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We provide a new spectroscopic criterion for the observation of the insulator-metal
transition in a two-component system, which is based on the disappearance of Wannier
exciton states in the metallic region. This effect has been observed in the vacuum-ultra-
violet spectra of mercury/xenon mixtures deposited at 10—30°K, where the Xe Wannier

states are abruptly washed out at (55 +5)% of Hg.

Metal-nonmetal transitions in ordered and dis-
ordered systems! have been experimentally in-

duced by structural modifications,? by the applica-

tion of external fields,® by concentration changes
in two-component systems,*® and by density
changes in a one-component system.”® Most of
these studies! monitored the electrical transport
properties and the magnetic properties of the
system undergoing the MNM transition. We ad-
vance a new spectroscopic criterion for the ob-
servation of the MNM transition. Wannier-Mott
excitons in a two-component system, consisting
of open-shell metallic atoms and of closed-shell
saturated atoms, are utilized as a spectroscopic
probe to monitor the MNM transitions, These
large-radius excited states are expected to per-
sist only in the insulating state, and become un-
bound in the metallic state because of short-
range dielectric screening effects.

Our experimental approach is based on Mott’s
argument concerning the effects of long-range
forces on the MNM transition.® The long-range
electron-hole potential in the nonmetallic state,

V(r) ==e?/3Cr (1)

(where 3C is the static dielectric constant), is re-
placed in the metallic state by a short-range po-
tential, which according to the Thomas-Fermi
prescription is

V(r) == (e?/35Cr) exp(~q7), (2)
where the screening length is
q® =4m*e*(3n/m)'3 /N5, (3)

with # corresponding to the free-electron density.

As it is well known,® the potential well (2) does

not have bound states for
qay>1.0, (4)

where the modified Bohr radius® is a, =7%C/m*e?,
while m* represents the electron effective mass.

Consider the implications of these arguments
for the description of Wannier-Mott~type shallow
and deep exciton and impurity states.!®!! Ina
nonmetallic solid!® the Coulomb electron-hole at-
traction is dielectrically screened, whereupon
for large-radius states the microscopic variation
of the crystal and of the positive-hole potentials
is replaced by Eq. (1). Furthermore, when the
conduction band is wide and parabolic, the effects
of the crystal potential can be subsummed into an
effective mass.'®** The envelope function for
large-radius exciton and impurity states obeys
the equation

[- (72/2m*)V? +V (v) - E ]y =0, (5)

where the potential is given by Eq. (1). A Ryd-
berg series converging to the bottom of the con-
duction band has been experimentally observed
for shallow states in semiconductors'? and for
deep-lying states in rare-gas solids.'®* The ob-
servation of exciton states in dense rare gases is
independent of symmetry arguments, and these
excited states are amenable to experimental ob-
servation in positionally disordered systems
(i.e., liquid rare gases)'* and in substitutionally
disordered systems (i.e., heavily substituted
rare-gas alloys).'®* Now, when an insulator (such
as a rare-gas solid) is gradually substituted by
unsaturated metal atoms, this two-component
system may eventually undergo a MNM transi-
tion, whereupon V(») in Eq. (5) will take the ap-
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proximate form (2). Furthermore, when the
screening length obeys Eq. (4) no bound excited
Wannier states will exist any more.® This effect
has been experimentally observed by us in Xe/Hg
mixed solids at low temperature.

We have studied the vacuum-ultraviolet absorp-
tion spectra (spectral region 1200-1600 A) of Xe/
Hg solid films at 10-40°K. Gaseous mixtures of
Xe and Hg containing 0 - 0.8 mole fraction [i.e.,
(0~80)% mole percent] of Hg were prepared at a
total pressure of 2X1073-10"! Torr at room tem-
perature in a vacuum system previously pumped
down to 2X1Q077 Torr. The gaseous mixtures
were condensed on a LiF window, mounted on a
variable-temperature helium-flow cryostat. The
Xe/Hg solid films were prepared at 40°K and
measured at 10°K and at 40°K. From the known
optical constants of pure Xe we estimate the
thickness of the films to be ~100 A. Samples at
different compositions were deposited for differ-
ent times (10 min for 15% Hg up to 100 min for
70% Hg) until the optical density in the relevant
spectral region was 0.5-1.0. The sticking coeffi~
cients of both components at 40°K are close to
unity, and no enrichment of the solid sample (rel-
ative to the gas-phase compositions) is expected.

