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In this paper we explore the implications of the coupling between nonradiative electronic relaxation
and vibrational relaxation in excited electronic states of large molecules. The physical model involved
a two electronic level molecular system interacting with a harmonic medium via linear coupling terms
in the molecular nuclear coordinates.Two models were advanced for the molecule-medium coupling which
involve single phonon decay and alternatively double phonon (or rather phonon-vibron) decay. The func-
tional form of our final results is independent of the specific model adopted for the vibrational relaxation.
The molecular Hamiltonian and the intramolecular coupling were recast in terms of second quantization
formalism where the nonadiabatic coupling operator was modified by a Franck Condon shift operator.
The coupling between electronic and vibrational relaxation processes was formulated in terms of a generalized
interaction picture, where the intramolecular coupling was treated to second order while the vibrational
relaxation was handled to ““infinite order” by the Wigner Weisskopf approximation as applied to the equa-
tions of motion for the nuclear operators for the normal molecular modes. The nonradiative decay rate
of an excited electronic state was expressed in terms of a generalized time correlation function. We were
able to demonstrate that our general expressions reduce to the (time independent) decay rate of a single
vibronic level in the limit of slow vibrational relaxation and to a modified expression for the (time inde-
pendent) decay rate of the thermally averaged electronic manifold in the limit of fast vibrational relaxa-
tion. In the general case of coupled electronic-vibrational relaxation the decay probability is time dependent.
In the low temperature limit the nonradiative decay rate can be expressed in terms of a superposition of

exponential functions.

I. INTRODUCTION

There has been extensive theoretical activity aimed
towards the complete understanding of radiative and
nonradiative decay processes of electronically excited
molecular states.! Simultaneously, considerable progress
has been accomplished in the description of vibrational
relaxation of a molecule imbedded in a medium.2-1
Several relaxation schemes, purely stochastic? or par-
tially deterministic,*1° have been applied to handle the
relaxation process of an oscillator or of a system of
oscillators coupled to an infinite medium which acts
as a heat bath, whereupon the relaxing system ap-
proaches thermal (Boltzmann) equilibrium from some
initial (nonequilibrium) state.

The coupling between radiative and thermal relaxa-
tion process is of considerable interest. In this context
one is usually interested in a system coupled to a ther-
mal bath, which undergoes radiative excitation or
decay. Such problems are frequently encountered for
spin systems in NMR and ESR experimentst—? and
for photon systems in laser and maser studies!®~15
Most of the theoretical studies of these problems re-
sulted in some form of a master equation for the
density matrix of the system,>"~'% and much work has
been performed to extract physical information from
these equations. These methods are somewhat obscured
by their generality, resulting in rather cumbersome
theoretical expressions for the relaxation characteristics.
For the grossly oversimplified model system involving
harmonic oscillators some simpler solutions are avail-
able.*7 These physically transparent theoretical tech-

niques involve a direct solution of the (linearized)
Heisenberg equations of motion for the coordinate and
momentum? (or alternatively for the creation and an-
nihilation®~7) operators of the harmonic oscillators.
This method, which was extensively used in the quan-
tum theory of superfluidity and of superconductivity,'
has been introduced by Senitzky* to handle the problem
of a damped harmonic oscillator. Since then these the-
oretical techniques have been widely utilized in quan-
tum optics,* 7 and in solid state physics.57—1® The
same theoretical approach will be applied in the present
work for the study of the effects of vibrational relaxa-
tion on nonradiative and radiative decay processes in
polyatomic molecules.

The effects of vibrational relaxation on radiative and
nonradiative processes in molecules and solids are usu-
ally disregarded,! whereupon theoretical and experimen-
tal studies focus attention on two limiting cases: (a)
The isolated molecule limit®~2 where the effects of
externally induced vibrational relaxation are not con-
sidered. This physical situation corresponds to the
decay of excited molecular states in the low pressure
gas phase, where the duration between collisions con-
siderably exceeds the relevant decay times. (b) The
fast vibrational relaxation limit*~% where vibrational
relaxation and excitation processes are fast on the time
scale of electronic decay. This case, which is frequently
encountered in the decay of electronically excited mole-
cules in a dense medium or in “high pressure” gas
phase, can be conveniently handled by considering the
thermal average of the decay rates of well-defined ini-
tial vibronic levels of an isolated molecule, Thus, in
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the common case of rapid vibrational relaxation the
theoretical problem involves the calculation of the
thermally averaged decay probability (W)r of the
form-%

Wir= 2 exp(—BE) WX exp(—BE) T, (L.1)

where W; is the decay rate for the ith vibronic level
which is characterized by the energy E;, the summation
is taken over the entire single electronic manifold.

Our interest in the coupling between vibrational re-
laxation and nonradiative electronic relaxation has been
motivated by several recent experimental studies, which
can be summarized as follows:

(a) In the gas phase the total pressure may be easily
varied, so that one can conveniently study a continuous
transition from the isolated molecule case to the fast
vibrational relaxation limit. Recently, several experi-
mental studies have been published?-® focusing atten-
tion on the decay of electronically excited molecules
under intermediate pressure conditions, where the pres-
sure of a perturbing gas is sufficiently high to induce
vibrational relaxation but still too low to establish
thermal equilibrium of the excited state. Under these
conditions the decay pattern of the excited state is not
characterized by a single exponential, but rather in-
cludes a superposition of exponentials thus exhibiting
a time dependent “lifetime”. These results are inter-
preted in terms of the dependence of the nonradiative
decay probability on the initial vibronic level, while in
general the radiative decay rate (at least for symmetry
allowed transitions) is practically independent of the
initial vibrational population of the excited electronic
state. Thus the nonexponential decay pattern monitors
the time dependence of the population of the vibronic
levels in the excited state.

(b) In dense media (i.e., liquids and solids) rapid
vibrational relaxation (relative to the radiative and
nonradiative decay rates) is usually taken for granted.
This assumption which is entirely justified concerning
radiative transitions (characterized by a radiative decay
times >107* sec), has to be modified in the case of
some ultrafast nonradiative decay processes exhibiting
decay rates of the order of ~102-101 sec?, which can
exceed the vibrational relaxation rates of large mole-
cules. A typical example in this category involves the
lowest singlet state of the azulene molecule?® where the
sixth totally symmetric excited vibronic level is charac-
terized by an electronic relaxation rate of 1.3X 10"
sec'. Another interesting system is the first excited
singlet state of the benzophenone molecule in solution®
where the intersystem crossing rate of the lowest vi-
bronic component is 2)X 10" sec™! while the decay rate
of the v=2 vibronic state being 4X 101 sec?, thus the
major decay pathway of the vibrationally excited state
involves direct electronic relaxation, rather than vibra-
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tional relaxation to the electronic origin followed by
intersystem crossing.

(¢) In “isolated” small molecules the low density of
the final molecular states cannot provide an effective
intramolecular decay channel for electronic relaxation,
and the radiative decay characteristics of these systems
may exhibit the effects of intrastate coupling but not
of electronic relaxation. When a small molecule is im-
bedded in an inert medium, efficient vibrational relaxa-
tion in the final vibronic manifold can result in a mani-
fold of broadened levels, which provide a dissipative
decay channel for the initially excited electronic state.3!
A proper treatment of the nonradiative decay of small
molecules subjected to externally induced vibrational
relaxations has to account explicitly for the latter
effect.

In this paper we present a theory for the nonradiative
decay of an excited electronic state of a large molecule
being simultaneously subjected to vibrational relaxa-
tion originating from an interaction with a dense
medium, which will be represented herein by a phonon
bath. A generalized interaction picture is utilized to
represent the coupling between these two relaxation
processes. Secend order perturbation theory is applied
for the description of the intramolecular electronic re-
laxation process, while vibrational relaxation is handled
by the Wigner Weisskopf approximation applied to the
Heisenberg equations of motion for the operators speci-
fying the normal modes of the system.® This “infinite
order” treatment of the vibrational relaxation process
enabled us to explore different limiting cases for differ-
ent relative rates of electronic and vibrational relaxa-
tion. We were able to demonstrate that our general
expressions reduce to the decay of a single vibronic
level (i.e., the isolated molecule case) in the limit of
slow vibrational relaxation and to the decay of a
thermally averaged initial vibronic manifold in the
limit of fast vibrational relaxation. Some general, phys-
ically transparent theoretical expressions were derived
for intermediate cases, exhibiting nonexponential decay
resulting from the coupling of the two relaxation proc-
esses. These theoretical methods are general, being
applicable for the coupling of vibrational relaxation
both to radiative and nonradiative decay processes in
excited electronic states of large molecules.

II. THE MODEL SYSTEM

We shall consider the nonradiative decay of an ex-
cited molecular state of a large molecule imbedded in
a medium. It will be useful, at this stage, to present
our approximations and assumptions concerning the
following three major ingredients of the physical sys-
tem: the medium, the molecule, and the features of the
vibrational relaxation mechanism.

The medium is taken as a bath of phonons, whose
frequencies, w,, and their density of states, p, are taken
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to be typical of the relevant solid matrices. Thus for
solid rare gases the maximum frequency (corresponds
roughly to the Debye frequency) is w,**=60-80 cm™! 3
while in solid hydrocarbons multiphonon transitions of
impurity states lead to w,”**200 cm—.3* The follow-
ing approximations concerning the medium are invoked:

(a) The harmonic approximation for the medium
vibrations is applied, whereupon anharmonic coupling
between different medium modes is disregarded.

(b) The medium equilibrium nuclear coordinates
and frequencies are identical in the initial and in the
final electronic states of the impurity molecule.

(¢) The medium is “inert” and does not modify the
molecular energy levels or the intramolecular coupling®
(which can occur via heavy atom effects on the spin
orbit interaction). Furthermore, we shall disregard for
the time being any coupling between the medium nu-
clear coordinates and the molecular electronic coordi-
nates.

Thus the role of the medium is solely confined to
supply a phonon bath for the dissipation of the vibra-
tional energy of the molecule.

Focusing attention on the large molecule we invoke
the following conventional simplifying assumptions
which have been extensively utilized in previous
work!®=% on electronic relaxation:

(a) A two-electronic states system is considered.
These electronic states | s) and |1} are characterized
by the zero order Born~Oppenheimer vibronic levels:

| si)=|s)[)=gu(r, Qi)x:i(Qs) (ILD)
for the upper electronic manifold and
[y= 1D ) =¢u(r, Q) x1i(Q0) (IL.2)

which corresponds to the lower electronic configuration.
¢ and x denote electronic and nuclear functions, re-
spectively, r represents the electronic coordinates while
Q, and Q; correspond to the normal coordinates of the
states s and /, respectively.

(b) The molecular vibrations are assumed to be
harmonic so that the nuclear functions may be dis-
played in the form

N
Xsi(Qs, {eu}) = I_Il X ou(Qapy Vsu)

N
x1i(Qu, {v3}) = 1T X0 (Qu, v1),

=1

(IL.3)

where v, and v, are the vibrational quantum numbers
of the uth normal mode in the two electronic states.
N represents the total number of normal modes.

