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In this paper we present the results of a theoretical study of non adiabatic unimolecular dissociation 
processes with applications to the decomposition of N20(1X) to yield N2(12;9) and O(3P). Such uni- 
molecular reactions which involve a change in the electronic state can be handled by the theory 
of thermally excited intramolecular radiationless decay processes in analogy to molecular predissocia- 
tion and electronic relaxation in the statistical limit. General criteria were advanced for describing 
the decay probability of a single vibronic level in terms of Fermi's golden rule and for specifying 
the (high pressure) unimolecular rate constant in terms of a thermally averaged transition probability. 
The quantum mechanical rate constant for the non adiabatic reaction is characterized by a pre- 
exponential factor determined by the interstate coupling matrix element and by a temperature dependent 
activation energy. At low temperatures the activation energy is equal to the continuum onset, and 
the reaction involves a tunnelling process. In the high temperature limit a general demonstration 
of the Franck Condon principle for thermal reactions was provided, whereupon the non radiative 
transition occurs at the intersection of the potential surfaces. Numerical calculations for a one 
dimensional model system for the thermal decomposition of N20 were performed utilizing the 
semiclassical approximation and confirm our general conclusions. A two dimensional linear model 
has been developed representing the rate constant in terms of a convolution of two generalized line 
shape functions, which enabled us to study the distribution of vibrational energy among the diatomic 
N 2 molecules resulting from the thermal decomposition of N20. Some predictions concerning the 
determination of single level decay probabilities and vibrational distribution of the molecular products 
are presented. 

In dieser Arbeit werden die Ergebnisse einer theoretischen Untersuchung nicht adiabatischer 
unimolekularer Zerfallsreaktionen mitgeteilt und auf den Zerfall yon N20(12~) zu N2(12;g) und 
O(3p) angewandt. Solche unimolekularen Reaktionen, bei denen sich der Elektronenzustand ~indert, 
k6nnen mit der Theorie thermisch angeregter intramolekularer strahlungsloser Zerfallsprozesse 
in Analogie zu molekularer Pr~idissoziation und elektronischer Relaxation im statistischen Limit 
behandelt werden. Kriterien zur Beschreibung der Zerfallswahrscheinlichkeiten eines einzelnen 
Vibrationszustands unter Berficksichtigung yon Fermis Golden Rule werden entwickelt sowie die 
unimolekulare Geschwindigkeitskonstante (im Hochdruckbereich), wobei thermisch gemittelte 
fJbergangswahrscheinlichkeiten berficksichtigt werden, mitgeteilt. Die quantenmechanische Ge- 
schwindigkeitskonstante ffir die nicht adiabatische Reaktion wird durch einen pr~iexponentialen 
Faktor, der durch die Matrixelemente der Kopplung beider Zust~inde bestimmt ist und durch eine 
temperaturabh~ingige Aktivierungsenergie charakterisiert. Bei tiefer Temperatur stimmt die Akti- 
vierungsenergie mit der Energie der Kontinuumsgrenze iiberein, die Reaktion verliiuft fiber einen 
Tunneleffekt. Ftir hohe Temperaturen wurde ein allgemeiner Beweis des Franek-Condon-Prinzips 
ffir thermische Reaktionen gegeben, wonach der strahlungslose Ubergang beim Schnittpunkt der 
Potentialfl~ichen auftritt. Rechnungen ffir ein eindimensionales Modell des NzO Zerfalls wurden 
in der semiklassischen N~iherung durchgeffihrt und bestiitigen unsere Folgerungen. Ein zweidimensio- 
nales Modell wurde entwickelt, das die Geschwindigkeitskonstante als Faltungsintegral zweier ver- 
allgemeinerter Linienformintegrale wiedergibt. Dadurch wurde es erm6glicht, die Verteilung der 
Vibrationsenergie auf die zweiatomigen N 2 Molektile, die bei dem thermischen Zerfall yon N20 
enstehen, zu studieren. Einige Voraussagen tiber die Bestimmung der Zerfallswahrscheinlichkeiten 
eines Vibrationszustandes und die Vibrationsverteilung der molekularen Produkte werden mitgeteilt. 

* Present address: Institut ffir physikalische Chemie, Frankfurt, Robert-Mayer-StraBe 11, 
Germany. 
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1. Introduction 

The key physical idea underlying recent theoretical studies [1] of intra- 
molecular radiationless transitions in large molecules is that electronically 
excited zero order molecular states are non stationary (or metastable) being 
degenerate with and irreversibly coupled to a quasi-continuum of zero order 
levels corresponding to lower electronic configurations. This work has established 
the formal analogy between electronic relaxation processes (i.e. internal conversion 
and intersystem crossing) and radiationless molecular decomposition processes 
(i.e. predissociation and autoionization). Forty years ago, Rosen [2], Langer [3] 
and Rice [4] proposed that thermal unimolecular decomposition reactions can 
be considered as an Auger process, in complete analogy to predissociation and 
autoionization. This approach has been revived lately in the work of Mies and 
Kraus [5-7] who stress the point that the "activated state" in chemical kinetics 
is equivalent to the concept of a resonance state in scattering theory, and is thus 
amenable to theoretical treatment by the Fano configuration scheme. Mies and 
Kraus [5-7] consider the activated molecule in unimolecular decomposition in 
terms of a vibrationally excited zero order molecular state located above the 
threshold dissociation energy. A different class of unimolecular decomposition 
process involve a change in the electronic state. The best documented reactions 
of this type [8-12] (see Table 1) pertain to the thermal decomposition of some 
linear triatomics to yield an oxygen atom and a closed shell diatomic molecule. 

