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In this paper we apply the 7' matrix formalism of scattering theory to derive general expressions for the
absorption cross sections, the cross sections for resonance fluorescence and the emission quantum yields from
large molecules in the statistical limit. In the simple case of an isolated molecular resonance both the ab-
sorption line shape and the photon scattering cross section exhibit a Lorentzian distribution on the photon
energy, the emission quantum yields are distributed among the ground state vibronic levels according
to their radiative widths and, most important, the emission quantum yields are independent of the photon
energy and of the spectral width of the exciting light. We were able to derive general expressions for the
resonance scattering from a pair of overlapping resonances, including radiative corrections to infinite
order. The absorption cross section does not vanish in the region of destructive interference but assumes
a finite value which depends on the radiative widths. A sharp maximum in the partial and in the total
emission quantum yields is exhibited in the destructive interference regions. This general scheme was
applied to a pair of zero order discrete states, one of which is optically active, which interact with an optically
inactive quasicontinuum. The energy dependent quantum yield depends on the total width of the radiatively
impotent state and may exhibit a minimum. We have demonstrated that when interference effects are
involved the decay characteristics of this system will differ for coherent and for narrow band excitation.
The general formalism was utilized to derive approximate relations for the resonance fluorescence cross
sections and for the quantum yield in the case of a Fano absorption line shape which are valid away from
the interference region. Finally, we have applied the general theoretical scheme to the case of the direct
photodissociation spectrum of molecules. We have demonstrated that a finite energy dependent emission

quantum yield will be observed when a molecule is optically pumped into a dissociative continuum.

I. INTRODUCTION

There has been extensive theoretical activity aimed
towards the elucidation of intramolecular radiationless
transitions in large molecules.'® In general, two classes
of experiments which will be referred to as “short
excitation” and “long excitation” processes can be
utilized to extract direct physical information concern-
ing the decay of electronically excited states of large
molecules which correspond to the statistical limit.”
When the temporal duration of the exciting phonon
field is short relative to the reciprocal width of the
molecular resonance, it is feasible to separate the exci-
tation and the decay processes and to consider the
decay pattern to the metastable state. This approach
concerning a “‘short excitation” process has been very
popular®® On the other hand, when the exciting
photon field is characterized by a high energy resolu-
tion, being switched on for long periods (relative to
the decay time) the excitation and the decay processes
cannot be separated and one has to consider resonance
scattering from large molecules within the framework
of a single quantum mechanical process. Such ‘“long
excitation” experiments involve the determination of
optical line shapes,™® cross sections for resonance fluo-
rescence® and emission quantum yields. The physical
information concerning the resonance width, originat-
ing from ‘“short excitation” and “long excitation” ex-
periments, should be equivalent. However, when inter-
ference effects are exhibited one cannot get away by
considering just the widths of the resonances.

In this paper we present the result of a theoretical
study of resonance fluorescence from large molecules
which correspond to the statistical limit. We shall de-

rive the cross sections for resonance fluorescence utiliz-
ing some general results of scattering theory. These
results combined with the optical line shape formula
will yield general expressions for the quantum yield.
We shall further explore the general features of the
cross sections for resonance fluorescence and the quan-
tum yield in the case of a single molecular resonance,
a resonance originating from coupling to an optically
active quasicontinuum and an optical line shape result-
ing from interference between resonances. We shall
focus attention on the nature of the physical informa-
tion which can be extracted from ‘“long excitation”
processes in large molecules.

II. APPLICATION OF SCATTERING THEORY

Scattering theory provides a powerful tool'2 for the
understanding of the interaction of a molecular system
with the radiation field which is responsible for the
absorption line shape and resonance scattering. As we
are interested in “long excitation” experimental ob-
servables one can consider a “collision process” between
a monochromatic wave train and the “isolated” mole-
cule within the framework of the Lippman Schwinger
equation expressed in terms of the 7" matrix formalism."
Rather than rehash this general treatment we shall
proceed to apply it directly to the problem at hand.
Consider the conventional dissection of the total Hamil-
tonian for the system including the radiation field

H=Hy+Hp+H,+Hiny
=Hy+Hr+ 7V,

where H, is the zero order molecular Hamiltonian, H,
is the intramolecular nonadiabatic perturbation, Hg is

(I1.1)
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the Hamiltonian for the free electromagnetic field,
while Hi,, s the matter-radiation interaction term.
The electronically excited eigenstates of Hy are labelled
as | s), | r), etc. for the discrete optically active levels,
and as { | /)} for the dissipative intramolecular quasi-
continuum. The electronic ground state of the system
will be labeled by the vibronic components |g, v,),
where v,=0 refers to the vibrationless level while v,70
represents excited vibronic components. Note that for
the low lying ground states | g, v,) can be considered
as eigenfunctions of H, as weli as of Ho+H,, as off-
resonance nonadiabatic corrections for these states are
negligible. The eigenfunctions of Hg will be given by
the zero photon state | vac) and by one photon states
|k, €) where k and e are the wave vector and the
polarization vector of a photon, respectively. At the dis-
tant past, the molecule is in the state [ a)= | g, 0,; k, €)
characterized by the energy E,. The final states result-
ing from photon scattering will be denoted by |b)=
l'g, vo; ks, €;) characterized by the energy E,. The
probability for the transition | a)— | b) is given by"

Wa= (2r/h) | Tos |2(Ep—Ea), (I1.2)
where the 7' matrix (the reaction operator) is defined by
T=V+V(E,—H+in)V (I1.3)

with 4—0% and V=H,4+Hi,. Equations (I1.2) and
(I1.3) are the generalization of Fermi’s golden rule,
where the delta function insures energy conservation.
The physically meaningful concept involved in Eq.
(I1.2) is a transition to a group of final states within
the energy interval dEs, so that when this equation is
integrated over the final states one gets the familiar
density of states p, in the final expression. The cross
section for the process a—b, c(a—b), is obtained by
dividing the transition probability by the photon flux
F=c¢/Q where ¢ is the velocity of light and Q repre-
sents the volume of the system

o(a—b) = (27Q/Fc) | Toa |8(Eo—E,). (IL.4)

The second general result we require is the rate of
disappearance W,, of the initial state | @), which is
given by the optical theorem of scattering theory,

Wo=—(2/k) Im(T..), (11.5)
while the absorption cross section o, is given by divid-
ing by the flux

oe=—(2Q/fic) Im(Ts,). (11.6)

We can immediately apply these results by setting
for the initial energy E.=E(g’; k, e) =E,+E where
E o is the energy of the ground state vibrationless level
and E=kc is the incident photon energy, whereupon
the absorption cross section is obtained from (II.6) in
the form
0a(E) = —(20/fic) Im{g, 053 k, € | T | g, 04; kke)
=—(20/fic) Im{g, 053k, e | V

X(Eg+E—H-+in)7'V | g, 05k, €). (IL.7)
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Consider now the cross section for resonance fluo-
rescence. We focus attention on the photon scattering
process | g, 0g; K, €)— | g, v,; Ky, /), which takes place
between the initial state characterized by the energy
Eo+E=Ep+kc and the final states characterized by
the energy E+ E;=E; ks, where by Eg, we denote
the energy of the state | g; v,) and where the emitted
photon which is characterized by the polarization e,
and momentum k; is scattered into the spherical angle
Qi+ -, +dx,. Equation (I1.4) results in

o (g, 04, ke—g, v,; Ky, &)
= (22Q/ic) dE ;0,4 8 (E o+ E;— E o—E)
X [ g vo5 ks, €7 T | g, 005k, €) |1, (IL8)
where the density of final states in the radiation field is

pr=[kQ/ (2nFi)%c], (11.9)

where one has to take kjc=Ep—Ejp—kc to insure
energy conservation. The resonance scattering cross
section oz(v,; E) into the final molecular state | g, v,)
will be obtained by summing up Eq. (I1.8) over all
final spatial directions and polarization directions. This
scattering cross section depends on the energy E=kc
of the initial photon, and as we consider a sample of
randomly oriented (noninteracting) molecules, we are
not interested in polarization measurements and shall
also average over the initial polarization directions e,
resulting in

UR(va; E) =% Z Z IkoiU(g; Og; k) €, vg; kf) ef)

e ef
= (2/7) (Qks/Fc)*?
X l <g7 Vg5 kf; € | T | 8, 095 k: e) lz'

The total cross section for resonance fluorescence is
obtained by monitoring all the emitted photons result-
ing from scattering into all the final molecular states

[ & o),
or(E) = 2. or(v,, E).
vg

The (energy dependent) quantum yield resulting
from absorption of a photon of energy E leading to the
molecular state | g, v,) is given by the ratio of the
resonance scattering cross section [Eq. (I1.10)7] and
the absorption cross section [Eq. (IL.7)]

Y (v,; E) =or(vy, E)Joa(E).  (I1.12)

If the ground state energy levels are well spaced the
different channels can be resolved.

Finally the total quantum yield for emission is
given by

Y(E)= X Y (v,; E) =0r(E) /o.(E). (I1.13)

(I1.10)

(I1.11)

To conclude this formal discussion the following
points are in order:

(a) The general expressions for the absorption cross
sections, for the resonance fluorescence cross sections
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and for the emission quantum yields in the “statistical”
molecular case will involve as “‘open channels” not
only the radiation continuum but also the intramolecu-
lar quasicontinuum { | #)} which for all practical pur-
poses can be considered as an “open” decay channel.
In this case the unitarity relations for the scattering
matrix do not imply that the sum >, 3, 20, (g, 04;
k, e—g, v,; ky, €;) is equal to unity as intramolecular
decay channels have to be considered. The formulation
of the absorption cross section is similar to that given
by Shore® for the case of atomic autoionization. The
formulas for resonance fluorescence derived herein
are new,

(b) The present formulation of the cross sections
and of the quantum yields is more general than previ-
ous attempts'$® which were based on the “decay of
prepared states”. When the time is sharply defined
one cannot, of course, consider the probing of the
structure of the resonances by monitoring the energy
dependence of the quantum yield. For this purpose the
energy of the incident photons has to be sharply de-
fined. As we shall demonstrate in Sec. IIT this problem
is immaterial for the Bixon—Jortner® basic model, how-
ever, once interference effects with background absorp-
tion or between resonances are important the energy
dependence of the relevant cross sections and of the
quantum yields becomes crucial.