(c) The normal modes and their frequencies w, and
effective masses M, are identical in the two electronic
states. It will be useful to define the reduced dimen-
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sionless normal coordinates
q3F= (ﬁ/MMwM)_lﬂ (st_ Qspo) 3
Q= (ﬁ/Muwu)—l/z(le—Qlyo) . (11.4)

The only change in the normal coordinates between
the two electronic states involves the displacements in
the origins Q,.° and Q0 of the normal coordinates

AQu=0Q4°— Qs (ILS)
and the reduced displacement being given by
Au(ﬁ/Muw#)—mAQu- (II~6)

When the molecular symmetry is practically unmodi-
fied between the two electronic states it may be assumed
that A,0 only for totally symmetric modes. We note
again that the displacements of origins, which repre-
sent the interaction between electronic and nuclear
motions, are neglected for the time being for the
medium modes, whereupon these modes do not supply
final states for the electronic decay channel.

(d) We consider the statistical limit,! namely a large
molecule with a large electronic energy gap, so that
the {|/)} manifold acts as an effective dissipative
quasicontinuum for each of the vibronic levels | si). In
a later work?®? we shall demonstrate that our results are
also applicable for many cases involving the electronic
relaxation of small molecules in solid matrices.

(e) We assume that the states in the { | /j}} mani-
fold do not carry oscillator strength from the ground
electronic state | g0). This assumption is usually justi-
fied on the basis of various symmetry arguments.?:3
We may thus assert that narrow band short duration
optical excitation lead initially to the population of a
single (zero order) vibronic component | sz).

(f) The intramolecular nonadiabatic coupling ma-
trix elements for spin conserving tramsitions will be
simplified by invoking a modified Condon approxima-
tion, being factorized into electronic and nuclear parts.
This approximation is justified for radiative transitions.
For nonradiative decay processes it is now well estab-
lished that the conventional Condon approximation
breaks down for near resonance coupling.®® Several
theoretical treatments, at different degrees of sophisti-
cation,® have established that in the weak electronic
vibrational coupling limit (i.e., A, $1 for all u) the
coupling matrix elements derived in the Condon ap-
proximation can be scaled by a numerical factor (con-
sisting of the ratio of the modified electronic energy
gap and the mean molecular frequency) to yield a
reasonable approximation to the “exact” result. As we
are interested in general relations this representation
of the intramolecular nonadiabatic coupling in terms
of a modified Condon approximation is quite adequate.
Another way of justifying our procedure is to apply the
crude adiabatic vibronic basis set as our zero order
basis and the Herzberg Teller interaction as the intra-
molecular coupling.®” This scheme, though weaker con-
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ceptually than the adiabatic scheme is much easier
from the point of view of mathematical manipulations.

(g) Interference effects between resonances which
originate from the coupling of zero order vibronic level
| si) with the quasicontinuum {|j)} are assumed to
be negligible, again from symmetry arguments.®

Concerning the medium-molecule interaction lead-
ing to the vibrational relaxation in the molecule, we
utilize the following assumptions:

(a) The molecule-medium interaction involves only
nuclear coordinates.

(b) The molecule-medium interaction will be con-
sidered to correspond to that of coupled harmonic
oscillators. Low order coupling terms in molecular
medium coordinates will be taken into account. These
contributions correspond to the decay of a molecular
vibration into one or into two medium phonons.

(¢) Only those interaction terms which conserve en-
ergy to the lowest order are retained in the coupling
Hamiltonian. This rotating wave (or resonant) ap-
proximation® corresponds to the replacement of a
Hamiltonian of a system of linearly coupled oscillators
displayed in second quantization representation

H= Z fiwi(aitai+3) + E #iGii(ait+a:) (a+a;)
(I1.7)

(where a;* and a; represent the creation and annihila-
tion operators of the ith oscillator characterized by the
frequency w;, while Gi; are the coupling constants) by
the approximate Hamiltonian

H= E ﬁwi(ai+ai+%) + Z ﬁG,-j(a,-+a,~+ aia,-’“) . (II.S)

The neglected operators of the form aite;t and aiay
exhibit a time dependence which is determined by
exp[+i(wi+w;)¢] and undergo rapid oscillations, on
the time scale of interest, whereupon their average con-

tribution is small relative to that of the terms retained
in (I1.7).

Thus our model system involves a metastable elec-
tronic vibrational excited state of a large harmonic
molecule interacting with a harmonic medium via linear
coupling terms in the molecular and nuclear coordi-
nates,

III. MODELS FOR VIBRATIONAL RELAXATION

In this section we shall focus attention on the prob-
lem of vibrational relaxation within a single electronic
manifold. Several simple model Hamiltonians will be
advanced to account for the medium induced vibra-
tional relaxation of a single intramolecular vibrational
mode; these will be specified as follows:

Cas.e A: Single phonon decay. The molecular oscil-
lator interacts with the phonon bath via linear inter-
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action terms. Thus the intramolecular phonon decays
into a single medium phonon.

Case B: Double phonon decay. The molecular oscil-
lator interacts simultaneously with the low frequency
medium phonon and with a high frequency medium
phonon. The intramolecular vibration decays into two
medium phonons.

Consider first the single phonon decay mechanism
which, following the assumption of Sec. II, is charac-
terized by the following Hamiltonian in second quanti-
zation representation

H=fiw(ata+4)+ X fiw, (b,1043)
+ X %(G.atb,+G,*ab, ) (IIL1)

where at and a are the creation and annihilation oper-
ators for the damped molecular vibration, &,% and &,
represent the creation and annihilation operators for
the bath »th vibrational mode, which is characterized
by the frequency w,, while G, corresponds to the cou-
pling parameter of the molecular vibration with the
vth medium phonon. Note that the rotating wave ap-
proximation has been applied to specify the coupling.
Efficient vibrational relaxation in the model system
(IIL.1) is expected to occur only provided that the
frequency w of the molecular oscillator overlaps the
frequency spectrum {w,} of the bath frequencies. If
this condition is not satisfied, the interaction term in
Eq. (IL.8) does not conserve energy. An attempt to
describe the system under such conditions utilizing the
Hamiltonian (ITI.1) will result in frequency renormal-
ized stable discrete oscillator. In particular, if the
oscillator’s frequency is far from the frequency spec-
trum spanned by the medium modes with which it
interacts, it provides a good approximation for the
exact renormalized oscillator. We may thus conclude
that in general the interaction term in Eq. (IIL.1)
does not provide a proper description of the vibrational
relaxation of high frequency molecular vibrations, al-
though it may be useful for the relaxation of low
frequency (wR2100-200 cm™) vibrational modes of large
molecules,

Consider now mechanism (B) for vibrational relax-
ation which is applicable to a host matrix which con-
sists of polyatomic molecules. In this case, the vibra-
tional states of the medium consist of (low frequency)
phonon states and of high frequency collective excita-
tions, which originate from the intramolecular vibra-
tions of the host molecules. These collective excitations
of the polyatomic host matrix will henceforth be re-
ferred to as “vibrons”. These high frequency medium
modes cannot provide by themselves a vibrational re-
laxation channel for the guest molecule, as vibrational
exciton band widths are rather narrow® (~10 cm™)
and the total number of these modes is rather low. The
medium vibrons cannot be considered as an effective
continuous decay channel for the intramolecular vibra-
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F16. 1. Schematic density of states in a phonon-vibron system.
wp is the Debye frequency of the phonons; w, is the vibron fre-
quency. « corresponds to the frequency of a guest molecule.

tion, but should be viewed rather as a degenerate single
(or a small number of) vibrational state(s) of the
medium. However, low frequency medium phonon
states superimposed on a single medium vibron (Fig. 1)
provide us with an acceptable dissipative continuum
which overlaps the intramolecular vibrational fre-
quency. Thus we assume that every vibrational mode
of the decaying molecule is imbedded in a dense mani-
fold of medium vibron—phonon states. This mechanism
is physically similar to V-V energy transfer in the gas
phase.®® Let C,* and C, denote creation and annihila-
tion operators for the nth vibron, which is characterized
by the frequency w,. A physically acceptable Hamil-
tonian, (based on the approximations outlined in Sec.
IT) is given by

H=7‘iw(a+a+%) + Z ﬁwv(bv+bv+%)
+ Z ﬁwﬂ(cﬂ+cﬂ+%)
7
4 X 3 (Gt Cot-Gy*ab, ), (TI1.2)
v on

where G, are the appropriate coupling terms. It should
be stressed at this point that the Hamiltonian (II1.2)
accounts for the dissipation of a single vibration of the
guest molecule into two medium phonons. In poly-
atomic molecules other third order terms formally
similar to the coupling in (II1.2) may be of importance
in describing intramolecular medium assisted energy
redistribution. These contributions are of the form
>3 Y AG Y et b, +G o *atad,),  (T11.3)
rouoy
where conservation of energy is insured by the balance
between the two intramolecular vibrations x4 and u’
and the phonon mode ie., w,—wy==+w, We note,
however, that the coupling terms (II1.3) may be of
importance for near degenerate intramolecular vibra-
tions, however, they cannot in themselves lead to the
thermalization of the vibrational modes of the guest
molecule, as the total number of its vibrational quanta
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is unchanged. For the sake of mathematical simplifica-
tion we shall neglect these terms in our treatment.
Moreover, we shall invoke another rather serious ap-
proximation by assuming that every molecular oscilla-
tor relaxes independently, in other words, that the
different molecular oscillators are not coupled via their
interaction with the medium.

To conclude this section we note that high frequency
vibrons are not provided by solid monoatomic matrices.
To describe vibrational relaxation of high frequency mo-
lecular vibration in such matrix we should consider mul-
tiphonon processes including in the Hamiltonian terms
up to high order in the medium coordinates, namely
terms of the form >, A[G,*a,t(b,)"+G,**a, (b, )]
with #~10, as the high molecular frequencies exceed
by about an order of magnitude these of the medium
phonons. Such contributions are expected to be ex-
tremely small, as may be deduced from the experimen-
tal observation that the vibrational relaxation of di-
atomic molecules in monoatomic solid matrices is ex-
tremely slow® and may proceed at a rate of ~1-100
sec”L.4* For polyatomic molecules in polyatomic ma-
trices the vibrational relaxation may be greatly en-
hanced due to the effect of the phonon-vibron coupling.
Recent experiments*® demonstrate that the vibrational
relaxation rate in this case is ~101-1012 gec™!,

IV. CREATION AND ANNIHILATION OPERATORS
REPRESENTATION OF MOLECULAR
ELECTRONIC TRANSITIONS

It will be useful at this stage to formulate the theory
of molecular electronic transitions in second quantiza-
tion representation both for the vibrational modes and
for the electronic states. As we consider here a two
electronic states model, the representation of the elec-
tronic degrees of freedom in terms of creation and
annihilation operators is rather trivial. We simply de-
fine a raising operator d* and a lowering operator d
such that#®

ar|1y=|s);
dt|s)=0

dls)=1[1),

d|1y=0, (IV.1)

for all { |7)} so that these electronic operators are de-
fined by their operation over the complete set of elec-
tronic functions.