XYO(IX)-, XY(~X) + O. 

The dissociation energy, D of the ground state molecule XYO(1Z) yielding 
XY(1X) and an excited O(t/)) oxygen atom, usually exceeds the experimental 
Arrhenius [13] activation energy, E A. There exists, however, a non bonding 
triplet state [8-12] dissociating into XY(1X)+O(3P) yielding a ground state 
oxygen atom. The repulsive potential surface intersects the bound ground state 
potential curves at energies well below the dissociation limit, providing a proper 
rationalization for the low activation energy. The intramolecular interstate 
coupling is envisaged to be induced by weak spin-orbit interaction [8-12], so 
that following the usual conventional nomenclature adopted in chemical kinetics 
[11] (which semantically is not quite appropriate) one refers to such a process 
as a non adiabatic reaction. In this context the Landau-Zener [14, 15] formalism 
for non adiabatic processes (such as predissociation) was applied by Stearn and 
Eyring [8] for the thermal decomposition of N20. The predissociation probability 
calculated by the Landau-Zener formula was identified with the transmission 
coefficient ~ in the absolute reaction theory, so that the high pressure rate constant, 
k, is given by [8] k = (tckBr/h) (Z*/Z)exp(-Ea/k ~T). The ratio Z~/Z of the 
partition functions for the activated complex and for the bound molecule is close 
to unity. An application of the unimolecular reaction rates theories of Hinshelwood, 
Kassel, Rice and Ramsperger [16-18] to the thermal decomposition of N20 was 
given by Gill and Laidler [9]. A useful review of these theories is presented by 
Troe and Wagner [12]. In an interesting recent work, Gilbert and Ross [19] 
have proposed that the formalism of intramolecular radiationless processes can 
be applied for the study of non adiabatic unimolecular decomposition processes, 
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Table 1. Experimental data for nonadiabatic unimolecular rate constants of some triatomic molecules 
(Ref. [12]) 

[1] Is+el AHo[kcal/mole ] D(XY-O)  or D(XY-S) T[°K] ~ ~ c  expt k theory a 
[-kcal/mole] 

Reaction: NzO(1Z+)~ N2(X +) + O(3p) 

38.6 ± 0.1 N2 (1~'+) --~ 
Nz(S +) + O(1/)) 
83.9 ± 0.1 

Reaction: CO2(1N+)~ CO(1Z +) + O(3p) 
CO2 (Is +) ---~ 
CO(~Z +) + O(D) 

125.8 ± 0.6 171.1 ± 0.6 

Reaction: CSz(1Z +) ~ CS(1X +) + S(3P) 
CSz(1S+)--, 
CS(~X +) + S(1D) 

91.5 ± 5 118 ± 5 

Reaction: COS(1Z +) - ,  CO(1X +) + S(3p) 
COS(1Z+)-, 
CO#Z +) + S(1D) 
97.6 ± 1 

888 7.47 10 4 2.8x10-3 

1400- 1.6x1011exp - RT-  4.1x1011exp - R T  
2000 

110 1 2800- 2.1011 exp - RT ! / 
3700 

1950- 8.1012exp( - 8R8~9T) 
2800 

68.3 / 1550- 3.7x 1011exp -W~-~, 
2700 

a Theoretical value for a one dimensional system characterized by a Morse type N 2 - O  potential 
for the initial state and the crossing of the band and repulsive potentials occurring at E 0 = 21023 cm -1. 

performing some approximate numerical calculations for the thermal decomposi- 
tion of N20.  In the present paper, we shall pursue further the formal analogy 
between non adiabatic high pressure unimolecular decomposition reactions and 
molecular radiationless processes. The main goals and accomplishments of the 
present work are: 

a) The theory of predissociation [20-24] will be applied for the study of non 
adiabatic unimolecular processes. The only difference between the two types of 
processes involves the excitation mode of the decaying states, which is optical 
in the case of predissociation and thermal for unimolecular decomposition. 

b) Microscopic rate constant for the decay of individual zero order vibronic 
levels cannot be handled by the Landau-Zener formula [14, 15] which provides 
an averaged level, neglecting the oscillatory nature of these transition probabilities 
[19]. The W K B  semi-classical approximation which was successfully applied by 
Child [23] for predissociation will be adopted by us to derive analytic expression 
for the microscopic rate constant for simple model systems. 

c) Quantum mechanical rate expression will be derived for the decay in a 
two electronic level system without invoking the concept of an activated complex. 
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d) The general features of the rate expression for non adiabatic unimolecular 
decomposition will be elucidated. In the low temperature limit the process corre- 
sponds to tunnelling between two zero order states, being completely analogous 
to the common situation encountered for electronic relaxation in large aromatic 
molecules. In the high temperature limit, a semi-classical approximation for 
nuclear motion can be adopted and the major contribution to the rate constant 
originates from the vicinity of the crossing of the potential surface. 

e) The nature of the activation energy and its temperature dependence will 
be established. 

f) From the practical point of view numerical calculations will be performed 
for a model system pertaining to the unimolecular decomposition of N20. 

g) From the point of view of general methodology, we shall establish the 
conditions for the application of the Fermi golden rule to the study of uni- 
molecular decomposition processes. 