(c) The general expressions for the physical observ-
ables obtained herein are invariant under different
choices of the zero order molecular Hamiltonian H,
and of the intramolecular perturbation H,. Thus any
untruncated and complete molecular zero order basis
set is adequate for describing the physical properties
of the system. As was previously pointed out” the
Born-Oppenheimer basis set is superior to the crude
adiabatic basis as the former basis set minimizes off
resonance coupling terms between different electronic
configurations.

III. A SINGLE MOLECULAR RESONANCE

We shall now apply the general results obtained
above to the simple model system characterized by
the following features: (a) A single molecular excited
zero order state | s) carries oscillator strength from the
molecular ground state |g, o,); (b) the zero order
quasicontinuum { | I)} is optically inactive; (c) the
quasicontinuum is quasidegenerate with |s) and is
coupled to it by H,; (d) the ground molecular levels
| g, v4) are coupled to excited states only by Hine;
(e) other “optically active” excited states | r) are well
separated from |s) relative to their widths; (f) off-
resonance coupling with | s) and | ) is negligible.

Equation (IL.7) is directly applicable bearing in
mind that the ground state | g, o,; k, e) is coupled only
by Hint to other molecular states. Thus we get

ao(E) =—(2Q/hc) , (g: 05; K, € | Hint | 55 vac) I2

XIm{s; vac | (Epo+E—H~+in)71 | s; vac). (II1.1)

A. NITZAN AND J. JORTNER

The diagonal matrix element of the Green’s function
is well known, being given by

(s; vac | (Epo+E~H4+1in)"" | 5; vac)

= (Eg+E—~E,—D,+iil').  (I11.2)

D is a level shift term which will be incorporated into
the energy E, of the zero state | s) setting £,= E,+D,.
The total width T, of the zero order state |s; vac)
includes the contribution of the radiative decay into
the channels | &)= | g, v,; k;, ) and the contribution
of the intramolecular decay into the quasicontinuum
{|7; vac)}. This width can be defined in general in
terms of the level shift operator,!

R(E)=V+V(1—-P)[E—H,
—(1=P)V(1—=P)+in]'(1—-P)V,

where V=H ,+Hi,. and P= | s){s]|.

The partial width due to the intramolecular decay
I';L, and due to the radiative decay into the ground
state vibronic levels I',?; v=v,=0, 1---, can now be
defined in terms of the level shift operators

TL(E)=2x Y. | (s; vac | R(E) | I; vac) |%6(E,— E))

(II1.3)

(I1L.4)
and

T.*(E)=2r 3 [d, | (s; vac | R(E) | g, vg; Ky, €;) [y,
(I11.5)

where p; is given by (I1.9) and where ky= (E+Eqo—
E,v)/c. The radiative width (which is always a slowly
varying function of the energy in the vicinity of ERE,)
can for our purposes be displayed in terms of first
order perturbation theory, resulting in

Fs”=27rz fko/Pf ' (s; vac ' Hing l g Vo Ky, ;) P

= 16x2[kQ/ (2h)%] | (s; vac | Hint | g, vo; ks, €1) 1,
(1I1.5")

where we have utilized Eq. (11.9) and performed the
summation over the spatial angles and the polarization
directions. Turning now our attention to the non radi-
ative width T'.l, we can assert that in the statistical
limit the function (I1.4) is slowly varying with energy.™
Provided that restriction (e) is fulfilled (which is the
case for the adiabatic basis), we can apply Fermi’s
golden rule resulting in

rr=2rY | (s| Ho | 1) Po(E—E). (I114')

Now the total width [in (II1.2)] is given by
Ty= F3L+ I‘sR

with the total radiative width T,F= Y, T,
Equations (IIL.1) and (IIL.2) lead to the simple

(IIL.6)
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Lorentzian line shape
oa(E) = (Q/kc) l (g’ og; Kk, e | Hing l $; vac) |2
X { Ps/[(E—Esa)2+ (%Psyj} ’

where we have set E,;=E,—~Eg.

The matrix element in (IIL.7) can be displayed in
terms of the radiative width ' of the state s due to
its decay into the vibrationless level | g, 0,). Utilizing
Eq. (I11.5") we have

[ g, 00k, e | Hin | 55 vac) [*= (nfc/20°Q)T

(T1IL.7)

(I11.8)
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so that Egs. (II1.7) and (II1.8) result in the following
expression for the absorption cross section:

0o(E) = %W(ﬁ/kV{ FSPSO/E(E_EW)Z"' (%Pa)zj} .
(I11.9)

Turning now our attention to the cross sections for
resonance fluorescence [Eqgs. (11.8)—(I1.11) ], we notice
that under assumptions (a)-(f) the contribution of
the off-resonance states | 7) to the elements of the T
matrix [see (I1.8)7] is negligible. Thus, for the simple
model system considered herein, we have

(g, vo; ks, €5 | T | g, 003 K, €)={g, v5; Ky, €5 |"Hine | 5; vac)(E—E,g+3iT,)7(s; vac | Hint | g, 0,; k, €), (II1.10)

whereupon

| (g, vo; ks €| T g, 00K, ) =] (g, v5; Ky, €5 | Hine | 5;0a0) 2| (5500 | Hine | g, 055k, €) [//[(E—E,p)?+ (3T4)%]

(II1.10')

Now utilizing Eqs. (I1.8)—(1I.11) and (II1.10) we obtain the following expression for resonance scattering

into the | g, v,) vibronic state:

or(v,; E) =[7rkf2/ﬁ(27rﬁ)3](Q2/52) Z,: Jd, { (& vo; Ky, €1 I Hiy | 55 vac) |2

X2 | {s; vac I Hin | £ 05k, €) |2[(E—'Esq)2+ (3T,)* 1. (I11.11)

Making use of Egs. (II1.5) and (IIL.8) we get

or(vg; E) = 4w (R/k){TT.*/[(E—E.g)*+ (3T2)%1},

(I11.12)

while the total cross section for resonance scattering Eq. (I1.11) is

UR(E) = %W(ﬁ/k)z{ PaOPxR/[:(E_Esa)2+ (%Pa)zj} .

Equations (II1.9), (I1L.12), and (II1.13) together
with (IIL.6) provide us with the general results for
the cross sections originating from a single molecular
resonance.

The quantum yields for emission given by Egs.
(I1.12) and (II.13) are now readily obtained in the
form

Y (v; E)=T,"/T,=T,*/(T.*4T.F) (III.14a)
Y(E)=T2/T,=T%/(T4+T,E). (II1.14b)

These results are well known,® however, to the best of
our knowledge, they were not previously derived for a
“long excitation” type experiment.

We thus conclude that for the case of a single mo-
lecular resonance: (1) Both the ahsorption line shape
and the cross section for resonance fluorescence exhibit
a Lorentzian dependence on the photon energy E="iw.
(2) The emission yields are distributed among the
ground state vibronic levels according to their widths.
(3) The emission quantum yields are independent. of
the photon energy, or of the spectral width of the
exciting light. (4) From (3) we assert that the emission
quantum yield is thus equal to the yield obtained in a
“short excitation” experiment which was previously
studied.

(I11.13)

The present general treatment of a “long excitation”
optical experiment clearly demonstrates that in the
case of a single molecular resonance it will be useless
to probe the structure of this resonance by narrow
band excitation. This problem has been raised in the
literature®® and cannot be settled definitely by con-
sidering the decay of initially excited states. Freed!=
has reached a similar conclusion concerning the energy
dependence of the quantum yield by considering the
decay resulting from monochromatic excitation, which
is suddenly terminated. Freed concludes® that for a
single molecular resonance the resulting decay is then
equivalent to that of the initially prepared |s; vac)
state. It is not clear whether Freed’s procedure of
terminating the radiation field is consistent with the
theoretical requirements for a ‘long excitation” ex-
periment.

We would like to point out that the present treat-
ment pertains to a long time monochromatic excitation
experiment. One may, of course, perform long time
experiments utilizing broad band excitation sources.
Such experiments were discussed by Rhodes!*®3¢ and
by us.13d

For the case of a single resonance where the line shape
is Lorentzian the details of the “preparation” of the
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excited state are relatively simple. When more com-
plex physical resonances are encountered and inter-
ference effects with background continuum or between
resonance are exhibited, the present theoretical meth-
ods based on “long time” excitation processes will
prove to be very powerful. -

IV. INTERFERENCE BETWEEN TWO
RESONANCES

When the linewidth of a molecular resonance exceeds
100 cm™! serious deviations from the ideal Lorentzian
line shape are expected due to the breakdown of some
of the assumptions listed in Sec. III. In what follows
we shall discuss the case in which assumption (e) of
Sec. III, namely that | s) is an isolated resonance, does
not hold. We shall consider the cross sections for ab-
sorption and for resonance fluorescence for a system
characterized by two excited discrete zero order states
| 5, 2.} and | 7, ) interacting with an optically inactive
quasicontinuum where the widths of the resonances
are comparable to or even exceed their spacing.