The definition of raising and lowering operators in
the nuclear space is somewhat more complicated. The
difficulty arises from the differences between the poten-
tial surfaces in the two electronic states which vield a
different set of vibrational wavefunctions for each
electronic manifold. A cursory examination of the prob-
lem indicates that one has to define a different set of
vibrational creation and annihilation operators for every
vibronic manifold. The operators for a single electronic
manifold are related to the operators of the second
manifold by a well-defined transformation, not only in
our simple model which is characterized by displaced
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identical potential surfaces, but also in the more general
case where the two potential surfaces differ also in the
frequencies of the normal modes.*

This irritating ambiguity in the definition of the
creation and annihilation operators for the nuclear
wavefunctions may be overcome by a mathematical
transformation which has become very popular in
pseudopotential theory.* We replace the usual adia-
batic basis set by an alternative basis, where the same
vibrational set of functions corresponds to both elec-
tronic states. At the same time, the relevant interstate
coupling operators are modified accordingly, so that
the physically meaningful matrix elements are in-
variant.

It is easy to establish this transformation scheme
for the present simplified molecular model system,
where the vibrational wavefunctions (11.3) in the I/th
electronic state are just shifted in origin relative to
those in the sth electronic manifold. Thus the single
mode vibrational wavefunctions [defined by Egq.
(I1.3) ] in the two electronic states are related by the
simple transformation

Xll»‘(ql#; Tp) = eXp(iAuPsu) Xsu(qsu; v), (IV.2)

where p,. is the momentum operator conjugate to
g while A, is defined by Eq. (II.6). The operator
exp (¢A,p.) just performs the necessary shift of origin
for the single mode nuclear wavefunctions in the two
electronic states. Thus the total nuclear wavefunctions
in the two electronic states are related by

x1i(qQs; {v;}) =[TI exp(iAupu) Ies( Qs {23}).  (IV.3)

To demonstrate how this procedure works we have
summarized in Appendix A the relatively simple rele-
vant transformation for radiative processes. Utilizing
the results derived in Appendix A, for any operator F

which depends only on the electronic coordinates we -

have
(boi(ars {o1) | F | ¢xi( s {0:})))
= ({b0i( Qo {03)) | F | dxei( Q5 {0:]))), (IV.4)
where the transformed operator #' takes the form
F=exp(~1 oM [(s| F| D+
|

X H {exp[(A,,/\/?) au+] eXP[“ (Au/\/?) a#]}
1P 9TT fexpl— (A/VE) a+] expl (A2 0, ).
(IV.5)

( ) and () represent integration over electronic and
nuclear coordinates, respectively. This result is of inter-
est for direct spin orbit coupling between the two
electronic states.

Consider now the transformation of the nonadiabatic
coupling between two electronic states. Invoking the
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modified Condon approximation®® and neglecting the
second derivative of the electronic wavefunction with
respect to nuclear coordinates, the (hermitian) approx-
imate form of this operator is*

(Hy) siti= 22 Ca*Gai( s {o,})

X | (8/0¢.) | xei( Qs {v:})), (IV.6)
where
Car*= R I 1(8/9q.) I ée) Iq=0
(non-Condon correction). (IV.7)

Utilizing Eq. (IV.3) we obtain the modified non-
adiabatic operator in the form

V=HA,= Y Cod[I] exp(ip.A,) Tpthec.  (IV.8a)

or in a second quantization notation
V=3 Cad{I] exp[— (ay/V2) (@, ~ ) ]
x ®

X (7'/\/?) (ax+_ Um) }
+Csl"*d+{H eXPJ:(A#/\/z) (a,F— du)]

X (i/V2) (at—a)}. (IV.8b)

The effective coupling (IV.8) operator may be
more conveniently handled if we replace the factors
— (1/v2) (at —ax) by an exponential operator

eXP{ - [Kx/\/j:)(ax-'-" a.) }

thus providing a more symmetrical form for the cou-
pling operator. At the end of the evaluation of the
coupling matrix element we shall take a derivative
with respect to K, at K,=0, so that

V=2 (3/8K.) GCod{]] exp[— (8,/V2) (g, —a,) ]

Xexp[ (K/VZ) (a—a) J}+he). (IV.9)

The effective zero order molecular Hamiltonian H,
whose eigenstates constitute our modified zero order
basis will take in the second quantization representation
on especially simple form:

Hy=AEd+*d+ 3 fw,(ate+3); AE=E—E,
n

(IV.10)

where the electronic energy is measured from the mini-
mum potential surface of the /th electronic state. The
sum in (IV.10) is taken over all the molecular vibra-
tional modes.

We conclude this section with a remark concerning the
significance of the operators exp(—[A,/V2](a,t—a,) ).
This shift operator which has been used extensively in
quantum optics as the generator of Glauber’s coherent
states,” may be called the Franck Condon operator as
its matrix elements between eigenstates of the har-
monic oscillator u yield the appropriate Franck Condon
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factors for the mode u in the displaced potential sur-
faces model. The role of this operator in our scheme
thus becomes apparent. It is not very difficult to gen-
eralize this operator for a more complex model where
the electronic potential surfaces differ also in the fre-
quencies of the different modes® but the mathematical
handling of the matrix elements will then become
rather cumbersome.

V. AGENERALIZED INTERACTION PICTURE FOR
THE TRANSITION PROBABILITY

We shall formulate a relaxation scheme providing a
proper description of the effects of vibrational relax-
ation on molecular electronic decay processes. One
may consider different kinds of molecular processes
and also different molecular dynamic observables. The
processes of interest to us are radiative and nonradi-
ative electronic transitions, the relevant observables
related to these processes being:

(a) Radiative and nonradiative decay constants of
the excited electronic state.

{b) Quantum yield for radiative emission from the
excited electronic state.

(c) Optical line shapes for the absorption of radi-
ation into the excited electronic state.

In this work we shall focus our attention on the
problem of nonradiative decay probabilities (or life-
times). A discussion of the optical lineshape problem
has been also provided.#” Here also one may distinguish
between two experimental situations:

(a.1) The time evolution of the total occupation of
the upper (|s)) electronic manifold may be investi-
gated by monitoring the fluorescence or phosphores-
cence originating from this electronic state.

(a.2) The time evolution of the occupation of a
single vibronic level of the upper electronic manifold
may be studied by monitoring the absorption of radi-
ation by this vibronic level.

The experimental techniques of ultrafast spectros-
copy developed by Rentzepis® provide direct infor-
mation concerning both experimental problems. From
the theoretical point of view the handling of the first
problem is considerably easier, and we shall limit our
treatment to the time evolution of the total occupation
of a decaying electronic state. The general theoretical
scheme developed herein will be applied for nonradi-
ative spin conserving relaxation processes utilizing the
nonadiabatic operator [Eq. (IV.9)]. It can be easily
extended to handle intersystem crossing using spin—
orbit coupling of the form (IV.4) and radiative decay
processes using the modified dipole operator [given by
Eq. (A10)]. The total Hamiltonian of the system is

H=Hy+H +V+Hny. (V.1)

The zero order molecular Hamiltonian H, is given by

A. NITZAN AND J.
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Eq. (IV.10)

Hy=AEd*d+ 3 fiw,ata,. (V.2)
n

The medium Hamiltonian describing the baths of pho-

nons and vibrons as prescribed in Sec. IT is

Hp= 3 fwb b+ 3 fiw,CqtC,. (V.3)
The zero vibrational level in Egs. (V.2) and (V.3) is
defined as to include the vacuum state energies of the
medium and of the molecular oscillators. The non-
adiabatic perturbation Hamiltonian in (V.1) is given
by Egs. (IV.8) and (IV.9). Finally, for the molecule
medium coupling we shall utilize two expressions as
discussed in Sec. IT:

Hpr= 3 A(Gyetb, 4G #*ab,) (V4)
uy

for case A of single phonon decay, which is of limited
applicability. Alternatively, we shall utilize the model
Hamiltonian for double phonon decay (case B Sec. II)

HmL = Z Z Z ﬁ(Gl’ﬂ“aﬂ+bvcﬂ+Gvu“*aubv+Cn) . (V.s)
& v 9

The zero order total Hamiltonian of the system is

H0t=H0+HL. (V.6)
It will now be useful to define
Hy=H4-H,p, (V.7
so that N
H=H:+7V. (V1)

Let | s, v, m,) denote the initial electronic (s) vibra-
tional (v,) and medium () state of the total system
{accessible by optical excitation from the ground state).
The probability, P;(#), for the molecule to remain in
the initial electronic manifold s at time ¢ is given by

INOEDID l (<S; v, m ] eXPE_iH(t/ﬁ)] I Sy Usy ms)) |2:
(V.8)

where the summation is taken over all the molecular
vibrational levels and the medium states. The decay
rate W, of the sth electronic manifold is given by
Ws=—dPy/dt

which in general may be time dependent.

The evolution operator U(¢) =exp(—:iHi/f) 1is
given by

U(t) =U%t) Ur(t) = exp(—illot/R) Ur (1), (V.10)

where U(f) is the evolution operator in the inter-
action representation given by

Ur(t) =T exp (—ifot VI(-r)d-r) (V.10")

which represents a time ordered expansion, T being the
conventional time ordering operator, while

Vi(r) =exp[illy(r/%) IV exp[—iHy(r/%)]. (V.11)

(v.9)
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Expansion of the evolution operator in a power series We note in passing that we have chosen to separate

in the intramolecular interaction V yields the usual the Hamiltonian in Eq. (V.1) so that the truncation

low order perturbation terms of the power series in Eq. (V.12) neglects the contribu-

tion of higher powers of V only, while no assumptions

i [t have been made concerning the magnitude of Hmr.

Ur(t)=1-» f Vi(r)dr The possibility of studying both limits of fast and of
0 slow vibrational relaxation is thus open to us.

1 . Inserting Egs. (V.10) and (V.12) into Eq. (V.8)

" f dr / dr'Vi(r)Vr(#'). (V.12) and bearing in mind that V does not couple an elec-

i tronic state to itself, we obtain (up to second orderin V)

P)=% ((< s m oo (il ) 5,0 m>) x <<s, o, ] exp (il ) 55 ms>)
a(emmi[[o [ () oo () v ()
xexp (iflaz) 5,5, m>)(<s ol exp(=ifha ) |5, o, me>)
-5 (<s s exp (i) 55 m>)(<s o ml exp(—ifho7)
Lo [ e (i3) v (.752) o (5 5500 ). 030

As H, does not couple different electronic states, we may replace in Eq. (V.13) | s, v, m){s, v, m | by the sum over
all electronic states which in the present two electronic state-system is just | s, v, m){(s, v, m | + |1, v, m){l, v, m |.
Applying the closure relation

2 Lls,om)ls,0,m|+ [ 0, m){l, v, m|]=1 (V.14)

we now obtain:

P(t)=1—2—Re/thfdr’ (s, vs, M, | € (zﬁ I)V)(e [l (7' —7) K]V (__ﬁ i)l )
2 72 \ . y Usy Ms | €XP Oﬁ XD o\T —T €xXp 1 Oﬁ S, Vsy My

(V.15)
The decay rate Eq. (V.9) is given by

W= = Ref @7’ ({s, v, ms | exp(illor/%) VX expliH,(r'~1) /E]V exp(—iHy' /7)) | 5, 1, ms)).  (V.16)

The following comments are in order:

(a) The transition probability (V.16) is valid up to second order in V. The contributions of high order terms
involving phonon assisted high order virtual transition between different v, states are neglected.

