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The problem of electron binding in the field of a cation in metal solutions is treated on the basis of an
interstitial jon model. The energy levels and charge distribution of the unpaired electron are computed by
a self-consistent field treatment for electron binding in a continuous dielectric medium employing one
parameter wave function. Comparison with experimental results and with theoretical treatment based on
a molecular model is presented. The adequacy of the continuous model is discussed.

INTRODUCTION

T is fairly well established that in dilute metal-
ammonia solutions the ionization of the alkali metal
to solvated cations and electrons bound to the solvent is
practically complete in the concentration region below
10-3M*2. The concentration dependence of the para-
magnetic susceptibility®* and the electrical conduec-
tivity"™ was recently interpreted®® by assuming that
at higher concentration cation-electron interaction
occurs. This “ion-pair” is involved in the mechanism of
spin pairing, which occurs either by F, center® or
by dimer formation?® The NMR experiments of
McConnel and Holm" definitely indicate the existence
of charge distribution of the unpaired electron on the
alkali cation. Quantum mechanical calculations led to
the values of —0.28 ev,2 —0.10 ev,"! and —0.61 ev!! for
the binding energy of the electron in the ground state
of the monomer.

The purpose of this note is to present a treatment
of the energy levels and charge distribution of an elec-
tron trapped in the field of a cation in solution. The
present approach is based on a self-consistent field
treatment for electron binding in the field of a positive
point charge in a continuous dielectric medium. This
formulation of the problem is equivalent to the com-
putation of the energy levels of an electron bound in
the field of an interstitial ion in a crystal®—4, The
present approach involves the application of the static
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method.’®* The dynamic interactions between the
electron and the nuclear motion of the solvent mole-
cules are not taken into account. The present treatment
is based on the assumption that the form of the po-
tential well is solely determined by long-range interac-
tions. Spherical symmetry of the potential is assumed,
and one parameter wave functions are employed.

GROUND STATE

In the ground state of the system the potential V()
is determined by the charge Ze of the cation and the
wave function of the electron chosen as

Yo(r) = (u*/m)lesr, (1)

The potential is then obtained from the total field
acting on the electron,

—gradV () = (Ze/ Do) — ([Z~g(r) e/}, (2)

where

8= (1/Dy) — (1/D,) 3)
a(n) = / 1 9olr) [tmrtdr; @)

D, and Dy, are the static and optical dielectric con-
stants of the medium.

Using Hartree’s atomic units the following expression
is obtained,

Vin, )=~ (Dopr)~'+

B(1+;;f) l (3)

The total energy of the bound electron is computed
from the variation integral

Wil )= [L~30+V (s, 7) Wadartdr,  (6)

where
Ya(r) = (N¥/m) ke, (7)
The reference state is that of a free electron placed at

infinity from the cation, while the dielectric medium
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has attained the nuclear configuration forming the
potential well presented by Eq. (5).

The best wave function of this form is obtained by
solving for A the equation

LOW (N, 1) /80 Ju=0, (8)

and for self-consistency of the field then setting A=p.
Hence

A= 15[ (5/De,)+(11/Ds) ] (9)
W= —512[(5/Dop) + (11/D4) JL(15/ Do)+ (1/Ds) ].
(10)

The Bohr radius of the bound electron is rg=1/A.

In order to check the validity of the variational
treatment, the calculation was repeated using the wave
function

Yo= (w¥/7m) (1 4-pr) e,
By applying Eqgs. (2) and (6),
V(u, 1) =— (Dopr) 7 +B(r+1iut+3ulr+3uirt) e,
(12)

And by the solution of the variational integral (8)'
with ¥1(A) of the form (11) we readily obtain

A=%[(0.2170/Dy,) + (0.4259/D,) ]
Wi,= (3)2/14) — (97/14Dy,) +0.21458\.

(11)

(13)
(14)

The Bohr radius of the bound electron presented by a
wave function (11) is given by ra=[(5)#+11/2x.
For liquid ammonia at —33°C we set

D,=22 Dy=n*=1.76 and B=0.523.

The results of the calculations using the wave func-
tion of the type (1) and (11) are presented in Table 1.
No significant lowering of the energy is observed by
applying the wave function (11). This result indicates
the adequacy of the variational treatment using the
potential function defined by Eq. (2).

It is interesting to consider the period of the bound
electron in the ground state which can be approxi-
mately presented by

7=5127%%/[(5/Ds,) + (11/D,) J* (15)

for liquid ammonia at —33°C r~3.10~ sec. The com-
parison of this value with the relaxation time of liquid
ammonia 1, 3,102 sec at —40°C,¥ yields a justification
for the static approximation employed in the present
treatment,

OPTICAL EXCITATION ENERGY

The energy of the first excited state (2p state in
our approximation) was calculated by using the wave

: K. Fish, C. Miller, and C. P. Smyth, J. Chem. Phys. 29, 745
1958).
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TasLE L. Calculations for the electron binding in the ground state.