As in the previous simple case of an isolated reso-
nance (Sec. III) we shall first evaluate the diagonal
and the off diagonal elements of the scattering matrix
T given by Eq. (IL.3), which we shall rewrite in the
form

T(E)=V+VG(E)V,

where the Green’s function G(E) has the form

(Iv.1)

G(E)=(Ep+E—H+in)™! (Iv.2)
with E=kc, so that
E,=Eyp+E=E;+kc (Iv.3)

is the initial energy of the system. We are interested in
the matrix elements

To=®| T a)={g v5; ks, €, [T | g, 05k €) (IV.4)

A. NITZAN AND J. JORTNER

and
TM=<aITld)=<g, oﬂ;k)elTlg) oﬂ;k) e)' (IVS)

As before, the first term of T (the interaction V) does
not contribute so that the matrix elements in Egs.
(IV.4) and (IV.5) may be conveniently expanded in
the form

Toa= @ |V |$)Gouls |V |a)yF | V| r)Gulr | V| a)
+@ | V| 5)Gerlr | Viay+® | V|rGeis| V]a).
(Iv.6)

To avoid complicated notations | s) and | ) will stand
for |s, v,) and |7, ) as long as we do not need to
specify explicitly the vibrational parts of these states.
It is taken for granted that these are vacuum field
states. We shall also use V as the interaction potential
throughout the present discussion, keeping in mind that

(e|V|s)=Ca|Hum|s); (a|V|r)=(a|Hi|r),

GlVIs)=@|Huls); @lVIr=0]|Hul|r),

ClV|s)=@|H,y|s) CLVIn=C|H,|r),
IV rn={_|H,{r. (IV.7)

To proceed we shall evaluate the matrix elements of
the Green’s operator Gs,, Grr, Gar, and G,, which appear
in Eq. (IV.6). Utilizing the Dyson equation we have

G=G+GVG=Gy+GVG,, (IV.8)
where
Gy=(E,— Ho+1in)™Y;

70T, (IvV.9)

Denoting by { |m)} the states in the radiative con-
tinua and making use of Eq. (IV.8), we may expand
the various matrix elements of the Green’s operator
in the form

Gsr = Gss Var(Z_Er)_l+ Z Gsl Vlr(Z"_ Er)_l+ Z Gsmer(Z—Er) _l, (IV . 103)
I m
Gr=(Z—E.) "W, Gt X2 (Z—E,)"WuGi+ 2 (Z—E;) "'V G, (IV.10b)
1 m
G,l=GuVsl(Z—El)_1+G"Vr1(Z—E1)_1, (IV IOC)
Gi=(Z—E) Vi ,Got (Z—E)) 'V 1,Gos, (Iv.10d)
CGin=GssVem(Z~Ep) G Vem(Z—En)7, (IV.10e)
Gro=(Z— Em) VnsGost (Z— ) VinsGrs, (1V.10f)
G": (Z_EJ)_I-"_ (Z— Ea)_l Z VslGls+ (Z_Ea)_l E chGma+ (Z_'E:) —1Verrs, (IV. IOg)
14 m
Gn= (Z—El)_lVer"-i- (Z—-El)—le,G", (IV 101’1)
Gmr= (Z—Em) -1 erGrr+ (Z"— Em)_lesGsr, (IV. lOi)
(IV.105)

G" = (Z— Er) _1+ (Z_ Er) -1 V,-,G"+ (Z_E')-l Z VrlGlr+ (Z_ Er) -1 E Vrmer,
14 m

where
Z = Ea+ 1:7].
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Utilizing Egs. (IV.10a)—-(IV.10j) the desired matrix elements of the Green’s operator are

Gos= {Es—EA-L() To—[(Vita—iB) (Vota*—if*) / (E.~E+3() 1) ]}, (Iv.11)
Gsf: { (Var+a*'—iﬁ*) /[Ea_Er"'%(@) Fr]}Gss, (IV 12)
Grs: { (Vrs+a_'iﬂ) /EEu_Er“l"%('L) Pr]}GsSy (IV. 13)
Grr={[Es—E+3() T, )/[Ea~EA3() T.]}Gu, (IV.14)
where, as usual, (PP denotes the principal part) and
En=En+PP E [ | an 12/(Ea'—El)]+PP Z [ | Vom lz/(Ea—‘Em)]; (IVIS)
1 m
r,=T,r+ FnM, (IV . 16)
I‘,.L= 21!" E | V,.z |25(Ea—El), (IV 17)
2
T =213 | Vum |"6(Ea— Enm), (IV.18)
with n=r, 5, and where we have further defined the auxiliary functions
a=a¥+tal; B=pMA4BL _ (IV.19)
aX=PP % [VuVi/(Ea—Ex)], (IV.20)
x
K=g Z V,-ka,a(Ea—Ek) , (IV. 21)
)
where K=L, M and k=1, m. Note that I,” and I/ are identical with the radiative widths T'.® and T'®, respec-
tively.
Defining now
Vsr+a*=7*,
Veta=7, (Iv.22)

we may replace V,,4-a—48 by y—iB and V,,+a*—i8* by v*—i8* anywhere in Eqs. (IV.11)-(IV.13).
Throughout this discussion we shall assume that products of the form V..V, are real (which is true for the
H;,, portion of V, and also for the H, contribution in the case of internal conversion). Then we set

aK¥=gK, pE*=gK (K=L, M), (Iv.23)
Vsr= Vrs, (IV. 24-)
so that
vy=v% = B=8% (Iv.25)
and Egs. (IV.11)-(IV.13) take the somewhat simpler form
Gu= (Es~EA3()Ty— { (v—18)*/[E.— E+3 ()T, ]} )™ (IvV.11)
and
Grn=Gw={(v—i8) /[Ea~E+}3()) T.]}G... (1v.12))

Equations (IV.11), (IV.12), and (IV.14) may now be inserted into Eq. (IV.6) to yield an explicit form of the
T matrix elements. The procedure is straightforward. Making use of the definitions

G|V Is)s|V]a)=(g vo;kses| V|s;vac)(s; vac| V| g, 05k, €)

=A4,(v,), (IV.26a)
GV r|VI]a)=(g ves ky, &5 | V| 7; vac)(r; vac | V | g, 055k, €)
=B,(v,), (IV.26b)

GIVICIVIa)y+@IVIrXs|V]a)={g vs; ky, €| V| 55 va0)(r; vac | V | g, 0, K, €)
+<g) Vg5 k/} € [ | 4 | L8] 'DdC><S; vac l |4 I &, 09 k! e)
=C(v,), (IV.26¢)
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and also
@ V[s)s|V]a)y=4, (IV.27a)
| V||V ]a)=5, (IV.27b)
@|V]s)r|V]a)y+a|V]rs|V]a)y=2{]|V|s){r|V]a)=C, (IV.27¢)
The relevant matrix elements can be recast in the form
Tba=Xf/Z
Twu=Xo/Z, (Iv.28)
where
L= (E_Eso) (E"Ero) - %(FsPr) +.32_’72+%7:[I‘T(E—Esa) +Ps (E—Era) +4’Yﬁ] (IV~ 29)
and
X;(vy) =As(E—E;)+Bi(E—Esg) +Cry+3i(4,0,+B,T,—2C,8). (Iv.30)
Xy is given by the same expression [Eq. (IV.30)] as X, in which 4,B,C; are replaced by A¢ByC.
In Egs. (IV.28)-(IV.30) we have replaced E, by E+4-E,, and have set
Eyw=E,~Ey, E.,=E~Ep. (IV.31)

The explicit expressions for the absorption cross section and for the scattering cross sections may be now easily
obtained by applying Eqs. (I1.6) and (I1.10) and utilizing Egs. (IV.28)-(IV.30), resulting in

Ua(E) = (Q/ﬁc) {[AO(E—EH]) +BO(E'_EW) +C07:|[Fr(E-Esa) +T (E_Efa) +4'YB]
- [(E_Esﬂ) (E—'Era) - %(err) +Bz-’72] (AOFT+BOP3_' ZCOﬂ) }

and

or(vy; B) = (2/x) (Qky/Hc)*{[A ;(E— Erg) +B(E—Esg) +Cry F+5(4,TstB,T.—2C,8)*}

while the partial quantum yield is

Y (v5; E) = (20k/nfi%) X {[A ;(E—~ Erg) +B;(E—Esg) +Cpy P+ (4,14 B,T.—2C,8)%)}

XA{L(E—Eq) (E—Erg) — T Tet- 82— P+ {[(Tr(E— Eog) +T(E—Erg) +4B8F} ! (IV.32)
x {[(E_E-‘?G) (E_Efﬂ) - %FBFT+62_72]2+%[PT(E—EJV) +P3(E_Era) +4'Yﬂ]2}—l (IV'33)
X { [AO(E_Era) +BO(E"'E80) +C07][Pr(E_Esa) +P3(E'_Ern) +47B]

— (AT + Bl —2C8) [(E—E,;) (E~E,;) —iI' I+ —+*]}"L. (IV.34)

Equation (IV.32), for the energy dependence of the
absorption cross section, is a generalization of previous
treatments of the line shape of overlapping reso-
nances’ %% where the radiative widths were neglected.
A well known feature of the earlier approximate treat-
ments is that the absorption cross section vanishes at
some energy (located either inside or outside the
energy range spanned by E,, and E,,) due to de-
structive interference effects. Now, let us state, at the
risk of triviality, that if o,(E) =0 at a certain energy
E, the quantum yield will be infinite (and a basic
conservation law is violated) unless or(v,; E)=0 at
the same energy. Equation (IV.33) implies that the
scattering cross section will vanish provided that the
following two relations are satisfied:

Af(E_Erg) +Bf(E—Exq) +Cf7=01
AfI‘r*‘BfF,—ZC/ﬂ:O.

(IV.352)
(IV.35b)

Note that condition (IV.35b) does not depend on the
energy. We thus conclude that in general or(v,; E) =0

for all E. In order to avoid the unphysical divergence
of the quantum yield, we must conclude that when
the effects of radiative interactions are properly in-
cluded, then (a), the absorption cross sections, are
finite for all E, and (b), the vanishing of ¢.(E), is
determined by two conditions identical to (IV.35).