(b) Our result is reduced to the well-known case of the radiationless decay in an isolated molecule, which was
previously derived from the “‘golden rule” transition probability. Setting H,z=0 in (V.16) than Hy=H,* [Egs.

(V.6) and (V.7)] while |s, v, m,) constitutes an eigenfunction of Hyf. Equation (V.16) may be recast in the
familiar form

W= — Re/ (' ——7-) (s, v | V exp[iHot (7' —7) /H]V exp[—iHt (v —7) /B ]| s, 1:))
1 ‘
= {2_[ dx({s, v, | V exp(iH,'x/R) V exp(—iHo'x/F) | 5, 7)), (V.17)
where x=7'—7. Equation (V.17) is the identical to the result obtained in the isolated molecule limit by the gen-

erating function formalism,” except that in the latter case the integral extends from — = to «. The exact mathe-
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matical form is given by (V.17) while the more convenient formula containing unbounded integration (reflecting
“exact” energy conservation) is obtained from (V.17) as for sufficiently long times, 7, the integral is independent
of the —+ -7 integration interval. Equation (V.17) has also been utilized in the theory of radiationless transi-
tions* with results similar to those obtained from the “golden rule” rate expression.

(c) While in the case of slow vibrational relaxation the operator (i.e., the autocorrelation function) in Eq.
(V.17) depends on x=1'—7, the time correlation function for the case involving vibrational relaxation [Eq.
(V.16)] is a more complicated function of both  and 7’. This originated from the fact that the zero order wave-
functions are not eigenfunctions of H,. However, it will be shown below that for fast vibrational relaxation the
time correlation function becomes dependent again on 7' —7 alone.

It will be useful at this stage to recast Eq. (V.16) in a slightly different form, separating out the electronic part
of the matrix elements. Making use of Eq. (IV.8b) we obtain

2 ¢ AE . ~ -
W,= W Re/; dr’ exp (—’i(r’—-r) —ﬂ—> (y, m, | exp (iHo' %) V+ exp <—~iH0 %)

!
T T

X exp (iH~0’ 7—,1,—) V exp (—iﬁo' ﬁ) | v, m, )) ,  (V.18)

where N
Hy= %: fsuatau+ ZV_‘, fiw,b, b, -+ ? fiwyCytCyt-Huz (v.19)
V=% CarIT expl(84/¥2) (0" —,) ](i/¥2) (ast—ax) (V.20a)
and N ‘ “
V= ZK: Cor™* IT exp[— (8,/V2) (0¥ — 0,) J(i/V2) (at—ay). (V.20b)
W, in Eq. (V.18) may thus be expressed :LS a Fourier transform of a generalized time correlation function
W= % Re fo " dr exp (—i(f'—f) %) @, | V3@ V() [, my), (v.21)
where
T(1) =exp (iﬁﬂ' ;-i) ¥ exp (—iﬁo’ %) . (V.22)

Equation (V.21) and (V.22) provide us with the total decay probability of an electronic state, where the system
has been “initially prepared” in the zero order state. It should, however, be borne in mind that while the initial
vibronic state of the guest molecule is accessible by optical excitation, the medium is assumed to be initially, and
to remain in thermal equilibrium. Thus, the matrix elements (V.21) over a single medium state should be re-
placed by a thermal average { )r over the medium states. The final result for the decay rate is

2 T . N AF
= Re_/; dr exp (z(f——r ) 7) G(r, ), (V.23)

where the generalized thermally averaged time correlation function is
Glr, )= | VHD) V() | v5)r. (V.24)

To obtain an explicit expression for the correlation function we insert Egs. (V.19) and (V.20) into Eq. (V.24),
making the usual assumption that A,=0 for every promoting mode «.* This simplifying assumption is valid for
symmetrical molecules in the common case where the promoting modes are nontotally symmetric. It is now
easy to see that only terms diagonal in the promoting modes coordinates will contribute to the final resuit® where-
upon the correlation function is expressed in the form

G(r, ) =21 Ca* B IT gudr, (V.25)
3 bk
where g, and J, are single oscillator matrix elements,
8= (@ | exp{— (8,/V2) [a,* (7) — au(7) ]} exp{ (A/V2)[aF (7') —au(+") T} | vas) (V.26)
Je=— (@ | ANV [osH(7) = ac(r) JANZ) Lot (") — ae(r") ] | var)- (v.27)
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We may save considerable effort by calculating matrix elements of the following form {see Eq. (IV.9)]

Iu= (v | exp{— (8,/V2)[as* (1) — au(7) ]} exp{(Ku/V2) [t (7)) —au(r") 1} | vas)

(V.28)

so that the matrix elements (V.26) and (V.27) are expressed in terms of (V.28) via the relations

=T (K,=A,)
Jo= (84 /A K ) 4 & =0

The time correlation function now takes the final form

G(T; "") = Z [ Co* 12[(32/3AxaKx) (H Iu)T]K"=A“;u#x;K‘=A,‘=O
K B

(V.29a)
(V.29b)

(V.30)

Eqgs. (V.23), (V.24) and (V.30) constitute our final result for the decay rate in coupled electronic—vibrational

relaxation processes.

VI. COUPLED ELECTRONIC-VIBRATIONAL
RELAXATION

To extract physical information from the formal ex-
pressions derived in Sec. V, we have to provide explicit
solutions to the following two problems: (a) We have
to evaluate the Heisenberg representation of the cou-
pling operator ¥ [Eq. (V.20)] under a Hamiltonian
H [Eq. (V.19) ] which contains the molecular-medium
interaction. (b) The thermally averaged matrix ele-
ments in Eq. (V.30) has to be evaluated as a function
of the time variables = and +’.

The evaluation of the coupling operator (V.20) is
reduced to the calculation of the Heisenberg represen-
tation of the creation and annihilation operators for
the molecular vibrations [see Eqgs. (V.28)-(V.30)].
The method adopted by us to handle this problem
rests on the Wigner Weisskopf approximation.®® This
approach was introduced by Gordon Walker and
Louisell* to treat the problem of a single oscillator
interacting with a large number of atoms and was
reformulated by Glauber® for the case of a single oscil-
lator interacting with a heat bath, where the inter-
action Hamiltonian H,.; is given by Eq. (V.4). We
shall use Glauber’s results® for case A, while for case B
[Eq. (V.5) ] we have utilized a self consistent extension
of the Wigner Weisskopf approximation, recently pro-
vided by us.®

We shall now present the general results for the
Heisenberg representation of the operators correspond-
ing to molecular harmonic oscillators, obtained within
the framework of the Wigner Weisskopf approxima-
tion. These results provide a useful model for the study
of vibrational relaxation in a dense medium. Two dif-
ferent models (referred to in Sec. IT as case A and
case B) will be discussed, in an attempt to get insight
into the general features of the problem which are inde-
pendent of the particular model Hamiltonian for the
molecule-medium coupling. In deriving these results
we have invoked the assumption (see Sec. II) that
the relaxation processes of different molecular oscilla-
tors are independent and can be treated separately.

Consider first case A where the molecule-medium
coupling is given by Eq. (V.4). For this model Hamil-
tonian Glauber® has derived the Heisenberg representa-
tion for the creation a,!(#) and for the annihilation
a,(#) operators in the form

d,‘(t) =a“,(0) uu(t) + Z bv(o)vv“(t)>

et (D) =a, (O u (O + T b, (00, (8), (VL2)

(VIL.1)

where ¢,(0) =a, and a,*(0) =g,*. #,(f) and v,*(?) are
numerical functions of the time ¢. The explicit form of
these functions is

uu(f) = exp{— (vutiw)t}, (VL3)
oA () ={—1G.*/ [vuti(w/—w,) I} {exp(—iw,t)
—exp[— (vat+iw,) ]}, (VI4)
where the modified frequencies are
Wy = w8y (VL5)

and where the level shift in Eq. (VI.5) and the level
width [in Egs. (VL.2) and (V1.3)] are defined by the
relation

say—ire= lim S [ G (n—ati®) ] (VLG)
() v

Replacing the sum over the medium modes in Eq.
(VL.6) by an integral over the density of phonon
states >.,—[p(w,) dw, we have

dwu= PPf 1 G.» |2P(wv,) dwv,/ (‘*’u"'w") (VI6/)

and
ve= I1| G* P’o, loymars (VL6")

whereupon the level width due to vibrational relaxation
is just given by the “golden rule” expression. Finally,
it is important to mention the sum rule (normalization
condition) for the functions (VI1.3) and (VI.4) which
for the present case reads®

[u,(8) P+ 3 | 02(0) P=1. (VL7)
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Turning now our attention to the two phonon decay
(case B) specified by the interaction (V.5), the har-
monic oscillator operators in the Heisenberg represen-
tation have the form

a,(t) =u, () aut+ IS 2,94 (1) 0,C,

et () =u (D) a4+ 2 X v ()b HC,. (VLY)

(VL8)

In this case, we were able to show that®

u,(t) = exp[— (i, +v,) 8] (V1.10)
and
(1) = { _iGVﬂ“/[’Yn'{'i(wu/_wv_wn):l}
X {exp[—i{w,+w,) £]—exp[— (v +iw) ]}, (VL1

we 1s again given by Eq. (VL.5) while the level shift
dw, and the level width v, in Egs. (VI.10) and (VI.11),
are now given by the relation

S [ Gl’ﬂ“ |2(<nv>T+ <”1,>T+1)
Sosy— iy, = ilﬁEZﬂ? o (orFoon) Hid .

(VI1.12)

The thermally averaged population (#;)r for the me-
dium phonon mode 7 (¢=7 or ») is

(niyr=Lexp(fiw,/kT) 1T (VL13)

so that for case B we can replace the sum over the low
frequency medium modes by an integral, retaining the
sum over the vibrons:

Sw,=PP 3 Jdw,p(w,)
7

XL | G B )+ (na)rt 1) / (wu—won—o)
(VI.14a)
7F=7r E [ Gl’ﬂ“ |2(<nV>T+ (nﬂ>T+ 1>pl’ 1w“=u,,+w,,-

(VI.14b)

Finally, the normalization condition for the time de-
pendent functions #,(f) and v,,#() in Egs. (VI.8) and
(VL9) is given for case B in the form

| u,(t) ]2+ PIDD I ) |2(<nV>T+ (n'l>T+1) =1,
(VIL.15)

We are thus provided with the necessary expressions
for the Heisenberg representation of the harmonic oscil-
lator creation and annihilation operators of the mo-
lecular vibrations for both case A [Eqs. (VI.1)-(VI.7}]
and for case B [Eqgs. (VI.8)—(VIL.15)]. The following
comments are in order:

(a) In both case A and case B the function #,(#) has
the same functional form [Eqs. (VL.3) and (VI.10)].