A Wla (§:]
Wave function a.u. ev a.u.
(1) 0.209 —~1.52 4.79
(11) 0.334 —1.65 4.85
functions
Yop=(®/m)re Vo (09) . (16)

The vertical electronic transition is subjected to the
restrictions of the Franck-Condon principle. Thus we
have computed the energy of the excited state in the
nuclear configuration of the ground state. In this ap-
proximation Eqgs. (2) and (4) remain unchanged; the
potential corresponds to the ground state, while the
charge distribution is given by Eq. (16).

As the energy of the excited state is not very sus-
ceptible to the behavior of the potential function at
small distances, the calculation was carried out by
using only the potential V (u, r) presented by Eq. (5).
The energy of the excited state Wy, is given by

Wap=3%a?— (a/2Dop) +3Ba(1+X)~*+Bu(1+-X)=5, (17)
where X=u/a; X was then obtained from
W /ba=a— (2Dy,)™*

+18(15X24+6X+1) (14 X)—6=0. (18)
Thus we calculate for the excited state
«=0.200 a.u. rz=5.24 A Wap=—0.51 ev.

The first electronic transition in the monomer is
expected to occur at

=W~ W,

thus the calculated value for kv is about 1.1 ev.

(19)

THERMAL AND OPTICAL DISSOCIATION ENERGIES

The binding energy — Wi, of the electron in the
ground state represents the optical dissociation energy
corresponding to a vertical ionization process. The
thermal dissociation energy of the monomer involves
the formation of an unbound electron and a normally
solvated cation. The thermal and optical dissociation
energies are related by

—H=Wy+x, (20)

where x is the electrostatic energy required to transform
the configuration of the dielectric medium which is in
equilibrium with the alkali cation to the configuration
which forms the potential well V (g, 7). For the calcu-
lation of x we applied the theory of Marcus'® for the
electrostatic free energy of nonequilibrium states. This

B R. A. Marcus, J. Chem. Phys. 24, 979 (1956),
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TasLe II. Density of unpaired electron spin on Na* nucleus.»

Wave
function [ ¢ 2 {Is {¢1s) (2s | ¥1s) { s 2
(1) 0.00202 0.0212 0.160 0.107
(11 0.00170  0.0161 0.137 0.096

a Charge density expressed in a.u. units (Bohr radius)=%.

theory leads to the general result® for the work re-
quired to transform a system which is in equilibrium in
respect of a charge distribution ¢° to a nonequilibrium
state where the permanent orientation polarization'
is in equilibrium with the charge distribution p,

=t / (F— £y, (21)
8
where
divE,=4mrp
div E0=4mp®. (22)
For the present case
El=¢/r. (23)
E.=e[1—q(r)]/r
Hence
2 fo 2
x=§3/ la) (24)
2 Ry 7’2

Assuming that the configuration of the primary solva-
tion layer of the cation M+ is not affected by the
introduction of the electron we set Ro=ra1+2rnm,.
Hence Ry and thus x will be slightly dependent on the
nature of the cation. For Nat ion Ry=3.80 A. Using the
wave function (1) we obtained x=0.72 ev and H=
0.80 ev.

It is interesting to compare this result with the value
of the thermal dissociation energy of the bound electron
in infinitely dilute metal ammonia solutions. A self-
consistent field treatment using one parameter wave
function of the form (1) yielded the result of 0.845 ev
for the thermal dissociation energy of the electron
bound to the polarized dielectric medium. Thus the
calculated energy change accompanying the thermal
process

Na am—Na*t am-+ E am (25)

1s 0.045 ev.

HYPERFINE INTERACTIONS WITH THE Na NUCLEIX

It is interesting to compare the charge distribution
predicted on the basis of the simple variational wave
functions (1) and (11) with the experimental results
obtained from NMR Knight shifts in this system.®
The calculation method is based on the general treat-

19 . Jortner (unpublished).
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ment of Gourary and Andrian®'!! The wave function
Y1, of the unpaired electron is orthogonalized with
respect to all the other electrons ¢; of the system using
Schmidt’s orthogonalization process. Neglecting over-
lap between adjacent molecules and the ion the ortho-
gonalized wave function ¢y, of the unpaired electron is
presented by

S(/ls’— <¢ls l ¢i>¢i

TS SR PRI

(26)

¢1, admixes into its components the orbital wave func-
tions of all the electrons of the system with the same
spin.