2. A Physical Model for Non Adiabatic Unimolecular Decay 

To describe a unimolecular decomposition process, which involves a change 
in the electronic state of a triatomic molecule, we shall proceed in a manner 
completely analogous to the treatment of electronic relaxation [1 ] and decomposi- 
tion processes [20-24]. We shall specify an appropriate zero order basis set to 
describe the approximate vibronic levels of the physical system. The choice of 
this basis set is in principle arbitrary, being just a matter of convenience. The 
total Hamiltonian H can be dissected in the form 

H = H 0 +  V (2.1) 

where the zero order basis set of H o corresponds to pure spin states (of different 
spin configurations) in the Born-Oppenheimer approximation (see Fig. 1). The 
eigenfunctions of Ho can be represented as a product of electronic wave functions, 
cp, and vibrational wave functions, Z, 

li~) = q~i(v, R) Zi~,(R) 
I f/~) = ~o:(~, R) Z:/,(R) 

(2.2) 

where the indices i and f represent the initial and the final electronic states, 
respectively. The vibrational wavefunctions Xi~(R) and ZIp(R) in the initial and 
final electronic states correspond (approximately) to the eigenvalues of the 
adiabatic potentials V~(R) = (cpi I Ho Iq~i) and Vf(R) : (%1Ho I~o:). Finally r and R 
represent the electronic and the nuclear coordinates respectively. The potential 
V/(R) is bound and the eigenstates [i@ are discrete. The final state potential 
Vf(R) is repulsive at least for one degree of freedom, so that the eigenstates 
If/~) are continuous. The corresponding energies of the zero order states will 
be denoted by Ei~ and by Eyp. 

The intramolecular coupling term consists of two parts 

V=TR+Hso (2.3) 
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I 6 6 " 6 

-.= 5 5 

v4f 
V f ( R )  4 4 

2 2 - -  2 - -  

I I - -  I ~  

0 O ~  0 - -  

(a) Potent ia l  sur faces  (b ]  Z e r o  order  energy levels (c )  Resonances 

Fig. 1. A schematic description of the resonance states involved in unimolecular decomposition. 
a One dimensional potential surfaces, b Zero order energy levels corresponding to the two electronic 
states. Near resonance coupling between discrete and continuum zero order levels is designated 
by arrows, c Non overlapping resonances appear above the continuum threshold. These states 

diagonalize the total molecular Hamiltonian 

where T R is the nuclear kinetic energy operator and H~o is the spin orbit coupling 
operator. Now we assert that: 

(A) Relaxation within a two electronic level system can be considered, where- 
upon off resonance second order coupling of Iict> and Iffl> with higher electronic 
states can be disregarded [-25]. 

As the non adiabatic coupling term TR conserves spin states, the relevant 
coupling term between near resonance states li~) and Iffl> involves just the 
spin orbit coupling and second order mixed type terms involving coupling via 
T R and H~o with higher electronic states are neglected. Thus the relevant inter- 
state coupling terms are 

v~=.s, = <i=l TR + Hsolf  fl> 

= ~ dRz,,(R) [~ dr q~,(r, R) Hso~OS(r , R)] Xs~(R). 
(2.4) 

To simplify this result we assume that 
(B) The electronic matrix element of the spin orbit coupling operator 

(Hso(R)) =- S drq)i(r, R) H~o(p/(r , R) (2.5) 

is assumed to be a slowly varying function of the nuclear coordinates R and will 
be taken as a constant (H~o(R)> =- (H~o> in the double integral (2.4). 

This assumption is equivalent to the Condon approximation in the calculation 
of molecular optical transition moments. Recent studies [25] have indicated that 
for the case of non adiabatic coupling between two electronic states of the same 
spin via T R the application of the Condon approximation is not justified. However, 
for the case of coupling via H~o between two different spin states this approxi- 
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mation seems to be reasonable. Thus Eq. (2.4) is recast in the form 

V~,yp = ( H~o) S dR zi~(R) )~ye(R) (2.4a) 

which takes the simple form of an electronic matrix element multiplied by a 
vibrational overlap Franck Condon factor [26]. 

The zero order states lie) which are quasidegenerate with the continuum 
states [ff l) ,  are metastable. Thus we encounter the extreme case of the statistical 
limit [1] where the density of states in the dissipative channel [f/~) is a continuous 
function of the energy, and the physical situation is completely analogous to that 
of predissociation [21, 22]. Invoking assumption (A) the width F/, of a zero order 
state lie) is given in terms of time dependent perturbation theory by the Fermi 
golden rule 

r~  = 2~ ~ I ~ , fe l  2 ~5(Ei~, - Eye) (2.6) 
e 

and making use of assumption (B) (Eq. 2.4a) we get 

F/~ = 2=l(H~o)[ 2 ~, 15 dRgi~,(R) gye(R)6(Ei= - Eye). (2.6a) 
e 

It is important to note at this point that the decay probability of an "initially 
prepared" zero order state lie) can be expressed in terms of the width (2.6) by 
Fib~h, only provided that it is justified to consider the decay of a single resonance. 
We thus invoke the basic assumption. 