The spectroscopic light sources were argon
and krypton discharge lamps'® producing molecu-
lar continua in the range 1100-1600 A. Al-m
normal incidence vacuum uv monochromator
(McPherson 225) with a resolution of 3 A was
used. Single-beam photoelectric detection was
employed using an EMI 9514 S photomultiplier
and a sodium-salicylate converter.

In Fig. 1 we display the absorption spectra of
Xe/Hg films. The spectrum of pure Xe exhibits
the well-known'® Wannier exciton series [n=1
(®P,,,) state at 8.40 eV, n =2 (*P,,) state at 9.08
eV, and n =3 (*P,,,) state at 9.22 eV], in accord
with Baldini’s original work.!* When the Hg con-
centration is increased in the range (15-40)% the
Xen=1 and n =2 states are well defined, apart
from line broadening, which is attributed to the
effects of substitutional disorder. The simple
coherent-potential approximation'” predicts that
for cellular disorder the optical line broadening
in a binary alloy is proportional to [X(1 -X)]'2,
where X is the mole fraction of one of the compo-
nents. The gradual increase in the width of the n
=1 (*P,,,) and of the n =2 (®P,,,) Xe excitons in the
range Xy, =(15-40)% is qualitatively consistent
with these expectations. Furthermore, provided
that the system is nonmetallic, we expect a minor
change in the Xe linewidths in the concentration
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FIG. 1. Vacuum-uv absorption spectra of Hg/Xe solid
films deposited at 40°K and measured at 10°K. The
spectra were practically temperature independent in
the range 10—40°K., The percentages represent the
mole fractions of Hg. The spectra were vertically dis-
placed on the optical density scale; the residual absorp-
tion at 1550 A in each case was 0.1—0.2 optical-density
units.

range Xy, =(40-60)%. However, in this concen-
tration region a dramatic modification of the op-
tical spectra takes place (Fig. 1), whereupon at
50% Hg appreciable line broadening occurs while
at X Hg =60% the excitonic spectrum is completely
washed out. From these results we conclude that

(a) The disappearance of Wannier exciton states
in Xe/Hg solid films occurring at Xy, =(555)%
is attributed to short-range screening in the me-
tallic state.

(b) The present spectroscopic data indicate that
the MNM transition is accompanied by a rather
abrupt change in the bulk dielectric function of
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the Xe/Hg system, rather than being due to the
formation of metallic channels originating from
percolation effects.

(c) Our spectroscopic criterion for the MNM
transition in Xe/Hg films at Xng(55 +5)% implies
that in this concentration region an abrupt in-
crease in the electrical conductivity should take
place. In recent studies®!® of electrical conduc-
tivity of some divalent-metal/rare-gas solids
(i.e., Pb/Ar and Cu/Ar films)'® an abrupt de-
crease of the electrical conductivity was observed
at ~60% metal concentration.

(d) A rough estimate of the critical transition
density to the metallic state is in order. Assum-
ing a close packing of Xe atoms and of Hg *? ions
in the metallic phase (XHg >50%) the “critical”
density of Hg atoms for the MNM transition is
~9 g cm "2 (i.e., number density ~4.5X10% cm 3),
This density is very close to the critical density
for the MNM transition in expanded subcritical
and supercritical Hg at high temperature and
pressures where Hall-effect'® data, the tempera-
ture coefficient of the electrical conductivity, and
the thermoelectric power?® indicate that the MNM
transition in the one-component system occurs at
the density of 9 g cm "3,

(e) The condition® for disappearance of bound
electron-hole states due to short-range screening
implies [see Eq. (4)] that »'/%a, >0.25.° Taking
3 =2.5 (the dielectric constant of Xe), m* =1, and
7 =4.5%X10%%2 ¢cm ™2 at the onset of the metallic
phase, we have n'/%q,=0.45, so that the self-con-
sistency condition (4) for short-range screening
is satisfied, and exciton states should disappear
in the metallic phase. It should be noted that the
critical parameter #n'/3g, in the Xe/Hg system is
somewhat higher than predicted on the basis of
Eq. (4). It should, however, be borne in mind
that Mott’s estimate® (4) for the critical density
corresponding to the MNM transition due tolong-
range forces yields a result which is very similar
to the prediction of the Hubbard-Mott electron
correlation model.?® The latter scheme is inap-
plicable for a divalent metal such as Hg where
the MNM transition originates from interband
overlap effects®® (i.e, the Wilson model) rather
than from correlation effects.