The Nat atomic orbitals were represented by Tubis’
wave functions®

(15) = 19.95¢10 66r
(25) =6.52¢33"— 4 3196, (27

For NH; molecule central field wave functions were
employed.?? However their effect on the unpaired elec-
tron density on the sodium ion nucleus is negligible.
The results of these calculations employing for ¥4, the
wave function (1) and (11) used for energy calculations
are summarized in Table II.

DISCUSSION

The direct comparison of the results obtained on the
basis of the interstitial ion model with experimental
data is rather difficult because of the relative low
concentration of this species. The application of the
equilibrium constants® derived from conductivity and
magnetic data indicates that the concentration of the
monomer unit does not exceed 109 of the total metal
concentration.®

The comparison of our results with previous treat-
ment! based on a molecular model indicates that the
present approach yields higher values for the binding
energy of the electron in the ground state. The optical
dissociation energy is comparable with the energy
corresponding to the photoelectric threshold which is
about 1.5 ev.®* However this comparison should be
accepted with reservation as the inner potential of
liquid ammonia is unknown, and the role of other
species e.g., e centers and dimers in this process has to
be considered. For the energy change accompanying
the thermal process® inspection of the equilibrium
constants® for K solutions yields AH=0, AG=—0.09 ev.
The agreement with the theoretical value 0.043 ev is
fair.

The present treatment indicates that the absorption
band of the system, arising from a 1s—2p transition,
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Soc. 1959, 2478.
2 G. K. Teal, Phys. Rev. 71, 138 (1947).

Downloaded 26 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



METAL-AMMONIA SOLUTIONS

should lie at 1.1 ev. Thus this band should be placed at
higher energy than that corresponding to the first
transition of the bound electron in infinitely dilute
solution (Av=0.8 ev).!?

Recently Clark, Horsfield and Symons® have
demonstrated that addition of 0.1 sodium iodide to
sodium ammonia solutions results in the formation of a
new absorption band at 1.55 ev. This band was tenta-
tively ascribed to the monomer unit. The results of the
theoretical calculation support this assignment. How-
ever it should be pointed out that in liquid ammonia
solutions ion-pair formation is rather extensive. The
dissociation constants of some alkali halides in liquid
NH; are of the order of 10-%.% Thus under the experi-
mental conditions of Symons ef al. the role of the
centers involving NatI~ ion pairs has to be considered.
Electron binding in the field of a NatI~ ion pair may
be analogous to that of a D center® (an F center whose
nearest-neighbor cation is missing). The absorption
band recorded in Nal solution® shows a fine structure
and one of these bands may be due to electron binding
in the field of an ion pair. More experimental work is
needed to establish this point.

The charge distribution obtained on the basis of the
present treatment indicates that the maximum proba-
bility for the location of the bound electron is in the
region of 2.5 A. This result is similar to that obtained
by Blumberg and Das! on the basis of a molecular
model. The result obtained for the electron spin density
on the Nat nucleus is of the same order of magnitude
as the values of 0.014 and 0.066 a.u. obtained by
application of the molecular model in agreement with
experimental data.’® Direct comparison is still impos-
sible as the equilibrium constants for Na ammonia
solutions at room temperature are unknown. However

%V. F. Hindza and C. A. Kraus, J. Am. Chem. Soc. 71, 1565
(1949).
% T,, Pincherle, Proc. Roy. Soc. (London) A64, 648 (1951).
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it appears that the present treatment overestimates the
charge distribution on the Na nucleus.

We wish to compare the charge distribution of the
unpaired electron in the interstitial ion with the 3s
sodium atom orbital. This alkali atom wave function is
an example of spatially diffuse charge distribution.
Within the ionic radius of Na* ion (1.85 a.u.) there is
included only 4.39, of the total charge.” For the wave
functions employed in our treatment 59 of the total
electronic charge is included within the ionic radius
of the sodium ion. This comparison yields a certain
justification for the employment of a point charge model
for the alkali cation. In the present treatment the basic
difficulty rises because of the application of the static
and optical dielectric constants inside the sodium ion
core. The closed electronic shells of the cation will tend
to repel the unpaired electron from the origin of the
binding center. The application of high-dielectric con-
stant in the potential function in that region is qualita-
tively similar to the effect of interelectronic repulsion.

All the previous models employed for the study of
metal solutions were static. Experimental data indicate
the existence of a rapid exchange between solvent
molecules in the vicinity of the binding center of the
electron (the e centers or the monomer) and the
solvent molecules in the bulk. These include the
absence of NMR lines at unshifted position!® and the
extreme narrowness of the ESR band.”® The present
static model is however suitable for the calculation of
the optical absorption spectrum and of the mean
charge distribution of the center.
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