(C) The spacing between the resonances considerably exceeds their widths. 
Denoting by Ei~-E~(~+~) the energy spacing between the adjacent order states 
[i~) and Ii(c~ + 1)) we imply that 

F~ ~ IEi~ - Ei(~+,)I (2.7) 

for all e. Condition (2.7) provides us with the basic relation necessary for describing 
the decay process in terms of the perturbation theoretical results (2.6), so that 
the decay probability W~ of the zero order state lie) is then given by 

~ ,  = r~/h = 2~/h I (~o)I  2 y~ f dR Z,,(R)Zye(R)~(Ei~- eyel '  (2.8) 
e 

Thus, when interference effects between resonances can be disregarded, each 
zero order state can be described as an independently decaying resonance, its 
decay pattern being exponential and being characterized by the reciprocal decay 
time (2.8). The applicability of restriction (2.7) will imply that the thermally 
averaged rate constant will invoke a preexponential factor which involves the 
interstate coupling matrix element. This physical situation is often referred to in 
chemical kinetics as a non adiabatic transition [11]. The usual semiclassical 
description of a non adiabatic transition is provided [11] by implying that the 
splitting of the zero order potential surfaces at the intersection point is "small". 
Levich and Dogonadze 1-27] in their beautiful theoretical study of electron transfer 
processes in solution have provided a complete semiclassical criterion for the 
applicability of the non adiabatic kinetic scheme in terms of the Landau Zener 
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theory, and similar conditions were also provided by Nikitin [28]. Considering 
unimolecularily decaying states as resonances, Eq. (2.7) provides a necessary and 
sufficient quantum mechanical condition for the applicability of the non adiabatic 
limit. To the best of our knowledge a complete quantum mechanical formulation 
of the adiabatic case was not yet provided. In this context, Mies and Kraus [5] 
have provided a simpliefied model (equal resonance spacings and widths) which 
exhibits the transition from the adiabatic to the non adiabatic case. For the 
physical case under consideration, which involves a spin forbidden transition 
between two different electronic states of a triatomic molecule the resonance 
widths are Fi~ ,~ 1-10cm -1 (see Sect. 4), while the spacing between adjacent 
resonances corresponds to the vibrational frequency ~ 1000 cm -1, thus the non 
adiabacity condition (2.7) is fulfilled. 

Up to this point we have been concerned with the decay of an initially prepared 
isolated resonance, without referring to the "preparation" of the decaying states. 
We now focus attention on thermal excitation by collisions with inert molecules 
(which do not modify the zero order molecular levels or the intramolecular spin 
orbit coupling). Two further assumptions are introduced at this point: 

(D) Thermal vibrational excitation (and relaxation) rates considerably exceed 
the non radiative decay probabilities, whereupon 

1 
Fi~/h ~ - -  (2.9) 

Tv 

where % is the vibrational relaxation time. 
(E) The width of each resonance is considerably lower than the thermal 

energy k B T, in the temperature range of interest [5-7] : 

F~ .~ k B T. (2.10) 

Condition (2.9) provides us with the conventional basic assumption for the 
applicability of unimolecular rate theory in the high pressure limit. Eq. (2.10) 
implies that the thermal population of all molecular eigenstates (of H) which 
correspond to the same resonance is equal. 

The high pressure thermally averaged rate constant, k, is now given in the 
form 

k = ~ e x p ( -  EiJk ,  T ) Wi~]Z e x p ( -  EiJkBT ) (2.11) 

where the microscopic rate constants W~ (Eq. (2.8)) represent the predissociation 
probability for the zero order l i~> state. 

3. A One Dimensional Model 

To pursue the formal analogy between decomposition of a thermally activated 
zero order vibrational level of a triatomic linear molecule XYO(1Z) and pre- 
dissociation we shall first limit ourselves to a one dimensional model, considering 
only the displacement R along the Y-O linear coordinate. We thus assume that 
only this single R coordinate is reactive while all the other modes remain un- 
changed. This "diatomic molecule model" for the decomposition of a triatomic 
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Ei~ 

v i (R)  

1,o \ 1; Vf(R)  

Eo 
A 

1 E=O --~ R 

Fig. 2. Relevant parameters for the semiclassical calculation of vibrational overlap integrals between 
two one dimensional potential surfaces 

linear molecule implies that: a) the X-Y separation is the same in the triatomic 
molecule XYO(1Z) and in the resulting dissociation product XY(1Z). This ap- 
proximation can be relaxed as demonstrated in Sec. 4. b) The linear predissocia- 
tion process along the XYO axis of the linear molecule is considered. This assump- 
tion neglects the role of the bending modes of the XYO molecules which can 
lead to predissociation off the linear axes. 

Considering the one dimensional model the microscopic rate constant (or 
transition probability) (2.8) takes the simple form 

Wi~ = 2rc/h I(Hso)l 2 IKxzJe) lxfp(e))l 2 (3.1) 

where Zi~(R) (characterized by the energy Ei~ ) and Xyp(R) (characterized by the 
energy Eyp) are now the eigenfunctions belonging to the one dimensional (bound) 
potential V~(R) and to the (repulsive) potential Vy(R), respectively. We are 
essentially left with the calculation of the square of the Franck Condon vibrational 
overlap integral between the bound vibrational state gijR) and the continuum 
states Zj.p(R) which are quasidegenerate with it [20, 23]. It will be convenient for 
the sake of bookkeeping to set Z~(R) to be normalized to unity and to choose 
Xya(R) as a continuum state of Vs(R ) which is normalized by the delta function 
of energy. Thus Eq. (3.1) then takes the form 