To demonstrate these points we shall apply a simpler
version of our model invoking an additional assumption
that the radiative interactions of the states s and 7
are equal, i.e. {a|V|s)={a|V|r)and |V |s)=
(b | V| 7). For this simplified case one has

Ao=Bo=%Co,
A;=B;=1C; (1V.36)

so that the conditions (IV.35) for the vanishing of the
scattering cross section become

2(E+7) — Erg— E\y=0,
T,4T,—48=0,

while straightforward manipulations of the numerator

(IV.37a)
(IV.37b)
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of Eq. (IV.32) result in the following condition for
the vanishing of the absorption cross section

(%Psrr‘_w> (%Ps""%rr" 26)
+[%FS(E+'Y_Erg)2+%I‘r(E+‘Y_Esa)2
+28(E+vy—Eop) (E+v—E,;)]=0. (IV.38)

In Appendix A we demonstrate that the two terms on
the rhs of the last equation may not be negative, which
implies that Eq. (IV.38) can be satisfied only provided
that both terms will simultaneously vanish. We further
show in Appendix A that the requirement for the first
term in (IV.38) to vanish is I',=T,=28, and inserting
this relation into the second term we end up with the
two conditions (IV.37). The inclusion of the radiative
interaction to infinite order is essential for this result.
If radiative widths are neglected the identity =TI,
(see Appendix A) insures automatically the vanishing
of the first term on the rhs of Eq. (IV.38) so that we
are left with only a single energy condition for the
vanishing of the absorption cross section while for
the vanishing of the scattering cross section we still
have to satisfy the two conditions (IV.37a) and
(IV.37b). As the radiative contributions to the (en-
ergy independent) conditions (IV.35b) and (IV.37b)
are small relative to the nonradiative widths, it is
reasonable to assert that the energy conditions (IV.35a)
or (IV.37a) specify the minima in the absorption cross
section and in the scattering cross section, while the
quantum yields remain finite and smaller than unity.
Numerical calculations reported in Sec. V justify these
tentative conclusions.

V. INTERFERENCE BETWEEN RESONANCES IN
A HARMONIC MOLECULE

We shall now consider a simple model of an harmonic
molecule characterized by identical displaced potential
surfaces. The radiative interactions are governed by
the appropriate Franck-Condon factors. The total radi-
ative widths I'.B(=T,¥) and I\E(=T,¥) and also the
mixed width 8%(=3*), may be evaluated in terms of
the electronic-radiative matrix elements U, [Eq. (B5) ].
The details of the calculations are outlined in Appen-
dices B and C. For the useful case where s and r corre-
spond to the same electronic configuration, we were
able to derive the following explicit expressions for the
radiative widths: ’

TE=[167°Q/ (2n#ic) ¥ U, 0., (V.1
T 2=[162°Q/ (2akc)¥ U ., ., (V.2)
BE=[8x%Q/ (2nhic)*JU ., ., (V.3)

where the matrix elements J, , are given by Eq. (C6).
In particular for the diagonal terms #=1v we get

T o= E~Fo(v+3AY), (V.4)

FROM LARGE MOLECULES 2877

while if v=#—1, we obtain
Jv,n+l= - (ﬁwA/\/?) ('D+1)1/2, (VS)

where A is the displacement of the origins of the poten-
tial surfaces normalized by the zero energy displace-
ment,

General expressions for the nonradiative widths T'.%,
I';L and the mixed nonradiative width 8 may also be
evaluated for this model. The results obtained are™:

P L=fit f * Tt d, (V.62)
I o= f " It (V.6b)
=t f " T, (V.60)

where the matrix elements J,,({) are given by

Jus(t) = 2 3CriCrfis exp[—i(E—Ep) (¢/£)]

X[ (vt+1) exp(iwd) +uc exp(—iwad) ] TT g.2(8),
HEK
(V.7

where Cr; and C,, are electronic coupling matrix ele-
ments (in our case C,;=C,;) and where r and s are
assumed to be characterized by equal occupation num-
bers #, of the promoting modes « (otherwise they will
not be coupled to the same nonradiative quasicontin-
uum { | I)}). Ep is the pure electronic origin of the
manifold /. u is the general mode index and g,"(?) is
given by

" (6)= exp[— (824,70 — %A,“A,.“ exp (tw,t) :]
min(vyy,vsy)

XLow) o) 32 3 (1)

% D\n"(t):]v"‘[)\ra“*(t)]u"‘l )‘ra“(t) l—zﬂ
w12 —n) Hopu—n)!

, (V.8)

in which A,, and A,, denote the displacements of the
potential surfaces which correspond to the r and s
states relative to the [ potential surface (here of course
Aw=As,), v and v, are occupation numbers of the
mode g in the 7 and s states and

M () = (1/V2)[Aru— Au exp (—iw,t) 1 (v.9)

The nonradiative widths may now be calculated utiliz-
ing Egs. (V.6)-(V.9). However in the present discus-
sion we shall regard the nonradiative widths as constant
numbers, and shall introduce them as parameters of
the theory. Equations (IV.28)-(IV.34) can be now
utilized to yield explicit expressions for 0,(E), 0r(vg; E),
and for Y (»,; E).

Finally it is of interest to evaluate the total cross
section for fluorescence, by summing up the contribu-
tions due to all final | g; v,) molecular levels. The
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F1c. 1. Absorption and emission cross sections and emissions quantum yields for different molecular parameters. Electronic energy
gap is taken to be 20 000 cn~! and the optically active frequency is 1000 cm™1. The radiative widths are governed by the Franck-
Condon factors which in turn are determined by the origin displacement A between the ground and excited electronic states. The
nonradiative widths are taken to be 500 or 100 cm™ for both s and 7. — absorption cross section, — — — partial emission cross section,
-+-+.« total emission cross section, - - - partial quantum yield, +- - total quantum yields. The absolute magnitudes of the cross sections

procedure is outlined in Appendix D, the final result is
or(E) = 20 or(v,; E) =[2Q%/n(fic)*](X"/Z), (V.10)
g

where Z is given by Eq. (IV.29) and X7 is

XT= 3 Ef*(vg) | X4(2,) [* (V.11)
with
E;(v,)) =E+Ep—Ep=E—fiwy, (V.12)

the energy of the emitted photon. X7 is evaluated in
Appendix D and can be expressed in the form

XT=(U/E) (XX oy 0+ (XX L) o, 0,

+2(XuXc+XbXd)J1’nvr]: (V 13)

where
Xo=%({o, l )T, —2{0, I 7,)8), (V.14)
Xp= (0, ‘ 5) (E— Erg) + {0y ' %)Y, (V.15)
Xe=3({og | 2)Ts—2(0, ' %)8), (v.16)
Xa= oy | v)(E—Esg)+{0g | 2. (V.17)

The same procedure leads also to an expression for the
total quantum yield which is simply given by Y (E) =
or(E)/os(E).

In Fig. 1 we display some typical results of numerical
calculations for the absorption and emission cross sec-
tions, and for the emission quantum yields. Figure 1
represents linear plots which are of experimental inter-
est. For these model calculations g° has been chosen to
be the vibrationless level of the ground electronic state
while g was taken as the first excited totally symmetric
vibrational state of the ground state electronic mani-
fold (i.e., »,=1). | s) and |#) were chosen to be the
zero and the first totally symmetric excited vibrational
levels of an excited electronic state whose potential
surface is displaced relative to that of the ground
electronic state by an amount A which may be positive
or negative. The nonradiative width of the states | s)
and | ) were assumed to be independent on the energy
and were assigned values of 500 and 100 c™! in differ-
ent cases. The radiative widths were calculated accord-
ing to Egs. (V.1)—(V.3) choosing the electronic matrix
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and quantum yields are multiplied by the following numerical factors: (a) oa(E) (X10%®), ar(,; E) (X2X10%), or(E) (X10%),
(b) Same factors as in Fig. 1(a) for o4, or(7,) and og, ¥(2,; E) (X102, (c) and (d) a.(E) (X10®), or(v,; E) (X5X10%), or(E)
(3¢10%), (&) ga(E) (X10), og(vy; E) (X5X10¥), or(E) (X2X109), (f) Same factors as in Fig. 1(e) for o4, or(1,) and o, ¥ (v,; E)
(X10%, (g) and (h) oa(E) (X10%), or(v,; E) (X5X10%), or(E) (X2X10%).

element U so that I'/2~10-3 cm™!. The electronic
energy gap was taken to be 20000 cm™ while the
molecular frequency was chosen as 1000 cm™ in both
electronic states. The parameter A takes the (normal-
ized) values 0.2 and +0.8. The numerical results
obtained [Figs. (1) and (2)] lead to the following
conclusions:

(1) As expected interference between the two reso-
nances affects the absorption line shape. In contrast
to the simplified model previously employed where
higher order radiative contributions were neglected 8b-&
the absorption cross section does not vanish in the
region of destructive interference, but assumes a very
small value depending on the radiative widths of the
resonances.

(2) Depending on the sign of A we encounter de-
structive interference in the absorption and in the
emission cross sections either inside or outside the en-
ergy region located between the absorption (or emis-
sion) peaks. A similar effect is obtained by changing
the sign of 8, as may be seen from Egs. (IV.32) and

(IV.33). When destructive interference occurs in one
of the above mentioned energy regions, constructive
interference is encountered in the other region.

The dependence of the interference effects on the
sign of the displacement is of interest. This effect
originates from the dependence of the cross sections
[Egs. (IV.32) and (IV.33)] on the relative signs of
the radiative coupling matrix elements {a| V | s) and
@|V|r) (or (| V|s)and (b| V|r)). These matrix
elements depend on the relative signs of the correspond-
ing vibrational overlap factors, which in turn are deter-
mined by the sign of A, We have recently™ discussed
this effect for simplified model where the contribution
of the radiative widths to the interference effects is
neglected.