In Fig. 2 we present a schematic (one-electron)
energy levels diagram for the Xe/Hg system,!3 2325
When the system becomes metallic (Xy, >50%)
the Hg s and p bands overlap, the Fermi energy
is estimated as 5 eV (compared to 6.9 eV in lig-
uid Hg). The broad structureless optical transi-
tion observed for Xy, >50% (see Fig. 1) may orig-
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FIG. 2. Schematic one-electron energy-level dia-
grams for Hg/Xe solid mixtures in the insulating phase
(low Xpg) and in the metallic phase (Xug~ 55%).

inate from the following core excitations to the
conduction-band states above the Fermi energy:
(a) excitations from the Xe 5p core states origi-
nating at ~7 eV and being split by the Xe*(°P,,,)-
Xe*(P, ,,) spin-orbit coupling?® (1.2 eV); (b) exci-
tations from the Hg 5d levels, which are expected
to occur at ~9 eV and to be split by the Hg*(?P,,)-
Hg*(D,,,) spin-orbit coupling (1.9 eV).?3
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Direct-Process NMR Relaxation by Spin Waves in a One-Dimensional Antiferromagnet®
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Measurements of the proton relaxation time 7'y in (CHg),NMnCl, are reported as a func-
tion of temperature between 4.0 and 1.2 K, Results are interpreted in terms of a direct
relaxation process with spin waves in a one-dimensional antiferromagnet. They repre -
sent the first observation of direct-process NMR relaxation by magnons in any system and
show that any gap in the spectrum at ¢ =m/a has to be less than 0,07 meV.

We report low-temperature NMR measurements
of the proton longitudinal relaxation time 7', in the
one-dimensional antiferromagnet (CH,),NMnCl,
(TMMC). These are consistent with a direct-pro-
cess coupling of the nuclear spin system to anti-
ferromagnetic magnons. As such, they repre-
sent the first known observation of this kind of
relaxation in a magnetic substance and verify the
existence of a gapless spin-wave mode at the anti-
ferromagnetic wave vector g=7/a (a is the lat-
tice spacing so that ¢ = 27/2a is the reciprocal-
lattice vector for the magnetic unit cell of an anti-
ferromagnet). The latter verification is in ac-
cord with simple spin-wave theory and contrary
to a recently proposed temperature-dependent
gap by the author.! It also agrees with the theory
of Lovesey and Meserve.>2

Lively interest has centered around the exis-
tence® of spin waves in a one-dimensional anti-
ferromagnet. The standard antiferromagnetic
spin-wave spectrum for an ordered system,*

fiw, =4J9| singal , (1)

predicts a zero-frequancy mode at g=7/a, and
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whether this is appropriate for TMMC at finite
temperature has been of particular concern. In
Ref. 1 we noted that a second-order Green-func-
tion theory predicts a gap at g=n/a=q, and that
wg,*T, where T is the absolute temperature.
This leads to a natural interpretation of static
correlations®® at low temperature in terms of
noninteracting spin waves. Parameters of the
theory included nearest- and next-nearest-neigh-
bor static correlation functions, which were ob-
tained from the classical theory.® Scales and
Gersch” have since shown that a self-consistent
solution for quantum spins produces a gap at g,
even for T=0. Lovesey and Meserve,? on the
other hand, have used a continued fraction expan-
sion which allows for damping—something absent
in the treatments of Refs. 1 and 7. They find the
q=m/a mode to be strongly peaked at w =0 for
temperatures below about 20 K in TMMC.
Inelastic neutron scattering data® exist for g*a
> 0.057, where ¢*=17/a —q, at temperatures down
to 1.9 K. At g*a=0.057 the observed magnon en-
ergy is 1 meV. Since the predicted gap energy of
Ref. 1 is 0.1 meV at 1.9 K, and that of Ref. 7 is