Wi~ = 27c/h I (H~o)12 IJ " Z ~ ( R ) x ¢ ~ ( R ) d R ]  2 . (3.1a) 

We will evaluate Eq. (3.1a) with the help of the WKB method recently utilized 
by Child [33] for the case of predissociation of 02. In the semiclassical approxi- 
mation the wave functions are (see Fig. 2): 

X~(R) = ( ~ z ~ ? /  sin I P~(r)dr + (3.2a) 
R 

ZIP(R)= ~ h ~ ( R )  sin S P¢p(r)dr+ . (3.2b) 
afB 
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Here Pr(R)= [2#(E 7 -V~(R)]!/2; 7 = ion, f f l  are the momenta associated with the 
two states, e) is the classical oscillation frequency 

( O flE i b,. dr b,~ dr (3.3) 
2 ~  _ 2 h  = 2 #  ~ P ~ ( r )  - (2#)1/2 ~ [E,~ V~(r)] ~/2 
¢J) \1~ / al . . . .  - -  

taken at the energy E = E~,. fi assumes the values (v + 1/2) rc for the bound states 
by the Bohr quantization condition. In the region of the intersection point R = R o 
(characterized by the energy Eo) of the potential curves V~(R) and V~,(R), the 
wavefunctions (3.2) are replaced by the corresponding Airy functions 

) Ai(~)= z~ o cos +u~ du (3.4) 

where the parameter ~ is defined by 

~ = ( R + F ) ( 2 # F / h 2 ) I / 2  (3.5) 

while the force is 
8V 

F = - ( ~ - ) R = R  ° (3.6) 

and V can take either the value of V~(R) (and then we shall take (3.6) as F i and 
(3.5) as ~i~) or the value of V I (whereupon we shall denote (3.6) by F I and (3.5) 
by ~Ip)" In the vicinity of the crossing point R o we have 

)~i~(R) = (gh(D)  1/2 ( 2 # / ~ / h 2 )  1/2 A i ( -  ¢i~), (3.7a) 

Zfa(R) = ( 2 # / ~ f f  h2) 1/2 A i ( -  ~fa). (3.7b) 

The major contribution to the integral (3.1) originates from the region R = R o 
around the energy of the crossing point E - E 0. Utilizing (3.4) the predissociation 
decay probability can then be recast in the form 

where 

and 

rcK 
~ = ~E* (Off~BE) [Ai(t)lZ (3.8) 

K =  
2zc 2 (2#)1/2 I<Hso)l 2 

h2(r  _ F s) 

E* = IhFiFf/(2#) 1/2 (F i - Ff)] 2/3 

while the linear parameter 

(3.9) 

(3.10) 

represents the deviation of the energy of the zero order level [is) from the inter- 
section point. Eqs. (3.8)-(3.11) are based on the linear extrapolation 
V~(R) = E o - F j  (R)(] = i, f ) ,  thus well above the crossing point we have to apply 

t = - (Ei~- Eo)/E* (3.11) 
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Eq. (3.2) and the transition probability takes the form 

W~. = (Ez~- Eo)1/2 (3fl/~E) sin2 ~(Ez~) + (3.12) 

• (E) is the phase integral 
big 

• (Ez ):-ff S (3.13) 
a / , / ~  

and V+(R)= Vs(R ) for R < R o and V+(R)= Vi(R ) for R > R o. In the region of the 
crossing point ~ = 2/3]t13/2 and Eq. (3.12) reduces to (3.8). Thus Eq. (3.8) was 
used for the calculation of the predissociation probability of zero order states 
characterized by energy E~<=E o while Eq. (3.12) was utilized in the energy 
region Ez~ > E 0. 

4. Numerical Calculations for N~O 

To provide a numerical estimate of the reaction rate N/O(1Z)-~ N2(1Sg) + 0(3/)) 
we have chosen one dimensional surfaces similar to those given by Steam and 
Eyring [8] and by Gilbert and Ross [19]. We took only a single coordinate 
corresponding to the Na-O mode to be reactive, and described the bound state 
by a Morse potential and alternatively by a harmonic potential. The parameters 
for these potentials are given in Fig. 3. The repulsive state was specified in terms 

4 . . . .  I I I I 

T 3 ~ 3 , o 3 1 9 - t  

, ~/ - -  , ( '~)*°(3p'  I 

I i 
O0 0 1.0 rmin = 1.18 1~5 I I . 2 .5  3.5 2,0 3.0 

r(,~) 

Fig. 3. Morse  and harmonic  potentials for N20(1X) and repulsive potentials for N2(1X +) + O(3p). 
The formulas are (see text) V~(R) = 30319.7 (1 - e -4" 11.18))2 for the Morse  potential and VI(R ) = ½210425 
( r - 1 . 1 8 )  2 for the ground state Harmonic  potential. The three repulsive potentials have the form 

Vy(R) = A + B with A = 14517.5 [cm-1] ,  B 1 = 54000, B 2 = 29700, B 3 = 22600, nl = 6.72, n~ = 3.12, ?.n 

n 3 =  1.45. The crossing points for the Morse  potential are E~ol)= 17523 cm -~, E(0a)=21023 cm -1, 
E(o 3) =24524 cm -1 while for the harmonic  potential  we took E~o ~)= 16995 cm -1, E~o2)= 21022 cm -1, 