(3) The most striking effect encountered for this
model system is the occurrence of a sharp maximum in
the partial and in the total quantum yields in the
vicinity of the dip in the absorption cross section.
From the mathematical point of view this effect origi-
nates from the observation that in the vicinity of this
“dip” the absorption cross section decreases more
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F16. 2. Absorption and emission cross sections [o, (E) (X1012),
or(Vy;E) (X2X1012) and og(E) (X 10'?) and emission quantum
yields for the case when 7 is radiatively impotent. The molecular
parameters chosen are: E,—E,=2X10"% cm™; V,=1X10"%
cm™l) IL=1X10"¢ cm™, Il=0, I''*=0, I,¥=1X10"% cm™.
Curves notations are the same as in Fig. 1.

rapidly than the emission cross sections. When the
effect of radiative widths is neglected, the quantum
yield will diverge in the vicinity of the “dip” in the
absorption cross section. When the radiative contribu-

NITZAN AND J. JORTNER

tions are properly included the quantum yield exhibits
a sharp peak (the maximum quantum yield being lower
than unity) in the region of destructive interference.
From the experimental point of view it is unlikely that
this interesting effect will be amenable to experimental
verification as although the quantum yield may become
almost unity at this point, the absolute values of the
absorption and the scattering cross sections are so
small that background absorption effects (due to over-
lap of other resonances and to sequence congestion
effects) will probably mask the rise in the quantum
yield in this region.

Finally it is of some practical interest to check to
what extent do the radiative corrections affect the
lineshapes and the quantum yields. We have demon-
strated the crucial role of the radiative widths in the
energy region where destructive interference occurs. It
is comforting to note that our numerical calculations
have verified that at a distance of about 0.1T (I'=T,,
TI',) from the dip in the absorption cross section the
results obtained neglecting the radiative widths do not
differ from the exact results by more than 109, where
the error decreases rapidly to zero when we go further
away from the maximum in the quantum yield.

VI. THE ROLE OF A RADIATIVELY IMPOTENT STATE

We shall now consider a special case of the general problem discussed in Sec. IV, whereupon the zero order
state | 7) does not carry oscillator strength from the ground state. The physical situation where a pair of zero
order discrete states are mutually coupled and interact with several optically inactive quasicontinua, while one
of these discrete states is characterized by a vanishingly small oscillator strength, is of considerable interest for
the understanding of intermediate coupling cases in large molecules. The general results [Eqs. (IV.32)-(1V.34)]
are now simplified by taking

Bo=C0=Cf=B/=O, (VII)
r£=0, (VI.2)
B=6*, (VIL.3)
y=v" (VI.4)
Inserting Egs. (VI.1)-(VI.4) into Egs. (IV.32)-(IV.34), we obtain
Q4 [ 4B (1.0 ~B+7?) I'r]
a = rs
B = e "V =g, T (E=E,)
%Fsrr_ﬁ2+'y2)2 1 ( E—-E,, 4v8 )2]_1
g —fer P17 —(r,+T1, , (VLS5
X [(E Ei E—E,, + 4 Tt T E—E,,,+ E—E,, (VL5
5= (Y 4, o (2 )]{[ e %rsr,—mw]z 1[ E—E, 418 ]}—
7w (%%; E)_r(ﬁ%) 4] [1+ iz ¥ % &g, | Til"U R, TE-E))
(VI.6)
20k [ Ay |* L 1
y('”ﬂ; E) = T e [(E—Era)2+ (%Pr)z:l[(E—Era)zI‘s'*' (E—Era)‘h’ﬁ"' (v2—6%) P,+P,§(I‘,)2] . (VI'7)

ﬂﬁacA 0

Now, making use of Egs. (IV.26a) and (IV.27a), we note that 4,2 and 4o may be expressed in terms of the
partial radiative widths of the state s in the forms

Ao=T [ (2nic)3/16x°QF, "],
| 47 P=T0T, [ (2nhi0)%/ (16m°Q) EfEal’].

(VI.8)
(VI.9)
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Inserting Eqs. (VL.8) and (VIL.9) into Egs. (VL.5)-(VL7), we obtain

Ay 448 ADT—fty ]
a.,(E)=%1r(E> rs°[ra+ P

—Erq
ir.Tr.—~ A\ 1 E~E,
X [(E—Es,,— ‘——i“—rl) + (n+r, L 4

E—E,, 4 E—E,,
F\2 %I‘f )2]
. =1 - o »
or(vy; E) =3%w (k) T, [1+ (E—E,,,
I(I‘arr) “62'*—72)2 1 ( E_‘Em 476 )2] 1
—Eygm —— ~(T4+T, , A1
X [(E Eve E—E, T\t E—E,, t E—E, (VL.11)
Y (vy; E) =T’ L(E—~E:o)*+ (3T JL(E—Er) T+ (E— Ep) 48+ (v~ B T+ T. (3T 2 (VI.12)
By summing up the partial quantum yields we get the total fluorescence quantum yield in the form

Y(E) = PsR[(E_ Era) -+ (% Pr) 2:": (E_Era) T+ (E_Era) 4’)’3"“ (72" /32) I+ Fa(%rr) 2]—1-

4B
E—E,

)2]—1, (VI.10)

(VI.13)

In a similar way the total cross section for resonance fluorescence may be obtained from Eq. (VI1.11) by replacing
T',® by I',F. We note at this point that the results Eqs. (VI.10)~(VI.13) are readily seen to reduce to the single
resonance expressions of Sec. IT when the contribution of the state r vanishes, e.g., when E— E,;~» , or when ¥,
B, and T,- are set equal to zero.

The general model discussed herein can be applied to account for interference phenomena in the radiative
decay of the first excited singlet state of the biacetyl molecule. Calculations were previously performed™® using
a formalism which corresponds to a short time excitation experiment, invoking the assumption that at time ¢t=0
the pure quantum state | s) has been populated. The model applied was a simpler version of the present model
which assumed that the states | s) and | ) are not coupled to the same continuum so that a and 8 [Egs. (IV.19)-
(IV.21) ] vanish. On the other hand, the interaction V., was taken to be different from zero, so that | ¥ [t= | V.. |2
In this case Eq. (VI.13) is

Y (E) =TF{[(E—Er)*+ GTn)*)/[(E—E)’Ts+t | Ver T+ T (3T 2]}, (VI.14)
Alternatively we can recast the quantum yield in the final form
V(E)=(T.%/Ts) A+ (| Vor [/ T} {T2/[(E~Erg)*+ (3T 2} (VI.15)

The following comments are now in order:

(a) Equation (VI.15) corresponds to a narrow band
excitation and thus the quantum yield exhibits energy

o dependence.

H (b) The quantum yield will take the limiting (energy
= independent) value Y—T'.®/T, under the following con-
Eos ditions: (b') I',=0, (b?) I'—o, (b®) V=0 and (b*)
3 | E—E,,| —®. The conditions (b!), (b%), and (b*)
z exhibit the limiting cases where the problem at hand
] reduces to the simple case of an isolated resonance
z [the condition (b*) is in fact of minor experimental

interest as in this energy range o.(E)—0]. The condi-
tions (b') and (b?) specify the limits when the quantum
yield achieves its highest value.

(c) When externally induced vibrational relaxation
is considered it can be speculated* that T, linearly

0.0 Vi 1 1
~0.0 5.0 10.0 15.0 250
Iy lem-'x106)

F16. 3. Total emission quantum yield as a function of T,Z

for broad pulse (coherent) excitation (---) and for long time
narrow bandwidth excitation: (—). E for the second case is
taken to be equal to E, The molecular parameters employed
are identical to these employed in Ref. 14(b), namely TI',E=
| E,;—E,| =V4¥=1X10"% cm™ for case I, and T,B=1X10-%
em™, | E,—E, | =V,=1X10 cm™! for case IL.

depends on pressure. In this case we can consider the
dependence of the quantum yield on the width T, for
a constant excitation energy E. The quantum yield
will exhibit a minimum when T,= | E—FE,, |.

(d) For the widths TI', which satisfy the condition
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4T« | E—E,; | the quantum yield takes the form
AR
Ps+[ l Ver P/(E-Efa) zjrr )

Now provided that T, is linearly dependent on the
pressure, Eq. (VI.16) is the quantum mechanical ana-
log of the Stern Volmer relation for the case of narrow
band excitation.

We have considered the decay characteristics of a
pair of coupled discrete zero order states one of which
is optically active, studied by narrow band and long
time optical excitation. These results for the quantum
yield are of course different from those previously ob-
tained for a short time coherent excitation of the zero
order | s) state. It should be noted that for the coherent
excitation case the quantum yield is of course energy
independent and the relevant energy parameter is the
separation of the zero order states | E.,—E,, |, while
in the present experiment the quantum yield is energy
dependent. The general structure of the quantum yield
expression for the short time excitation [Ref. 14b,
Eq. (9)], and for the long time excitation [Eq. (VI.15)]
is different. The results of numerical model calculations
for this system are displayed in Figs. 2 and 3. In Fig. 3
we present some numerical results comparing the de-
pendence of the quantum yield on I, for short time
and for long time narrow bandwidth excitation experi-
ments. The general functional behavior of the quantum
yield on T, is similar in both cases, however, the two
physical situations differ in quantitative details. The
experimental results of Drendt and Kommandeur*®-1%
are not detailed enough to distinguish between these
cases. Careful monitoring of the decay of biacetyl and
similar systems by a narrow band CW dye laser will
provide interesting experimental information concern-
ing the difference between coherent and narrow band
excitation. These results provide the first complete ex-
ample pertaining to the interesting problem of how
does the “preparation” of the excited optical state
affect its decay characteristics.

