no consequences 
for the results equations (5.15) and (5.16)). 
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