E(o 3) = 25262 cm-1  
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of a R - "  potent ial  
B 

Vs(R ) = A + R~ (4.1) 

The  value of A = 14517 cm -1 was taken  f rom the known  thermochemica l  data  
(Table 1). The value of B and n (Fig. 3) were determined by: a) Tak ing  the crossing 
point  Eo of the two potent ia l  curve to be located at 50, 60 or 70kcal /mole.  b) Using 
the observed onset for the optical  dissociat ion con t inuum for the t ransi t ion 
NzO(122)-+N2(az~)wO(3P), located by Sponer  and  Bonner  [29] at 4.0 eV, to 
cor respond  to the repulsive potent ia l  at the equi l ibr ium distance of the N - O  
bond  of N20(1S).  Finally,  the spin orbit  coupl ing te rm was taken  to be 
IHso I "-~ 100 cm -1. 

In Fig. 4 we present  the microscopic  rate constants  Eq. (3.1) for different li~) 
levels calculated by the semiclassical approx imat ion .  It  is apparen t  tha t  this is 
not  a smoo th  funct ion of the energy, but  ra ther  a s t rongly oscil lation function, 
as expected for the case of  predissociat ion [23, 24]. The  detailed features of the 
relative and absolute  widths of  different vibronic  levels depend on the nature  of  
the potent ia l  surfaces. The  mos t  impor t an t  quali tat ive conclusion originating 
f rom these results is tha t  it is not  justified to use the L a n d a u  Zener  formal ism 
for the calculat ion of the thermal ly  averaged rate constant,  which is based on a 
"coarse  graining" p rocedure  assuming that  W~, is a smooth ly  varying function 
of the energy E~. In Table  2, we display our  numerical ly  calculated thermal ly  

Table  2. Ca lcu la ted  rate  cons tan t s  for the un imo lecu l a r  decompos i t ion  of N 2 0  at different tempera tures .  
[Units of k are sec-1]. 

T [ ° K ]  k 1 k2 k3 k4 ks k6 

100 9.33(-84) 7.74(-102) 1.98(-131) 6.77(-86) 7.73(-101) 3.72(-132) 

200 2.69 ( - 39) 1.52 ( - 50) 2.42 ( - 62) 1.69 ( - 39) 3.05 ( - 51) 1.41 ( - 65) 
300 2.32(-23) 1.09(-30) 4.11(-38) 1.85(-38) 1.13(-31) 7.60(-41) 
400 4.74(-15) 1.75(-20) 6.66(-26) 3.33(-15) 1.87(-21) 3.09(-28) 
500 5.40(- 10) 2.62(- 14) 1.43 ( -  18) 3.38(- 10) 3.07(- 15) 1.24(- 20) 
600 1.33(-6) 3.50(-10) 1.09(-13) 7.59(-7) 4.49(-11) 1.47(-15) 
700 3.60(-4) 3.14(-7) 3.31(-10) 1.92(-4) 4.32(-8) 6.20(-12) 
800 2.46 ( - 2) 5.20( - 5) 1.36 ( - 7) 1.24( - 2) 7.61 ( - 6) 3.25 ( - 9) 
900 6.69(-1) 2.81(-3) 1.48(-5) 3.23(-1) 4.30(-4) 4.27(-7) 

1000 9 . 5 3 ( 0 )  6.93(-2) 6.35(-4) 4.43(0) 1.10(-2) 2.14(-5) 
1500 9 . 5 3 ( 0 )  6.93(-2) 6.35(-4) 4.43(0) 1.10(-2) 2.14(-5) 
1500 2.85(+4) 1.11(+3) 5.51(+1) 1.13(+4) 1.90(+2) 2.85(0) 
2000 1.81(+6) 1.58(+5) 1.78(+4) 6.70(+5) 2.87(+4) 1.16(+3) 
2500 1.35(+7) 2.05(+6) 3.98(+5) 4.66(+6) 3.76(+5) 2.97(+4) 
3000 7.41(+7) 1.57(+7) 4.22(+6) 2.46(+7) 2.93(+6) 3.45(+5) 
4000 6.87(+8) 2.16(+8) 8.48(+7) 2.20(+8) 4.15(+7) 7.89(+6) 
5000 2.68(+9) 1.06(+9) 5.22(+8) 8.52(+8) 2.11(+8) 5.37(+7) 
6000 5.41(+9) 2.49(+9) 1.41(+9) 1.71(+9) 5.07(+8) 1.56(+8) 
8000 1.61(+10) 9.07(+9) 6.21(+9) 5.15(+9) 1.96(+9) 7.82(+8) 

10000 3.21(+10) 2.04(+10) 1.55(+10) 1.06(+10) 4.69(+9) 2.18(+9) 

k 1 = Morse  po ten t i a l  E o = 17523 cm -1, k 2 = Morse  po ten t i a l  E o = 21022 cm -1, k 3 = Morse  
po ten t ia l  E 0 = 2 4 5 2 4 c m  -1, k 4 = H a r m o n i c  po ten t i a l  E o = 1 6 9 9 5 c m  -1, k s = H a r m o n i c  po ten t ia l  
E 0 = 21022 cm -1, k 6 = H a r m o n i c  po ten t i a l  E o = 25262 cm -1. 