Y(E)= (VI.16)

VII. INTERFERENCE WITH BACKGROUND
ABSORPTION

We have previously demonstrated’ that when the
two electronic level system | s) and { ] 1)} is employed
within the framework of the adiabatic representations
the quasicontinuum { | Z)} does carry oscillator strength
from the ground state. As the transition moment for
the | g)— | I) transition is proportional to the transi-
tion moment | g%)— | s}, a simple Fano type line shape'®
will result. We shall now consider the cross sections for
absorption and for resonance fluorescence for a system
characterized by an excited discrete state interacting
with a quasicontinuum when the latter is optically
active. This model still implies that the spacing be-
tween resonances exceeds their widths. A further, phys-
ically reasonable assumption which we shall impose is

A. NITZAN AND J. JORTNER

that the nonradiative width of the resonance consider-
ably exceeds its radiative width.

The cross section for absorption is now given by
Eq. (IL7) in the explicit form

04(E) =—(20/k¢) Im{(g, 0,5k, € | Hins | 5; vac)
XGN(s; vac l Hint J 8, 0g; k7 e>
+ 22 (g 005k, € | Hine | I; vac)
{
XGi{s; vac | Hins | g, 003 k, €)
+E (g: Og;k, e’Hintls; 1)(16)
l
XG&IU; vac ' Hint I 8, Og; k: e>
+ 22 (g 05k, €] Hin | I; vac)
1 v

XGuw{l';vac | Hiny | g, 0,5k, €)}, (VIL1)

where we have defined
Gij= (i; vac | (E;+-E—H+-in)7" | ; vac); 1, j=s, {1}.
(VIL.2)

At this stage we shall invoke the assumption that
the radiative widths are negligible compared to the
nonradiative intramolecular width due to s/ coupling
via H, This assumption is not necessary; however,
the general treatment of the problem including the
contribution of radiative coupling to the matrix ele-
ments (III.2) is very cumbersome, as the radiative
damping matrix is nondiagonal. As has been demon-
strated in section V these radiative contributions are
of minor importance except for energies close to the
dip which originates from destructive interference in
the absorption cross section. It is thus expected that
our approximation will result in the correct general be-
havior of the absorption and emission cross sections
except that the calculated quantum yield will exhibit
an unphysical divergence near the interference dip.

Invoking this approximation for the calculation of
Eq. (I11.2) we utilize the (approximate) relation

(Eg+E—H+in) = (E,+E—Hotin)™

+ (Eo+E~Hotin) 'Ho(E,+E—H+1n) 7,
which immediately leads to the results
Goa=Gy(H,) a(E— Eiy+in) 7,
Gio=(E—Eytin) ™ (H.) 1Ges,
Guw="[8w/(E—Ey+in)]

F+(E~Ejgtin) N H,) 1sGou(H o) sv (E—Ep i) 7,

Go=(E—E,,+3T5) 7, (VIIL.4)

where Ej,=E;—Eg, E,=FE,—E, and the width is
TEi=2r 3| (s| H, | 1) 25(E,—E)), as before.
From Egs. (VIL1)-(VII.4) the absorption cross

(VIL3)
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section is
0a(E) = — (2Q/%ic)
XIm{Z [ | (g, 05; k, € | Hins | 1; vac) [/ (E—Eigtin) ]

+G..({g, 053k, € | Hine | 5; vac)+a—iB)
X ({s; vac | Hins | g, 00; k, €)+a*—ip*)}, (VIL.5)
where, in this section,
(g, 04; ke | Hiny | 1; vac)(l; vac | H, | s; vac)
E—E,, ’
(VII.6a)

a=PPY,
7

ﬂ=1rz (gy Og; k7 € I Hinf, I l; ‘vac)
l
X {l; vac | Hy | 55 vac)6(E—~Ey,). (VIL.6b)

In the statistical limit, the summations over the index
I represent integrals over the density of states p; in the
{1} manifold. PP represents the principle part of such
an integral. « and B represent again “mixed type” level
shift and widths terms. It is also worthwhile to note
that now

I B |2=%TP3L Z l (g, 0.k, & | Higs I l; vac) PME_EIH)-
1

(VIL.7)

Defining now the Fano reduced energy e and the
line shape index ¢, in the conventional form®

e=(E—E,;)/3TF,
9= ((g; 0.k, e | Hiny | 55 vac)—l—a)/ﬁ,

(VII.8a)
(VII.8b)

LARGE MOLECULES 2883

we note that ¢ is real for internal conversion between
nondegenerate states. Thus Eqgs. (VIL4)-(VILT7) re-
sult in the familiar'® expression

oa(E) = (20Q/Fic)n
X E (g) 0g; k7 € I Hint | l; 'DGG) |26(E—Elﬂ)

X (e4¢)*/(14¢)% (VIL.9)

We shall define the radiative decay width I';® re-
sulting from the spontaneous decay of |, vac) to

| g, vg; ky, €;), utilizing the same procedure which leads
to Eq. (TIL5):

Ti2=[162%Q/ (2xh)3c] | {; vac | Hins | g, v4; Ky, €1) |2,
(VII.10)

The absorption cross (VIL.9) can be rewritten in the
form

oa(E) =7*(%/k)? EIJ T08(Ei—E)[(e+9)?/ (14€) ].

(VII.11)

It should be noted that (1) we have neglected the
radiative contribution to T,. (2) ¢ is assumed to be
real. (3) The directions of the interfering transitions in
the dipole approximation are equal. (4) When ¢g—o
Eqgs. (VIL7) and (VIL11) result in the simple case
(IIL.9), only that I',=T,X+T,® is replaced by T,k
We shall now consider the cross section for resonance
fluorescence utilizing Egs. (11.8)-(11.11). The off-
diagonal matrix elements of the T matrix are

I(vg; EY={g, 05k, €| T | g vy; ks, €)= (g, 055K, | Hine | 55 20C)Gis(s; vac | Hine | g, v4; Ky, €1)
+ Z (gr 0g; k; e I Hiﬂt IS, vaC>Gsl<l; vac | Hinf- ‘ g, Vg5 kf; ef>
1

+ Z (g) 0g; ky e l Hint ' l; vM)Gz,(S; vac | Hint | 8 Vg5 kf7 ef)
1

+X Z, (g, 00k, €| Hint | I; vac)Grv {I; vac | Hine | g, 03 Ky, €7), (VII.12)
1

which have, of course, identical structures to the diagonal element T,,, Eq. (VIL.1). Invoking again the assumption
that the radiative widths are negligible relative to the nonradiative width we shall utilize Eqs. (VIL.4) for the
matrix elements of the Green’s function. It will be convenient at this stage to define the auxiliary functions:

B(v,; Ey=PP Y, [(g; 0k, e I Hin ! 1; vac)(l; vac | Hins | g Vg; By, ef>/(E_'Ela)]
;

and

Utilizing Eqs. (VIL6), (VIL.13), and (VIL.14), Eq. (VIL.12) takes the form
I(vg; E) =B(vy; E) —iC(v5; E)+Gou({g, 053 K, € | Hine | 55 vac)+0—iB)

(VIL.132)
C(vﬂ; E) =7 Z (g) Og; k; e I Hint l l! Wﬂxl, vac | Hint ' &, Vg kf) ef>X6(E—Elﬂ)1 (VII.l3b)
1
¥(vg; E)=PP 3 [{s; vac| H, | I; vac){l; vac | Hins | g, v,; Kk, €7)/(E—Ey,) ] (VII.14a)
1
8(vg; EY=7 3 {s; vac | H, | I; vac){l; vac | Hiny | g, v; Ky, €Y (E—Ey,). (VII.14b)
1
X[(s; vac | Hine | g, v4; k5, €7)+v(v5; E) —1d(vy; E)].  (VIL.15)
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Defining two line index parameters,

A. NITZAN AND J. JORTNER

q=({g, 05; k, € | Hiny | 5; vac)+a) /B, (VIL.8b)
g=[(s; vac | Hins | g, v5; ks, €7)4+7(vy; E)1/5(v,; E) (VII. 16)
and utilizing (VI1.4), Eq. (VIL.15) takes the form
I(vy; E) =B(vy; E) —iC(v,; E) +[86(vs; E) /3T (g—1) (§—1) / (e43) ], (VIL.17)
where ¢ and § are real.
It can now be easily shown that
B8=1iTLC(v,; E) (VII.18)
so that when the level shift term V(v,; E) is disregarded, Eq. (VII.17) becomes
I(vg; E) =C(vy; E) {[—et+9G—i(g+q) 1/ (e+1)}. (VIL.19)
The relevant term in Eq. (I1.4) is now
| I(vg; E) = | C(vg; E) F{L1q P G P+ [ ¢ P+ | § P+e+2¢G42¢(g+9) 1/ (14+6) }. (VII.20)
The cross section for resonance scattering is now obtained from Egs. (I1.10) and (VII1.20):
or(vg; E) = (2Q/Fic) 2% [d,p0s | C(vy; E) PX{[¢P++F+E+290+2¢(¢+0) )/ (1+e) ]},  (VIL.21)
e ef
where Eq. (VIL.13b) yields
, C(vg; E) ,2=7rzl: | {g 005k, I Hiny | 1; vac) 8(E—E) X7 3 l (I; vac | Hin | g, v0; ks€r) [ (E—Eu,). )
1]
(VII.22)

Utilizing Eq. (VII.10) and (VII1.22), Eq. (VIL.21) is recast in the final form

or(vg; E)=-%1r(ﬁ/k)22; T'%(E,—E) Z;, Tw*8(Ev,— E)X{[¢P+ @+ +é+ 29,4 2e(¢+9) 1/ (1+e)}. (VIL.23)

Now the quantum yield for resonance scattering into | g, v,) [Eq. (I1.12) Jis given from (VIL.11) and (VIL.23) by
Y(vy; E) = 2 T1*6(E1y—E) {[¢¢+ ¢+ T+ 4299+ 2e(g+0) 1/ (e+9) )
- .