(b) For both vibrational relaxation mechanisms we
can specify the level width (or the vibrational relax-
ation rate) in terms of the ‘“‘golden rule” rate expres-
sion [see Egs. (VI.6) and (VI.14)]. As the present

A. NITZAN AND J. JORTNER

theory is phenomenological and no attempt is made to
evaluate the molecule medium coupling terms, the final
form of the electronic vibrational relaxation rates will
be similar at a constant temperature.

(b) An interesting difference between the relaxation
models A and B involves the temperature dependence
of v,. For single phonon decay (case A) v, is temper-
ature independent [Eq. (VI.6')] as characteristic of a
simple relaxation process. On the other hand for the
double phonon decay (case B) v, [Eq. (VI.14b)]
exhibits a temperature dependence, which originates
from the contribution of stimulated phonon decay
processes.

(d) The general results are considerably simplified
in the two limits:

(1) In the isolated molecule case G,*=G,,*=
v,=0 (for both cases A and B) and #,(¢) =exp(—iwut)
while »,#(¢) =0. This leads just to the unperturbed
harmonic oscillator, as expected. We shall refer to this
limit where v,—0 or v, for all times, {, of physical
interest, as the slow vibrational relaxation limit.

(2) In the limit of rapid vibrational relaxation v,
is large, i.e., v.£>1 for all times of physical interest.
For the experimentally relevant time scale in this limit
we have a,(¢) =0 for both cases A and B while

o4 () = { =G/ [vutiw)—wy) ]} exp(—iwt) (VI.16)

for case A, and

Vgt (t) = { = iGe/ [vuti(wd —ws—wy) 1}
Xexp[—i(w,+wy)t] (VLIT)

for case B. These two limits will be explored later.

(e) It should be borne in mind that case A is appli-
cable for the relaxation of low frequency vibrational
modes, while the relaxation of high frequency modes
should be described in terms of case B.

As is common for many quantum chemical problems
the time has come now to calculate the matrix elements
which determine the time correlation function [Egs.
(V.14), (V.25), and (V.30)]. This problem reduces to
the evaluation of the single oscillator matrix elements
I, [Eq. (V.28)]. These terms are handled by introduc-
ing a(¢) and a*(¢), [Eqgs. (VI.1)-(VI.2) for case A or
Eqgs. (VI1.8)—(V1.9) for case B] into Eq. (V.28) and
applying the well-known commutation relations for the
harmonic oscillator operators. In Appendix B we pre-
sent the detailed calculation for the single phonon decay
(case A) while in Appendix C we provide the details
of the calculation for the more complicated case of
double phonon decay (case B).

The final form of the thermally averaged product
{I1.5.) in Eq. (V.30) can be displayed in an identical
form for both cases A and B, which is

{1 1)r=~T1I (yr= 11 A.B.D,, (VL18)
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where
y:| -—exp{-—-—(A 4K, +2 wBy eXP[ Yulr—7' )] CXP[_ Wﬂl("' T )]} (VI.19)
= (vap) ! :%_‘: —(;__Tll)(lﬁ [3A.2 exp(—2y,7r) +3K,2 exp(—2v,r') — ALK, exp[ —vu(r+7") ] cos[w, (r—7") ]I
(V1.20)
and

D,=exp(— () {38 1—exp(—2v,r) J+3K [ 1—exp(— 2va’) ]
- AnKu{exP[:_'Yu("'"T/) J—exp[— Yu(r4+7") ]} cos[w, (r—1") ]} ) (VL21)

while the final result for the time correlation function which is obtained by inserting Eqs. (VI1.18)-(VIL.21) into
Eq. (V.30), takes the form

Gr, )= T 1 Cutt X3 ({8e)r+1) expl—iwod (r—7") —7e(r—1) H (oc}r explise (r—1) —yu(r—1")]
2o {58) expL—ma(r+e) Teosfsd (1) T Xexpl — T 30 X 1 expll =i (=) =1.(r=)])
Xexpl— T () (A2 exp(— 2yr)—exp(— 27, ]
— el =) T expl—m(r+7) T} cosli (r—r) D]

X II [(vsn ) (—(_,)1,)(—,)— (A) " X {exp(— 27,7) +exp(— 21,r") — 2 exp[—vu(r+1) ] cos[w/(r—r')]}'] -
(VL.22)

It is worthwhile to bear in mind that 4 in Eqs. (VI.18)-(V1.22) is defined by Eq. (V1.6') for case A and by
Eq. (VI.14b) for case B. The frequency shifts (VI.6') and (VI 14a) may be neglected and «,” may be replaced
by wy.

These results lead to the following conclusions:

(a) Equation (VI.22) together with Eq. (V.21) provide our final result for the nonradiative decay rate of a
large molecule modified by vibrational (thermal) relaxation. The electronic transition is treated to second order

while vibrational relaxation was handled to “infinite” order.

(b) Vibrational relaxation occurs both in the initial and in the final electronic levels system. Although the
present treatment focuses attention on the nonradiative decay feature of a large ‘‘statistical”” molecule, the results
of the present study are applicable for the elucidation of the features of electronic relaxation of small molecules
in a dense medium.® In the statistical limit vibrational relaxation in the final electronic manifold is of no impor-
tance while the nonradiative decay characteristics are just affected by vibrational relaxation in the initial elec-
tronic state. In the small molecule case vibrational relaxation in the final electronic manifold is crucial for provid-
ing a final dissipative channel for the electronic relaxation process.

(c) Our general equations for electronic vibrational relaxation in the limit of slow vibrational relaxation reduce
to the result previously derived by us for the isolated molecule limit. In this case we have v,=0 so that Egs.
(VI.19)—(VI1.21) reduce to the simple form

= (o) ! i

=0 (vsu_’) '( ’)2
Ay=exp{—1(A’+K2) —5(KuA,) exp[—iw/ (r—7')]}. (V1.25)
Inserting these results into Eq. (VI.18) and utilizing Eq. (V.30), the time correlation function takes the form
G(r,7)=G(r—7")=exp(—}% E A2) Z | Cor® I2({ (2ex+1) exp[—iw (z—7 ')]+v,.‘ explio (r—7") 1}

D=1 (VL.23)

(30243K2—AK, cos[w,’(r—7)J}" (V1.24)

Xexp{z 30,2 exp[— i, (r—7") ]} )X H ((v,,,,) ED (—% 1—cos[w,.'(f—r’)]}’) (VI.26)

which is just the generating function for the nonradlatlve decay of an initially excited | s, {v,}) state.®

(d) Our general equations for electronic-vibrational relaxation in the fast vibrational relaxation limit reduce
to a slightly modified form of the well-known result for the nonradiative decay of a (Boltzmann) thermally av-
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eraged initial electronic state. In this limit we have for the relevant time scale %,(¢) =0, and relations (VI.16)
or (VI.19) hold for cases A and B, respectively.

Focusing attention on case A we can utilize these relations in Egs. (B9) and (B10) to get
N7, 7)) =0
ot (1, 7") =[—iG*/vuti(w) ~w,) JT5A exp(—iw,r) — (Ku/V2) exp(—~iw,s’) ]
These relations in turn yield

Au= eXP{ - %(A"LI_K“Z) +%AuKn Z { |G |2/|:'YM2+ (W' —wy) 2]} exp[:in(T—T’)]} (VL27)

B,=1 (VL.28)
|G»[?
¥+ (‘*’ul'— w,)*

D,=exp [:— > {m)r G (A KA — 5 (MuK,) {exp[—iw, (r— 1) +expliw, (r—7") ]} ):'

(V1.29)
Inserting these results into Eq. (VI.18) we obtain

IT Tyr= 11 lexp(—1(A2HKEN (142X (m)rl | G 1/ (v (w/—w)) ]})
Xexp{3(AK,) 2 ({n)r+ 1D | G# P/ (v (w —w,)?) ] exp[— e, (r—1) ]
+3(AK) Y ,)e[ | G 1/ (v (w0 —w,)?) ] expliw, (r—7) ]} ] (V1.30)

To establish the correspondence between this result and previous results for the thermally averaged generating
function® we may perform the summations over » in Eq. (VI1.30) by proceeding as follows; first we take (n,)r
outside the summation at the point w,=w,’, secondly the summation is replaced by integration over the density
of states and third we make use of the relation

7 dw,[vu/vid+ (w0 —,) 2] expliw, (1—7") ]=expliw,/ (r—7") — 7, le—7" 1] (VL31)
As in our case r>r’ whereupon | 7—7' | =7—7" we get
II <I#>T= H (CXP{ — (024K (2<'Uu>1'+1) }eXp{‘é‘Apr(@“)T-l-l) exp[—-— iw‘,’('r——r') _'YIA(T_Tl)]}
+ {%A»Ku@n)T expliw,) (1—1") —vu(r—7") ]}), (VL32)

where we have put (#,)pw,=s, = (%)7-
Thus the time correlation function takes the final form in the limit of rapid vibrational relaxation

G(r,7)=G(r—7) =exp[— L 382(2(t)r+1)]
X5 X | Ca P{ ({0e)r+1) expl—iwd (r=1") —¥e(r—7") I+ (ve)r expliw, (r—7") —vu(r—7") ]}
Xexp{} T A2 ((n)r+1) exp[—iay (r—7") —vu(r—7) 1+3 T 82wz explio, (1= ') —vu(r—) ]}, (VL.33)

Equation (VL.33) was established for case A of vibrational relaxation. The same result can be derived for case B
(where v, is temperature dependent). Making use of Eq. (VI.17) we have for case B

I“I Lu)r= I“I {exp [—i(A,F-{—K'}) (1_2 z": ; {ny)r(na)7 | Gu® P, )]

o Vit (w0 —wy—w,y)?

(<n">T<n">T +1) |Gt Prir > exp[—i(wy+twy) (r—7') ]

xexp |18 £ 2 S

2]

+3(AaK) X {nr)r )z - | G';’" it — exp[i(w,tw,) (T—r')]]} , (VL34)
v o 2% Vit (wp'— wy—cy)
where #,, is defined by
M= {10, )7+ (1a) 7+ 1. (VL3s)

Utilizing Eq. (C11), taking the products ({n,)r{(n,)r/%:,) outside the summations in Eq. (VI.34) and making
use of the definitions (VI.14b) we obtain again Eq. (V1.33) for the rapid vibrational relaxation limit.
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The result obtained in the fast relaxation limit Eq. (VI.35) bears a close resemblance to the conventional
form of the nonradiative decay probability of a thermally averaged initial electronic manifold.** Our result
derived for the fast relaxation case exhibits a new feature as every frequency w, is now replaced by w,'+4v,. The
uncertainty width of the frequency of each molecular mode is due to its interaction with the medium.