11 Theoret. chim. Acta (Berl.) Vol. 25 
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averaged unimolecular rate constants (Eq. (2.11)) for N20. The following points 
are pertinent: 

a) The energy at the crossing point Eo determines the high temperature 
activation energy (see Fig. 5 and subsequent discussion), thus at a constant 
temperature the rate constant (for a given V~(R) potential) increases with decreasing 
the crossing point energy Eo. 

b) Anharmonicity effects tend to increase the rate constant. For a given value 
of E0 and constant temperature the rate constant calculated for a Morse potential 
exceeds the value calculated for the harmonic potential by a numerical factor 
3-10. the deviation increases with increasing Eo. These anharmonicity effects on 
the vibrational overlap Franck-Condon integrals are well documented in the 
theory of electronic relaxation processes [30]. 

c) In the temperature region 1400°-2000 ° K the experimental [31] high pressure 
rate constant for the decomposition of N20 is 

( ( 6 0 / k c a l ) )  
k ,  (expt)= 1.6 x 1011 exp - k B T ' 

The theoretical value for the Morse potential and Eo = 60 kcal/mole is 

( 5 9 / k c a l )  
k(calc)=4.1x 1011exp - k~T 

in the same temperature region. This almost perfect agreement between theory 
and experiment should not be taken too seriously in view of the approximation 
involved in the oversimplified one dimensional theoretical model. 

The activation energy, defined in the conventional manner, turns out from 
our theoretical calculations to be temperature dependent. The apparent activation 
energy EA, was defined in the conventional manner 

/~A = -- ~ In k/~? (1/k B T) (4.2) 

where k is the theoretical rate constant. Utilizing Eq. (2.11) one easily obtains 
the formula previously given by Gilbert and Ross [193 

Wi~Ei, exp(-  EiJkB T) ~ Ei, exp(-  E~/k B T) 
~A = ~ _ , _ <WE) ( E )  (4.3) 

Z Wi, exp ( -  EiJk B T) 2 exp ( -  E,Jk B T) k 
Gt 

where the square brackets represent averaged mean values. 
In Fig. 5 we present the temperature dependence of the activation energy. The 

following points should be noted: 
a) At low temperature where k B T ~ h w  (w representing the vibrational 

frequency, as discussed in Section 5) the activation energy takes the value 

EA= A; kBr ~h¢o (4.4a) 

corresponding to the onset of the dissipative continuum (see Eq. (4.1)). 
b) At higher temperatures the activation energy increases monotonously until 

it flattens up at high temperatures. 
c) The constant value of the activation energy reached at high temperatures, 

i.e. when kB T >> hco (see Section 5) is very close to the energy Eo of the crossing 
11" 
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Fig. 5. a Activation energy derived for the Morse potential defined in Fig. 4a. b Activation energy 
derived for the harmonic potential defined in Fig. 4b 

po in t  of the po ten t ia l  surfaces, so tha t  

/ ~ E 0  ; kBT>~h~o. (4.4b) 

To be more  precise, we m a y  uti l ize the  genera l  fo rmula  for the high t empera tu re  
ra te  cons tan t  (see Sect ion 5) which reads  

k = k o T -~ e x p ( -  Eo/kBT ) (4.5) 
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where k o is a numerical constant and 7 is a half integer determined by the number, 
n, of the vibrational degrees of freedom in the initial states, 7 = n/2. Thus, the 
high temperature activation energy obtained from (4.5) is 

E'A = Eo -- 7kBr .  (4.6) 

Thus the apparent high temperature activation energy is expected to be somewhat 
lower than the crossing point energy E o in accordance with the behavior exhibited 
in Fig. 5. 

d) The decrease of the apparent activation energy at very high temperature 
(see Fig. 5) has no physical significance and is attributed to arise from the truncation 
of the basis set of the initial vibrational levels including a finite number of vibrational 
levels in the present calculations. Indeed, there is a pronounced effect of the 
number of vibrational states taken into account. In the case of a Morse potential, 
the number (~ 50) of the vibrational levels is not very high, the decrease of the 
activation energy with temperature at very high temperatures is faster than in 
the case of a harmonic potential, where we have included 200 levels in our 
calculations. These mathematical artifacts can be improved but not completely 
removed by extending the size of the zero order basis set corresponding to the 
initial vibronic levels. It should, however, be pointed out that for a real life 
situation at extremely high temperature when k~ T is of the order of the 12; ground 
state dissociation energy, D, direct thermally induced dissociation 
N20-*N2(1Z) + O(1D) will become the dominant decompositions mechanism. 

The most important conclusions arising from the present discussion of the 
activation energy involve the distinction between the low temperature case 
h~o >> kBT and the high temperature case he)< k B T ~  D. In the low temperature 
limit the unimolecular decomposition of the triatomic N20 molecule occurs by 
quantum mechanical decay of very few bound zero order states which are located 
just above the continuum threshold, A, into the continuum. On the other hand, 
in the high temperature limit, the major contribution to the decay rate originates 
from the contribution of the intersection point of the two zero order potential 
surfaces. These conclusions are identical with the theory of radiationless processes 
in solid state [32] and molecular physics [33]. 