= 3 Tr8(Er—E)[1+ (@P+0+20+24) /(e+9)*) (VIL.24)
I

Equations (VII.11), (VIL.23), and (VII.24) summerize the features of the energy dependence of the absorp-
tion and the scattering cross sections and the quantum yield. These results are valid in the energy range where
the contribution of the radiative widths can be disregarded. It is thus not surprising that these results exhibit a
reasonable behavior in the limit e—>c where only the background continuum contributes to the quantum yield.
On the other hand the divergence of the quantum yield at e= —g¢ is unphysical, and can be amended (in principle)
by incorporating the role of radiative corrections as done for the case of overlapping resonances (Sec. IV). From
the results obtained in Sec. IV we can assert that the role of these radiative corrections in the present case will be
important in the energy region from E=(—¢—0.1) to E= (—g-+0.1) [where the reduced energy scale (VII.8a)
has been used]. Our expressions [Eqs. (VIL11), (VII.23), and (VII1.24)] are valid outside this energy region.

VIII. LINEWIDTHS AND RESONANCE FLUORES-
CENCE IN THE CASE OF AN OPTICALLY
ACTIVE CONTINUUM

The concept of molecular eigenstates (which diago-
nalize the “exact’” molecular Hamiltonian) played a
central role in the understanding of molecular elec-
tronic relaxation process.! However, it often happens
that the treatment of general problems concerning
resonance fluorescence and emission quantum yields
is simplified by the utilization of another basis set.
This is the case when a basis set can be chosen where

only a single (or a small number of) zero order state(s)
will carry oscillator strength from the ground state.
It may happen that the only relevant physical infor-
mation pertains to the “exact’” molecular eigenstates
of the system (or to a reasonable approximation to
these states). The formulation of the optical line shape
and the quantum yield problem must rest in this case
on the molecular basis set. We have then to deal with
photon scattering by a system which is characterized
by a discrete ground state and an optically active
continuum. A good physical example for such a system
involves the direct optical photodissociation spectrum
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of diatomic and polyatomic molecules. In the case of
predissociation it is self-evident that resonance fluores-
cence involving a metastable state can be legitimately
considered and handled by the theoretical methods
described in the present ‘work. On the other hand, it
is interesting to inquire whether resonance fluorescence
will be observed when a molecule is optically pumped
into a dissociative continuum. In the case of direct
photodissociation the definition of a metastable state
is fraught with conceptual difficulties, as we cannot
define a zero order bound state, as in the case of pre-
dissociation. However, it is quite easy to demonstrate
the existence of a finite quantum yield for resonance
fluorescence. This quantum yield will be very low
(~10"") however with the utilization of high power
laser sources this yield will be amenable to experimen-
tal observation.

When the physical properties of excited molecular
states are interrogated by a long time experiment one
can always define in a formal manner an “optically
active state” |s) which carries the entire oscillator
strength from the ground state, in the form

=21 el X1 G el B

where { | )} is the optically active continuum, | g)=
| g, 04) is the ground electronic-vibrational state and u
is the transition moment. Note that the | s) state now
carries all the oscillator strength from the ground state.
The only restriction on the validity of this formal
definition is that the optically accessible excited states
{17)} (characterized by energies E; and density of
states p;) are confined to a limited energy region in
the sense that p;| (7] u|g)|* decreases to zero faster
than E;7 outside this region. If the energy range of
optically active excited states is bound according to
the definition presented above, the sum specifying the
| s) state converges and its definition is unique.

We shall now attempt to utilize the general formula-
tion of the resonance fluorescence problem employing
the molecular basis { | j)}. A rather serious approxima-
tion involved in this approach is that high order radi-
ative interactions are not included. However, we have
demonstrated in Sec. V and VII that this approach
is justified provided that in the relevant energy region
distinctive interference effects can be disregarded. In
the case of optical photodissociation we expect this
approximation to be valid.

Turning now to the general formalism outlined in
the previous section we are interested in the matrix
elements of the T operator:

Tw= 23 61V 1§65(i1 V| a)
= Z LG V)41 V| a)/ (EamEstin)],

(VIIL. 1)

MOLECULES 2885

where |a)=|g, o, k, €) and |b)=|g, v,; ky, €)
represent single photon- states. |j)= |4; vac) corre-
sponds to an excited molecular eigenstates. When radi-
ative interactions in G are neglected it becomes diag-
onal in this molecular basis. Finally, V corresponds
just to the radiative interaction Hiy, as the present
basis set is diagonalized with respect to H,.
For the line shape we now have (E,=Ey+E),

aa(E) =~ (2Q/fic) Im(a | V(E,—H+in)"'V | a)
= (2nQ/Fic) [dE;p; | {a | V | j) [%(Ea—E;)
=(2nQ/fic) | {a | V | j(E;=E.)) [*0;(E;=E).
(VIIL.2)

This is the trivial solution for the line shape of a photo-
dissociation spectrum. In order to evaluate the scatter-
ing cross section we utilize Eqs. (I1.10) and (VIII.1)
which yield

or(vo; E) =2n (Qky/fic)? | Ty [*
=2 (Qk,/fi%)?
X| LLGIVING IV I a)/ (BamEstin) ] P
(VIIL3)

In order to obtain a general formal expression for the
cross sections and quantum yields we shall define the
auxiliary functions,

F(E)—iG(E)
=2 LG V)| V]ae)/(Ea—Ej+in)], (VIIL4)

where
F(B)=PPLLG| V)i V]a)/(E-E)],
] (VIII.5a)
G(E)=7r);, GV )GV ]a)(E~E;)
=z | VNG|V el gmpa (VIII.5b)

which are related by the dispersion relation
F(E)==PP[[G(E')dE'/(E—E')]. (VIIL.5c)
In terms of these functions we get
or(ve; E) =2m(Qky/%c)’[ | F(E) "4 | G(E) 2],
(VIII.6)

Note that for the case of resonance scattering into the
| g, 0,) molecular state, | @) and | b) are identical, and
in this case we have

oo(E) = (20/%c)G(E), (VIIL.7)
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while the quantum yield takes the form
Y (oy; E) =0r(0y; E) /04(E)
= (vQk/R%)[G(E)*+F(E)*]/G(E),
(VIII.8)

where we have assumed that G and F are real.

It will be useful at this stage to recast these general
results in terms of the states | s) and |s’) which are
coupled by V to | ) and to | b), respectively. Defining,

[5)=V | a)/(a] VV [a))*2
= SNV Ta)/(S el VIV ahyee

(VII1.9a)
and

[H=VI[8)/ | @l VV|b) [
= ZJI 173 V|b>/(§;} GLVINGIV )™,
(VIIL.9)
we rewrite Eqs. (VIII.2) and (VIIL.3) in the form
oa(E) = (20Q/fic) | (@ | V | sP*| (5| 5) I’ps | i=z.

(VIIL.10a)
and

or(vg; E) =2m(Qks/F2c)* | (B | V | ') [*[ (2| V| s)
XX 1) | )/ (EamEj+in) ] . (VIIL.10b)

In the case of resonance fluorescence to | g, 0,) we have
again | ¢)= | b) and the quantum yield takes the simple
form

Y (0,5 E) =0r(04; E) /04(E)
=" | JAdE;L(E;) (Eo—~ Ej+in)~* |/L(E,) ],

(VIII.11)
where

vE=(Qk/F%) | (@ | V|s)|t, (VIII.12a)

while

L(Ej)= | (s|7) [Pos;  L(Es)=L(E;) |g=..
(VIIL.12b)

The width v.® represents the pure radiative width of
the “zero order state’ (or rather the wave packet) | s).

A. NITZAN AND J. JORTNER

L(E;) is the (normalized) absorption line shape. Equa-
tion (VIIL.11) implies that the quantum yield for
resonance fluorescence is determined by the Hilbert
transform of the line shape function. This general
statement pertaining to a “long time experiment” is
complementary to the well known result that the decay
pattern in a “short time experiment” is determined
by the Fourier transform of the line shape.

In order to gain further physical insight into the
nature of these general expressions consider the case
of photodissociation when the explicit representation
of the molecular wavefunctions in the Born-Oppen-
heimer approximation, i.e., | g, 0,)=¢;(r, R)xo(R) and
| 7)=a;(r, R)x;(R), where ¢ and x refer to electronic
and nuclear wavefunctions, respectively. Invoking the
Condon approximation for the calculation of the width
v% (VIIL.12a) this width is determined by the matrix
element | (¢, | u | ¢;) |* i.e., corresponding to the total
radiative width of the electronic state j. Thus a reason-
able approximation for v,® can be obtained from the
integrated oscillator strength for bound-continuum ab-
sorption.