To elucidate the significance of this modification let us focus attention on the zero temperature limit of ex-
pression (VL.33).

G(r') =3 T | Cut | expl—iwod (r—1) —m(r—r)] exp{—} T A2+ T A2 exp[—io (r—7") = vu(r—7") ]}

(V1.36)
which eventually leads to [using Egs. (V.23) and (V.17)] the transition probability from the vibrationless level

W= ﬁz Z | Car* [2exp(—3% Z A2 Re/ dr’ exp [z(‘r-—‘r ) ——] G(rr’)

RSPy A T S

Xexp[§ 2 Al exp(iw/z—wv, [x1)].  (VL37)
"

T

Following conventional procedures we may replace the integration limits —r+++7 by — -+ (see also Sec. VII)
Making now use of the expansion

exp[3 2- A2 exp iz~ lx|)= % exp[i (2 muw, ) o~ (2 mavy) | ® I ]H LA ™/n,!], (VIL.38)

we ma.y evaluate the integral (VI.37) which yields

z | Ca* 2 exp(—3 Z A2)

30

202

X 3 [ret T mon (AB—iactl T man) 3 (rck E oI 11 B2 130y

{n} BEK n,‘ !
Noting that the factor
exp(—3 2 A2) [T L(3A2) ™/n.1]
s I

corresponds to the multimode Franck—Condon factor between the initial vibrationless level of the electronic

state s and the level {#}=mn,, ng, <++, m,, ++- of the electronic state / we see that Eq. (VI.39) corresponds to a
modification of the conventional expression

W= (2/8) S| Vs 5(AE—Ey);  j={n}, (VL39)
1)

where the delta functions are replaced by Lorentzians. These Lorentzians are characterized by the widths (due
to the vibrational relaxation) of the /j levels. We may note that the width of the level j={»} is the sum of the
widths corresponding to the different modes, which, as expected, are proportional to their occupation numbers.
The fact that v, appears only with the coefficient #,=1 reflects the well known propensity rule that only the
{17} states where the promoting mode is singly populated are coupled to the initial vibrationless level in the present
model.

The modification of the transition probability in the fast vibrational relaxation limit [Eq. (VI.33)] is of lim-
ited significance in the statistical limit where it may be shown® that W, does not depend on v, and is given just
by the former results of Jortner e/ al.*** However this new result is of great importance in regarding nonradiative
transitions in small molecules® imbedded in a medium. In this case the electronic relaxation is determined by
the vibrational relaxation widths.

(e) Both in the slow relaxation limit (i.e., the isolated molecule case) and in the rapid relaxation limit the
time correlation function depends just on (r—7') [Egs. (VL.33) and (VI.26)]. For experimentally relevant
decay times, 7, the correlation function consists of a sharply peaked function for all r, so that the transition prob-
ability in these two limits is independent of 7 and the decay of the s electronic state is characterized by a single
exponential.

(f) In the general case of coupled electronic vibrational relaxation the general form of the decay probability

[Eq. (V1.22)] exhibits a simultaneous dependence on both = and +/, and the nonradiative decay of the s state is
nonexponential.
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(g) The general expression, Eq. (VL.22), has been derived tunder the condition that the molecular oscillators
are initially in a definite » state (by which we mean that the initial state is exactly defined by a given set of initial
population numbers). Other initial conditions are also physically meaningful. Suppose that every molecular
oscillator is initially obtained with a probability distribution corresponding to a Boltzmann distribution at some
temperature 7’. Then the function B,, Eq. (B14) [and the corresponding expression in Eq. (C2)] should be
replaced by the appropriate thermal average, resulting in

(Bu)r = (eXPE“ K (7, Tl)au+] eXPD‘u("', ) a])r
=exp[— | Nu(7, 7') Blma)r ] (V1.40)

which should replace Eq. (VI.20) in the final result. The time correlation function G(r, ¥’} now takes the form
[which should replace Eq. (V1.22)]

G(r, ") = | Cor I3 { ((e)r+1) expl—iwe (r—7") —vu(r=7)]

+ (v)r explio) (r—7") —ve(r—7") J+-2({vi)zr'— (v)r) exp[—ve(r+7")] cos[w/ (r—7") ]}
X exp{ - (2<7’n>T+ 1) %Auz} exp{ 2 ( <7)li>7'+ 1342 eXp[_iwu’ (1—7") —Yu(r—7") ]

+ 3 (@)r3a2 explioy (1= 1") —vu(r—1") ]}
Xexpl X ({un)r—au)r ) A Texp(—2y,r) exp(—2v,) =2 expl—v(r+7)J cosli (r—+") T1). (VL41)

If 7'=T we obtain again the fast vibrational relaxation result.

(h) Another interesting case results when the initial state of the molecular vibrations is a Glauber coherent
state. Such a distribution in the excited electronic state of a molecule may result from a broad band optical excita-
tion of an electronically excited state of the molecule, provided that the potential surfaces corresponding to the
ground and to the excited electronic states differ only by origin displacements. In this case, the initial state is
taken to be a Glauber state | ay=exp(—1 !« [?) >, [«"/(n!)V2] | #) instead of a » state. Eq. (B14) then yields

By= (o | eXP(_)‘u*(T; ) at) eXP(M(’T, )a,) | Q)
=exp{2ia, Im[ A\ (7, 7)1}, (V1.42)

(Im denotes imaginary part) which should replace Eq. (VI.20). We note that «, in Eq. (VI.38) is real, and is
proportional to the origin displacement of the uth mode between the ground and the excited electronic states. The
time correlation function G(r, 7') will be now given by

G(r, ") =% 2 | e P{ ({v)r+1) exp[—iw/ (r—7") —yu(r—7") ]
+ (ve)r explio (1—7") = (7—7") ]+ 2 (ce— (ve)r) exp[—ve(r+7") ] coslw (r—7") ]}
X exp{ -3 A3 20 A2 eXPE—i"’n’ (r—1") —yulr—1")}
Xexp (— 22 (va)r{38[2—exp(—2v,r) —exp(—2v,r") ]

— A exp[—vu(r—7") J—exp[—vu(v+7") ]} cos[w,’ (=1
Xexp{2i Y, (A/VZ)a[exp(—yur’) sinw,/t’'—exp(—v,r) sinw,/7]}. (VI43)

(i) The results obtained herein for the electronic vibrational relaxation features exhibit the same functional
form for the two different models (cases A and B) for the molecule-medium coupling.

VII. THE LOW TEMPERATURE LIMIT to derive explicit expressions for the time dependent

decay rate.

The general formula for electronic—-vibrational relax-
ation derived in Sec. VI is rather cumbersome and
direct physical information can be extracted from it
only by numerical computations. This general result
may be considerably simplified in the zero temperature
limit, where, under certain conditions we shall be able

In the low temperature limit, we set {v,)r=0 for
every vibrational mode u, and the vibrational relaxa-
tion width v, is temperature independent [i.e., being
given by (VI.14b) with (#,)r= (n,)r=0 for case B
and by (VI.6") for case AJ]. We shall also invoke a
further simplifying assumption that only a single mode
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{which corresponds to a nonpromoting mode) is ini-
tially vibrationally excited in the s electronic state. The
rate of disappearance of the electronic state s with the
initial molecular state being | s, 74, {0,} (ua) ), is now
given from Eq. (VI.22)

6(r,#) =1 T | Cur I exp[ i (1—7) = velr—7")]
‘ Xexp{—3 2 AM3 3 A2
X exp[— o (7 “—‘r') —v'u(: -1
T

=0 (Vsa—7) H(r1)?
X {exp(—2vy,7) +exp(—2y,7")
—2 expl —vu(r+7) ] cos[w, (v—7") J}r. (VILI)

Utilizing Eqgs. (VI.22) with (u.)r=(s.)r=0 for every
# and «, the (time dependent) electronic decay rate
may be displayed in the form

1
W(t)= 1;1‘22 | Caf [P exp(—5§ 2 A2)
« u

ta (—1)7 exp(— 2yqrt) (Aa>2'

sar) | — 1 L.t VIL.2
X ()13 = I () L, (viL)
where we have defined a set of auxiliary functions of an
integer argument

t
L.(£) =Re f dx
Q

Xexp [i(AE—ﬁw,") % —%x] f(x) (g(x))7, (VIL3)
“ which are determined by the following functions
f(®) =exp{$ 2 A2 exp[ —iw/x—yux]}, (VIL4a)
®

g(x) = 14+exp(2vax) — 2 exp(yax) cos(wa'x). (VIL4b)

For r=0 we obtain
t
Lo(f) =Re f duf () exp[i(AE—Feod’) (/%) — 7]
[¢]

which represents a slightly modified form of the inte-
gral encountered in calculating radiationless transition
rate from the vibrationless level.2% In this case it may
be verified that Ly(f) does not depend on ¢ for experi-
mentally significant times, so that as usual the upper
limit of the integral is replaced by infinity.®? We shall
now invoke the additional assumption that L,(#) does
not depend on ¢ also for n0. We did not succeed to
solve the integral (VIL.7) analytically, and a numer-
ical solution was provided. In order to reproduce the
features of the nonradiative decay of a large molecule,
we have performed numerical calculations on a model
system consisting of a molecule characterized by 30
randomly chosen frequencies (in the range 500-3000
cm™). In order to mimic the decay characteristics in

2427

the statistical limit we have chosen the reduced dis-
placements A,~1. Numerical calculations performed
by us on model systems have verified that the assump-
tion that L,(#) is independent of ¢ is valid in the
statistical limit provided that the coupling is suffi-
ciently strong (e.g., A,~0.5—1.0 for all u), and for
such times ¢ for which

vl S1. (VILS)

We further note, however, that for ry,f>1 only the
term with r=0 will contribute significantly as the
factor exp(—2y.rt) in Eq. (VIL2) will suppress the
r>0 contributions. We thus assert that in the statis-
tical limit the upper integration limit in Eq. (VIL.3)
does not affect the final result. [For the term with
r=0 this limit may be replaced by infinity according
to Eq. (VIL.5).] The time dependence of the non-
radiative transition rate may be then recast in the
physically transparent form

W,(t) = vf Jr exp(—2yart), (VIL.6)
r=0
where
2
J.= P 2| CaxPexp(—3 X A2) (va) !
x B
—1)7(Aq VZ)r
(_l_)i/'\_/._llm (VIL7)

(Dea—7) 1(r )2

The rate of disappearance of the s electronic state
initially excited to the |s, va, {Ou}@se) vibrational
level, is in general time dependent (the decay being
nonexponential and is given by Egs. (VIL6) and
(VIL7) for a large molecule in the low temperature
limit. This time dependent decay rate [Eq. (VIL6)]
is expressed as a superposition of contributions from
the vibrationally excited levels, of the mode « through
which the initially excited state can cascade down-
wards with the s electronic manifold.