Equation (VIIL.11) provides us with a manageable
theoretical expression for the quantum yield of reso-
nance fluorescence from an optically active continuum.
This expression is valid provided that L(E;) tends
sufficiently rapidly to zero when E; goes to £, and
provided that high order radiative corrections can be
disregarded. As a check on this result we note that
for a Lorentzian distribution, characterized by a width
T, the integral (II1.11) can be evaluated by the
method of residues, and by the utilization of Eq.
(1IL.8) for v,® we regain Eq. (I11.14a) for the energy
independent quantum yield for this simple case of a
Lorentzian resonance. For any other form of the line
shape (such as a Gaussian which provides a reasonable
approximation for the case of photodissociation) the
quantum yield will be energy dependent. From the
point of view of the experimentalist a rough order of
magnitude of the resonance fluorescence quantum yield
(which is strictly valid only for the case of a Lorentzian
distribution) is given by the ratio ¥~+,%/T',, where
¥:E~10"% cm™ and the total width of the distribution
is Ty~10* cm™, thus ¥~10". This low yield can be
experimentally detected.
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APPENDIX A: EVALUATION OF THE TERMS APPEARING IN EQ. (IV.38)

Starting from

/3=7"|:Z Verlaa(Ea_El)'l" Z Vrmesa(Ea_Em) :l,
1 m

(A1)
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we obtain
B2=1r2[2 Z VerlsVl'erl’a(Ea_El)6(Ea—El') + Z Z’-Vrmest’erm’a(Ea'—Em)a(Ea—‘Eml)
[ m m

+2 Z Z VerlsVrmesa(Ea'*El)B(Ea—Em)]
I m
=03 Vi23(Ea—E1) X Vit (Ee—E)+ X Ve (Ea—E1) 3 Von?8(Ea—En)
1l l m m
+22 VaVid(Ea—Ep) 2 VenVmid(Ee—En) 1. (A2)
4 m

Utilizing now the expressions for T'; and T,

To=2x[2 V.23 (E.—E)+ 2. Va6 (Ea—En) ], (A3)
1 m
Tr=2a3 Vi28(Ea—E))+ X Venld(Ea—En) ] (A4)
[ m
and invoking the assumption that
| Vem | = | Ve |, (AS)
we easily obtain
1) —B=22 3 Ven?d(Ba—En) 2. (Vak Vo) % (E.—E)) (A6)
m 1
which is clearly nonnegative. Also
%I‘s+%rr— 26=7r Z (Vsl— Vrl) 26 (Ea_El) + Z (Vsm_ Vrm) 26(Ea_Em) (A7)
l m

which is again nonnegative. Note that this conclusion [Eq. (A7)] does not depend on the assumption (AS5).
The first term in Eq. (IV.38) is thus nonnegative, and if Vm=V,m, the condition for its vanishing is V=V,
which implies I',=TI',=28.

We shall now prove that the second term in Eq. (IV.38)

F(E) E%Ps(E+'Y—ETU)2+%Pr(E+7—Esa)2+26(E+7_Esy) (E+'Y'_Era) (A8)
is also nonnegative. In terms of the dimensionless parameter
d=(E+y—E.;)/(E+v—E,), (A9)
Eq. (A8) takes the form
F(E) = (E+'Y'—Ew)2(%rsd2+%rr+23d) . (AIO)
Utilizing Egs. (A1), (A3), and (A4), the second factor on the rhs of Eq. (A10) takes the form
T 2428d+4T =7l 3 AVt Vo) B(E.—E))+ X (AVntVim)6(Ea—En) ] (A11)
I m

which implies that for any d the function F(E) is nonnegative.

APPENDIX B: RADIATIVE WIDTHS OF EXCITED VIBRONIC LEVELS OF A MOLECULE
CHARACTERIZED BY DISPLACED POTENTIAL SURFACES

Generally the relevant excited vibronic states of a symmetric molecule, particularly those which correspond to
an allowed electronic transition, are characterized by a single excited totally symmetric vibrational mode while
the rest remain unexcited. This feature of the excitation process enables us to consider a simple one frequency
model. The total radiative width of the excited vibronic level | s; ,) may thus be written in the form

PEE)[=T(E)]=2r 3, % | (el vg) IP| {55 vac | Hiae | g; Ky, €7) B[E+Eg— (E+Eg)],  (B1)

which is identical to Eq. (IV.18), only that the vibrational contents v, of the excited vibronic state | s) is written
specifically, the sum over m is replaced by .., 2 rs, Where 3 p; represents a sum over all final photon states
(i.e., an integration over k; and over spatial direction and a summation over the possible final polarizations),
and finally E, and E,, are replaced by E4Eg and E;+E,, respectively, where E and E; are the initial and final
photon energies.

We now perform the summation over the photon states in the usual form:

E [ {s; vac | Hine | g; ks, €7) %8 (E—E;—Hwv,) = | (5; vac | Hin | g Ky, €5) [Ptkym(z—twopc1p(Es=E—Fiwv,)  (B2)

Downloaded 22 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



2388 A. NITZAN AND J. JORTNER

This expression depends on the final photon energy E, through the energy dependence of the pheton density of
states:

p(Es) =8nEFQ/ (2afic)® (B3)
and also through the energy dependence of the radiative matrix element which may be written in the form
| {s; vac | Hune | g; Ky, €5) |P=U%/Ey, (B4)

where U is independent on the photon energy. (Note that U is linearly dependent on the electronic energy gap
E,E . However, it does not change with the excess vibrational energy of the emitting state.) Utilizing Eqgs.
(B1)-(B4), we obtain the total radiative width of the state | s, 2,) in the form

LE(E) =[16s°QU?/ (2nfic)*] 32 | (ve | v5) F(E—Tiwn,). (BS5)

The summation over v, may be evaluated by introducing the energy factor into the matrix element and replacing
fiwv, by the operator fiwatae, where ¢t and e are the ladder operators for the ground electronic state harmonic
oscillator.

TR(E) =[16r°QU*/ (2x%ic)*] X (v, | E—fiwa*a | vg) (v, | v.)

=[16mQ/ (2xfic)*](v, | E—fiwata | v,) U2 (B6)

Utilizing exactly the same procedure, we obtain
I.R(E) =[16x°Q/ (2rfic) ") (v, | E—Fiwa*a | v,)U?, (B7)
BR(E) (=p™(E)) =[8x°Q/ (2hic)*1(v, | E—Fwa*a | v,) U™ (B8)

Equations (B7) and (B8) are written for the useful case where | 5, v,) and | 7, v,) belong to the same electronic
manifold so that the electronic integral U do not change in going to I';# and B%. The matrix elements appearing in
Egs. (B6)—(B8) are evaluated in Appendix C (again for the case where s and 7 belong to the same electronic
manifold). Inserting Eq. (C6) into Eqgs. (B6)—(B8), we readily obtain Eqgs. (V.1)-(V.3).

APPENDIX C: EVALUATION OF MATRIX ELEMENTS (B6)-(B8)

Here we shall evaluate matrix elements of the form (v | E—~fwata | u), where | v) and | %) are harmonic oscillator
eigenstates defined for a potential surface which is displaced relative to that potential surface for which the op-
erators ¢ and ¢t are defined. These states are most easily cast as

| )= (u!)~"* exp(ipA) (a*)* | 0),
(] = (2)712(0 | a* exp(—ipa) (C1)
in terms of the reduced momentum operator
p=(i/V2) (a*—a), (C2)

where A is the relative displacement of the origins of the potential surfaces. The desired matrix element now takes
the form

Jow=[(#i)?/ (210)"2](0 | a® exp(—ipA) [(E/fiw) —a*a] exp(ipA) (a*)* | 0). (C3)
Utilizing now the transformation relations
exp(—ipA)at exp(ipA) =at+(A/V2)

exp(—ipA)a exp(ipA) =a+ (A/V2) (C4)
we get,
Jow=[(#)?/ (v})2](0 | a’[(E/fiw) —a*ta— (A/V2) (a*+a) ~5A%](at)* | 0). (CS)

Applying some simple properties of the creation and annihilation operators, Eq. (CS5) takes the final form

o= [E—ﬁw(v+%A2) ]5u,v""' (ﬁwA/\/Z—) [(v) 1728 w1+ (v4-1) 1/25'1+1;u:|- (C6)
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APPENDIX D: THE TOTAL CROSS SECTION FOR RESONANCE FLUORESCENCE IN THE CASE
OF TWO OVERLAPPING RESONANCES

Here we shall evaluate the sum

XT= 20| X;(v,) F(E—fun,)?, (D1)
where Eq. (IV.30)
| X;(vg) [*=L[A;(E~Ew)+Bs(E—E,;) +Cry P+1[A4,T+B,I',—2C8T. (D2)
In terms of X7, the total cross section of resonance fluorescence is given by
or(E) = 2 or(v,; E) =[20%/x (Ric)*1(X7/Z), (D3)

vg

as is easily asserted by utilizing Eq. (IV.33). Z is defined by Eq. (IV.29). To perform the summation in (D1)
we shall make use of the following forms of the coefficients 4, By, and Cy:

A= {v, ‘ v5){0, | )1 m/[E(E_ﬁwvu)jllz}; (D4)
By={vr | v){0, | ) { U*/[E(E~Tiwr,) ]2}, (DS)
Cs=({o, I ) (v, I )+ 0, | v:) (v | v5)) {UY/[E(E—Fiwn,) :]”2}: (D6)

where U is defined by Eq. (B4) and where we have assumed that the states » and s correspond to the same elec-
tronic manifold. Inserting Egs. (D4)~(D6) into Eq. (D2), we obtain, after some algebra,

I Xs(v,) |2=[U4/E(E—ﬁwva)][(Xaz+Xb2) (vs | 96} {0q | va)
(XX 2) (or | 90) (0, | )+ 2(Xo XA Xo X a) (2, 1 15)(v, | o)), (D7)

where Xo, X3, X, and X, are defined by Egs. (V.14)~(V.17). Utilizing now the closure relation, Eq. (D1) may
be recast in the form

XT=(UYE)[(X2+X?) (v, | (E—Fiwata) | v,)+ (X2+X2) (v, | (E—Fwata) | v,)
+2(Xo XA XX 4) (v, | (E—Fiwata) | v,)], (D8)

where the creation and annihilation operators are defined for the g potential surface as in Appendices B and C.
The matrix elements encountered here were evaluated in Appendix C. Equation (D8) is now identical to Eq.

(V.13), where J,,,5,, J5,,v,, and J ,,,,, are defined by Egs. (V.4) and (V.5).
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