It is instructive to notice that the analytical expres-
sions (VIL.6) and (VIL.7) provide a proper description
both of the slow relaxation and the fast relaxation
limits. In these two cases the decay rate is time de-
pendent. In the case of slow relaxation we can take
Yat<<1 whereupon we set all the exponentials involving
Ye in Egs. (VIL3) and (VIL6) to be equal to unity,
to obtain

We=> U,
r=0
which is just the decay rate of the initially excited
| S, Psay Outa) level in the isolated molecule.?’ This result
was derived for <<y,~! where relation (VIL.5) which
provides a sufficient condition for the validity of Eq.
(VIL6) does hold. Now, in the fast relaxation limit,
we take v.£>>1 and only the r=0 term contributes
to the sum (VIL.6). Thus the decay rate in this case
reduces to W,=.J, which [see Eqs. (VIL.3) and (VIL7)]
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F1c. 2. Electronic relaxation rate as a function of time [Eq.
(VIL.6)], for a model molecule characterized by 30 randomly
chosen frequencies (w chosen between 500 cm™ and 3000 cm™)
and by origin shifts A,=1 for every vibrational mode. The
electronic energy gap was taken as 12 000 cm™. The molecule is
assumed to be initially in the excited vibronic state | 5, Vg,
{Ou}ta). At long times the decay rate approaches W, the
decay rate of the vibrationless level of the sth electronic manifold.

is just the nonradiative decay rate from the vibration-
less level of the s state. The validity of Eqgs. (VIL6)
and (VIL7) in the fast vibrational relaxation limit,
(i.e., for £>v,1) indicates that the validity range of
these results considerably exceeds the time region de-
termined by the sufficient condition (VIL.5) in agree-
ment with our general arguments. It is also worthwhile
to notice that the decay rate from the vibrationless
level of the s state (i.e., 1,,=0) is independent of time.

To conclude this discussion we present in Fig. 2
typical results based on Egs. (VII.6) and (VIL7) for
the time dependence of electronic relaxation rate for a
model system,

VIII. DISCUSSION

In this work, we have explored the implications of
vibrational relaxation on electronic relaxation processes
in large molecules in terms of a simplified model in-
volving a “harmonic” two electronic levels molecular
system interacting with a harmonic medium via one
phonon or via two phonon (or rather phonon and
vibron) coupling. We have limited ourselves to the
study of electronic relaxation, and the role of radiative
decay was disregarded. It is nevertheless expected that
the total decay rateis (1/£)T'= (1/%) Te+W, (1), where
T is the radiative width of any vibronic component in
the s state. As we are interested here in ultrafast decay
processes I'r can be neglected. Apart from the approx-
imations inherent in this admittedly simplified treat-
ment, no attempt was made to provide numerical
estimates for the relevant molecule-medium coupling
terms, but rather to explore general relations and cor-

A. NITZAN AND J. JORTNER

relations. A similar approach was adopted in the study
of exciton phonon coupling and optical line broadening
of exciton states in molecular crystals.’® From the point
of view of general methodology the molecule-phonon+-
vibron coupling (i.e., the two phonon decay) proposed
herein provides in our opinion a reasonable physical
picture for the vibrational relaxation processes of high
frequency molecular vibration in a host medium which
consists of polyatomic molecules. In this context we
would like to comment that the present theory is
applicable to nonradiative decay in dense media and
cannot be used to handle electronic-vibrational relax-
ation processes in the gas phase, as collisional perturba-
tions cannot be accounted for in terms of the coupling
Hamiltonian [Egs. (V.4) or (V.5)]. It is, however,
important to bear in mind that the translational sym-
metry of the host matrix does not enter in our model,
as we have specified the medium phonons in terms of
their density of states. As the latter concept is also
valid for disordered systems the present treatment is
applicable for electronic-vibrational relaxation in solids,
glasses and liquids.

We would like to mention two relevant problems in
solid state physics which were handled by similar
methods, either from the point of view of general
methodology or in respect to the details of the calcula-
tions. In the classical work of Toyozawa® on the op-
tical lineshapes of Wannier excitons the exciton lattice
interaction and the exciton radiation coupling were
simultaneously considered, the matter-radiation inter-
action being handled to second order while the exciton
lattice coupling was treated to all orders in a manner
similar to the present approach. Kreiger” has studied
the scattering of slow neutrons by an harmonic oscil-
lator which is subjected to vibrational relaxation and
has utilized the Heizenberg representation of the co-
ordinate and momentum operator for the damped har-
monic oscillator provided by Senitzky,* to the treatment
of Zemach and Glauber.> This method is similar to our
approach to the vibrational relaxation problem.

To the best of our knowledge the present work pro-
vides the first comprehensive study of the coupling
between nonradiative and vibrational relaxation proc-
esses. Several previous works in the field of electronic
relaxation have direct bearing on the work. As it is
well-known, early work on electronic relaxation re-
ferred to the problem of vibrational relaxation. Gouter-
man® considered the analogy between photon and
phonon emission and considered the dissipation of
electronic energy to lattice energy, disregarding the
role of intrastate intramolecular relaxation. In the
pioneering work of Robinson and Frosch®¢ vibrational
relaxation in the final electronic manifold has been
taken into account, without working out its full impli-
cations, so that the Robinson—Frosch formula corre-
sponds to rare cases which are seldom encountered in
real life.?? It is also worthwhile to mention that in a
recent publication Osherov and Medvedev® have pro-
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vided a semiclassical theory which attempts to account
for the influence of vibrational relaxation in the initial
electronic manifold on the optical line shape of a model
molecule characterized by one harmonic vibrational
mode. Their theory essentially consists of replacing
Eq. (I.1) by an equivalent expression in which W; is
averaged by a nonequilibrium time dependent density
matrix. Besides the natural limitation of this semi-
classical treatment (i.e., RT>>fiw) the time dependence
of the vibrational density matrix is taken to evolve
only from vibrational relaxation, and other relaxation
processes depleting the states are disregarded. Such ap-
proach may be suitable for the radiative transition
problems. Moreover, vibrational relaxation in the final
electronic manifold was disregarded in that work .5

The theoretical technique developed herein is quite
general and may be readily applied to other intensity
problems in the field of molecular physics:

(a) The occurrence of infrared emission originating
from highly excited vibronic levels of the final elec-
tronic states involved in electronic relaxation has
been predicted theoretically®” and experimentally dis-
covered.®® The effect of infrared stimulated nonradi-
ative decay of polyatomic molecules is of considerable
interest. This effect will be trivial in the statistical
limit, but for a medium sized molecule stimulated
decay in the final electronic state will provide a novel
interesting decay channel. The problem may be the-
oretically considered by replacing the phonon bath by
a photon bath while the field~molecule coupling is
again given by Eq. (V4).

(b) The present theory is applicable to the non-
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_radiative decay of small molecules in a dense medium?®

where vibrational relaxation in the final manifold pro-
vides the decay channel for electronic relaxation.

(¢) The present scheme may be modified to include
changes in the medium phonon states between the two
electronic states, whereupon the role of vibrational
relaxation of zero phonon lines can be studied.

(d) The present results are directly applicable for
the study of vibrational relaxation (excluding elec-
tronic relaxation) effects on the optical line shapes.#
There exists a formal analogy between the nonradiative
transition probability and the optical line shape for a
symmetry forbidden transition in the limit of zero
frequency. We may utilize the Fourier transform of
the autocorrelation function Eq. (VI.24), at energy
(AE—E) to obtain the line shape of a symmetry for-
bidden transition at the photon energy E while for a
symmetry allowed transition the contribution of the
promoting modes in G(r, 7/) has to be replaced by
unity.#

From the point of view of the experimentalist the
present work provides new information concerning non-
exponential decay characteristics of a large molecule
in a dense medium, which are of considerable interest
for the understanding of ultrafast molecular decay
processes. The beautiful experimental techniques of
picosecond spectroscopy developed by Rentzepis,* pro-
vide for the time being just the half lifetime, while no
information was as yet obtained (or claimed) concern-
ing the detailed features of the decay characteristics.
Further development of the experimental techniques
will be of considerable interest.

APPENDIX A: TRANSFORMATION OF VIBRATIONAL WAVEFUNCTIONS AND TRANSITION
OPERATOR FOR RADIATIVE PROCESSES

To demonstrate the transformation procedure of Sec. IV let us focus attention on the relatively simple case of

radiative electronic matrix element. This is

piiei= ((bxei( Qs Vi) | 1 | dixii(Qa, ¥5))),

(A1)

where v; and v; are sets of vibrational quantum number characterizing the s and the { vibrational functions, re-
spectively.  )denotes integration over electronic coordinates while ( ) denotesintegrationover nuclear coordinates.
u represents the molecule-radiation field coupling operator.

Invoking the conventional Condon approximation one gets

pigee= (5 | 1] 2) Ceoi(@oy Vv4) | x2(Q1, ¥5) ).

Now we utilize the transformation

to obtain

priei= (s L | D) (ei(Q, vi) | TT exp(—iBupy) | xs5( 0, ¥5))-

In what follows the s index for the nuclear coordinates and momenta will be omitted.
The operator for dipole allowed transition may thus be written

(A2)
x15( Qs v;) = 11 exp(i8upu) x:i( s, V) (A3)
(Ad)
(AS)

fi=Mud* IT exp(—iAupu) +h.c.
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with
M= <S ! H® l l>7 (A6)
where it is understood that this operator is to operate on a basis of functions where the same vibrational set of

functions x,(q, v) is attached to every electronic function. To obtain a complete second quantization notation
we insert into Eq. (A5) the creation and annihilation operator representation of the momentum operator

pu=(i/¥2) (e, —a,) (A7)
and using the well-known identity

exp(A+B) =exp(4) exp(B) exp(—3[4, B)) (A8a)
which holds provided that . .
(4, [4, B]]=[B, [4, B]]=0 (A8b)
we obtain
exp(iA,.p,,) =exp[— (A/V2) a,] eXPE(AM/ V2) a‘u] exp(— iA2) (A9)
so that
A=M exp(— 2 iAﬂ?{d-'- I1 CXP[(AM/\/?) a,t] exp[—- (Aﬂ/\/j) a,,:l-i—d II exp[— (A,./\/z)a,{*'] exp[(A,,/\/f) au:]} )
(A10)

APPENDIX B: EVALUATION OF MATRIX ELEMENTS FOR THE ONE PHONON DECAY

In this and in the following appendices we shall make use of the following relations

[au(), oM (D) ]=1 (B1)
which implies
exp[ae* (£) +ya(t) ]=exp[xa* (1) ] exp[ya(¢) ] exp(5xy) (B2)
and also
exp[xa*(£) ] exp[ya(f) J=exp[ya(f) ] exp[xa® (1) ] exp(—xy), (B3)
exp[—xa*(£) JLa(t) I* explwet (£) J=[a () +x]", (B4)
exp[ —ya(t) JLa* (1) I* explya(t) J=[a*(O) —y ], (B5)

where in all these relations the creation and annihilation operators are taken at the same time.
Utilizing Eq. (B2) we may rewrite Eq. (V.28) in the form

I=exp(—302—1K,D) (vau I exp[—- (A,./\/Z) a7 (1) ] eXP[(An/\/j) au(r)]
Xexp[(K,./\/i) a,ﬁ(r’)] CXP[“‘ (Kn/\/?) a'#("")] ‘ 'Usu>~ (B6)

Inserting now into this equation the expressions (VI.1) and (VI.2) for the time dependent damped creation
and annihilation operators in the Glauber case,® and then utilizing Eq. (B3), we obtain

1= exp{ - %AMQ‘ %Kuz"'%KuAu[uu*(T,)uu(T) + Z vw"*("'l)'vv“('r) ]}

X (Ve | exp{[(K./V2)u,* (") — (A /N2)m,* () Jaut}
Xexp{[(Aw/V2)uu(r) — (Ku/V2)uu(7") Jau} expl 2 [(Ku/V2) 0¥ (r") — (8u/VZ)v,#*(7) Jbs*}

Xexp{ 2 [(8u/V2)v,4(r) — (Ku/V2) 1,2 (7') J0s} [ vas)  (BT)

so that
(I Liyr= II fexp{—31A2— 1K 2+3 K. AL (7)) (1) + 2 0% (7 ) 0,0 (7) 1}

X (Veu | exp[~NX(7, 7")a, ] exp[ (7, 7') a,] [} 1T (eXP{[— 2 o (7, ') 10, eXP{[Z a#(r, ) Jb,} ),

(B8)

where
M7, 77) = (A/V2) (1) — (Kou/V2) (") (B9)
ay(r, ') = (A/V2) o2 (r) — (Ku/N2) 0.0 (7). (B10)
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If we evaluate the medium (thermal) part of Eq. (B8) we shall encounter cross terms of the type ¢,0, in which
u#u'. The appearance of these terms is inconsistent with our assumption (stated in Sec. II) that the molecular
oscillators are damped independently, or, in other words, that these oscillators are not coupled via their inter-
action with the medium. We shall, therefore, neglect these cross terms. This approximation is equivalent to the

assumption
(I Lyr= 1T {Zu)r (B11)

as may easily be verified. This is just another way of stating the mutual independence of the molecular oscillators.
Equation (B8) will be thus replaced by

II (ye= 11 (4.B.Dy), (B12)
® »
where ‘
Au=exp{—;A2— 1K 43K AL (7 uu(r)+ 20 0,*(r") v,4(7) ]} (B13)
Bu= (v | exp[—Ni(7, "), ] exp[N(r, 7)) @] | veu) (B14)
D“= H Cyl-‘
with
C,*= (exp[—o,**(7, ') b,%]) exp[a.4(7, 7') 5, ])r. (B15)
The molecular‘ matrix elements have been previously evaluated,? with the result

Vs (*1)’ ‘ xl‘ |2r
By=(vy) ! gm .

The medium thermally averaged matrix element is easily calculated using the well-known relation
(exp(0) )r=exp(3(0%)r), (B17)

where O is an harmonic oscillator operator which is linear in the coordinate and momentum operators of the
oscillator. We obtain

(B16).

C,*= (exp(—a,#*b,*) exp(a,*b,) }r
= {explo,*b,—0,**b,t ] )r exp(3 | o, [2)
=exp(—3% | o* [2(20,18,+1)r) exp(% | o, |2)

=exp(— | o,* [*(n,)r). ' (B18)

The auziliary functions appearing in Egs. (B12)~(B15) are now evaluated by utilizing Egs. (VI.3) and (VI.4):
#(7") (1) =exp[ —vu(r+7") J exp[ —iw' (7—7) ] (B19)

Zv: o (1) 0,4 (r) = {exp[—ru(r—7') ]—exp[—vu(r+7') ]} exp[—iw,' (r—7) ] (B20)

I Mal(r, ™) [2= (A% 2) exp(—2v,7)+ (Ku2/2) eXP(_ 2y, ) — ALK, exp[—.')’#(""l"",)] COS[w,,'('r—'r')] (B21)
2 ot Pl )r~=(u)r 20 [ o 2
= (W)T (%Au2[1_ eXP( - 27#7) ]+%KI‘2[1 - exp(— 2’7#7") :l :
— 8K, {expl —vu(r—7") J—exp[ —vu(r+7') J}cos[wy (r—7) ]).  (B22)

The summations in Egs. (B20) and (B22) are evaluated by transforming them into integration and assuming
that these integrations over w, may be extended from — o to . Utilizing Eqs. (B12)-(B22), Eqs. (VI.20)-
(VI.23) are easily obtained.

APPENDIX C: EVALUATION OF MATRIX ELEMENTS IN THE TWO PHONON CASE

We present the evaluations of matrix elements analogous to those calculated in Appendix B, for the more general
case described by Eqgs. (VI.8)-(VI.11). Eq. (B1) and thus Egs. (B2)—(B5) are valid also for this case. Thus
starting from Eqs. (IV.28) we apply these relations to obtain again Eq. (B6). Applying now Egs. (VI.8) and
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(V1.9), Eq. (B6) may be recast in the more detailed form
I,= exp[— 1A= 1K 30K . (17) ,(7) ]
X ('Usu I exp{ [(K,,/X/Z) w* (') — (Au/\/z) w,*(7) :Iau+} exp{ [(Au/\/?) (1) ~ (KP/V?) u,(7") ]al-‘}
Xexp[— (A,/V2) 2020 v, (7)0,7C ] expl(Ay/V2) 20 3 y*(1)0,C ]
AN ] 14 7

Xexpl(K,/V2) 30 3 0,0#*(7'),7C ] exp[— (KEsV2) X8 vo*(7)0,Co] | v)  (C1)

invoking the approximation introduced in Appendix B:
(1 Lyr=1I {Lu)r
u ®
we may write

<IM>T = eXP{ - %Anz_ %Ku2+%KMAu[uu* (TI) Uy (7) + Z Z 'Uvu"* (7,) 127 (T) :] }

X ('Uw ! exp[— A (r, TI)au+] eXPD\u(T; ) au:l | Vo) H(exp[_avu”<7> T’)bv+] exp[a,,“(‘r, T’)bv]>T- (C2)

The new mathematical problem encountered here is that now one cannot apply relations of the type (B1)-
(B5) for the two-phonon operators b,¥C,+ and 5,C,. This difficulty may be overcome by invoking the random
phase approximation (RPA) utilized to obtain expressions (VI.8)~(VI.11) 5 Thus by the RPA we have

[5,Cyy by Cot 1= by 0,8 50 CotCobywrt8uwduy2( (11, )14 (g)r+1) 800 (C3)

We notice that the operators [1/(#,,)210,C,[1/ (2,5)V2]0,*Cyt, #yy= {1, )7+ (#,)7+1 behave in this approxi-
mation like simple (one phonon) creation and annihilation operators and thus fulfill Egs. (B1)-(BS5) {where
[1/ (#,)Y2],*Cyt replaces a,t and [1/(#,,)Y2]d,C, replaces a,}. The medium part of Eq. (C2) may now be
evaluated in a manner similar to that applied in Appendix B:

Medium part= <exp (— —Z E Vy? (1) (1,4) i ) ( Z E Vg (1) (1,9 ? (n C;m)

( ”)1/2
b*Cit N Yo

= eXP[7 (AMK}‘) Z > U (T) vaﬂ*("") Ty |

bHCF b.Cy
X <exp (—G'yn“*(‘l', ‘T’) (nw,> 1/2> €xXp (Uyﬂ“(T, T") (nm‘) 1/2)>T

(”v)T(”v;)T) (Ca)

4]

=exp[%(A,,K,,) PIDY v,.,,“(r)v,,,“*(r')n”] eXp( Z Z l oo [?
)
where
o {7, ) = (1/V2) (1,) V[ A00* (7) —K,04(7") . (C5)

It must be stressed that the last equality in Eq. (C4) is by no means an exact mathematical result. It is obtained
from Eq. (B18) using
(bv+bvcn+cﬂ>1'= (”V>T('nn>7‘~ (C6)

It should be noted that Eq. (B18) is not rigorously valid in our case, and that Eq. (C4) is really obtained using
an approximation (consistent with previously invoked approximations) where we disregard terms of fourth
order or higher, thus, in the molecular-medium coupling:

(eXP{ —0,** (7, ) [0,FC ot/ (n,9) 2]} eXP{Uwp“ (7, ) [B:,C o/ (1,9) V2 1} v
= ({ l_o'wl"* (T, 7") [bv+cv+/(nvﬂ) 1I2:|'i’ ree } { 1+a'v17”(7': T,) Ebvcﬂ/(”’l’ﬂ) 1/2:|_*— nee } >T
=1—|a*(r, 7) [¥( (11 )7 (Ba)7/ o) 4+ = - = exp[— | g0 (7, 7) [2((ny)r{nydr/Ne) 1.
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Equation (C4) and (C5) thus gives, to this approximation, the medium part of (Z,)r, while the molecular part
will be identical to what has been obtained in Appendix B. The final result is thus

IT Zu)r= IT {A“B,‘D,.}, (CT)
where
Au= exp{ —1A2— 1K KA u* (). (r)+ > Nomon™* (") vm"("')]} (C8)
v 9
v (—=1)7 | N, ) P
= ! Co
B 2 e Ty (c9)
and finally
Dy=exp[— X | aw¥(r, 7') [H({ms)r{ma)r/mom) ], (C10)
vy
where o,4*(7, 7') is given by Eq. (C5) and where M.(r, 7) is given by Eq. (B9). Noting that
{n,)r{ny)r 1
= Ci11
Ty exp[fi(wstwy) /T ]—1 (C11)

the analogy with the simple case result becomes apparent. The explicit forms of %,*(7')#,(r) and of | \u(r, 7) 2
will of course be identical to the previous expressions, Eqs. (B19) and (B21). The summation over the » and 9
indices in order to obtain simple explicit forms for

22 ™ (1) v (7)

and for

I | ot (7, ') |2<”1')T<nﬂ>7‘/”vﬂ

is now more complicated as we should in principle convert this summation into a double integral over the phonon
and vibron continua and then sum over as many such double continua as there are vibrons present. A considerable
simplification will be obtained if we make two reasonable assumptions: (a) For a given molecular vibration, g,
there exists only a single vibron which is important for vibrational relaxation. (b) This vibron may be viewed as
a single discrete state or, in other words, that the density of states in the vibron band may be approximated by a
delta function. Invoking these assumptions the double sum is replaced by a single sum over phonon states, and
the results for the above functions are again given by Egs. (B20) and (B22) when now ¥, is given by

(C12)

Note that if assumption (a) is not used, we shall obtain the same result with v, given by a sum of expressions of
the form (C12) over the relevant vibrons, so that the molecular oscillator decays into a number of continua, each

Y =T l Gvu" |2Pwlnvr/ ’w,,+w,,=w”-

consisting of the phonon continuum superimposed on a different vibron.
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