5. Comments on the High Temperature Activation Energy 

The general expression for the non radiative thermally averaged decay 
probability, which under the conditions specified in Section 2 is equal to the 
unimolecular rate constant, can be displayed in the general form 

2re 
k = hz-I(Hs°)12 ~ ~ exp(-  EIJkBT)ISi~,s~l 2 3(Ei, -- gs,) (5.1) 

B 

where S~.yp is the (multidimensional) vibrational overlap integral with the 
continuum wavefunction being volume normalized), while Z =  ~ exp(EiJkBT ) 

being the partitition function. Eq. (5.1) can in general be handled by recasting 
the thermally averaged transition probability in terms of a Fourier transform of 
a generating function [32-34]. Following the general methods developed by 
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Kubo and Toyozawa [32] and by Lax [34] one can represent (5.1) in the form 

k- l(Hs°)lzh2 ~ exp(-EiJknT)z dt Zi~ ex ~ H y t  exp - ~ H i t  Zi, (5.2) 
Ct - - c o  

where H i and H I represent the molecular nuclear Hamiltonians H s = T R + Vj(R) 
(j = i, f )  in the initial and in the final states. This expression can be written in a 
closed analytical form only for the case of two harmonic potentials, which is not 
very useful for the problem at hand. However, it was previously demonstrated 
that in the high temperature limit a closed expression of (5.2) can be derived for 
a general form of the nuclear potentials [32, 34]. The high temperature limit is 
realized [32, 34] when the variation of the potential energy in the initial state 
within the averaged De Broglie wavelength h/(t~k B T) U2 is negligible relative to 
the thermal energy k~ T, so that [32] 

h/(l~ksT) 1/2 ~ -  V~(R) ~ kBT. (5.3) 

For all integer values of n note that for n = 2 Eq. (5.3) yields the well known 
condition 

h co ~ k~ T (5.4) 

for the validity of the high temperature limit, which was utilized in the qualitative 
discussion in Section 4. When condition (5.3) is satisfied, one can neglect the 
commutator [TR, V~(R)] in the exponent of the matrix element of (5.2), where- 
upon 

1 ~ /Zi~ exP ( h  HIt)  exp ( -  i Hit)Zi~)dt  
(5.5) 

Furthermore, we can replace the summation over ~ states by the classical expression 

1 
Z ]Xi~] 2 e x p ( - E i j k  . T ) =  e x p ( -  V~(R)/k. T)/Z 

c~ 

(5.6) 
= e x p ( -  V~(R)/k B T)/S d R e x p ( -  V~(R)/k B T). 

Eq. (5.2) with the aid of Eqs. (5.5) and (5.6) takes the following limiting form at 
high temperatures 

k =  ](Hs°)]2 ~ d R e x p ( -  V~(R)/k~T) 3(VI(R ) -  V~(R)) (5.7) 
h f d R e x p ( -  V~(R)/k B T) 

The following comments should be made at this point: 
a) The high temperature rate constant is valid for any form (and dimension) 

of the potential surfaces for the initial and final states. 
b) This rate constant was derived for the case of interstate coupling which is 

independent of the nuclear coordinates. When the zero order states are coupled 
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by the nuclear kinetic energy operator, (Hso)  in (5.7) is replaced by the matrix 
elements of the nuclear momentum and by a temperature dependent factor. 

c) Eq. (5.7) provides the most general proof that in the high temperature limit 
the non radiative transition takes place in the configuration where the two 
potential surfaces intersect, i.e. along the hypersurface where 

V~(R) = Vs(R ) . (5.7) 

d) Condition (5.7) is usually referred to as the Franck-Condon principle for 
thermal reaction which involve a change in the electronic states. This principle 
played a crucial role in the understanding of electron transfer processes in solu- 
tion [36, 37, 27]. However, from the present discussion it is obvious that this 
argument is much more general. 

For the sake of comparison with the results of the numerical calculations of 
Section 4, let us specialize to the one dimensional case setting R = R. Recasting 
the high temperature partition function in the approximate form corresponding 
to a harmonic potential characterized by a force constant to, 

dR exp(-  V~(R)/k, T) ,~ (nk B T/~c) 1/2 

and utilizing the well known properties of the delta function, Eq. (5.7) is reduced 
to the simple form 

k =  
exp(-  Vi(Ro)/k B T) 

~--~ (V¢(R) - V~(R))~ :Ro 
(5.8) 

exp(-  Eo/k B T) 

~ R  (Vy(R) - V~(R))'R :Ro 

where E o and R 0 correspond again to the distance and energy of the crossing 
point of the one dimensional potential surfaces. Thus in this high temperature 
limit the activation energy in the one dimensional model is just E 0 while the 
apparent activation energy being E o - k  B T/2. Finally, it is worthwhile to notice 
that the high temperature unimolecular rate constant is determined by I(F I -Fi) I- 1 
in a manner analogous to the result of the semiclassical approximation (Eq. (3.12)), 
and also to the Landau Zener formula. 

6. A Two Dimensional Linear Model for the Unimolecular 
Decomposition of N~O 

The one dimensional model for the unimolecular decomposition of N20 can 
be extended to include the role of the N-N vibration, still maintaining that the 
dissociation in the final state occurs along the N-N-O (1Z) axes. Gilbert and 
Ross [19] have performed approximate numerical calculations for a two dimen- 
sional model. In what follows we shall present some general results for such a 
model, which may be of interest for the understanding of the nature of the 
distribution vibrational energy among the N2 molecules resulting from the thermal 
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decomposition of N20. This problem, which cannot be handled by the simple 
one dimensional model, is of considerable theoretical and experimental interest. 

Denoting by R the N - O  and by X the N - N  distance, the two dimensional 
potentials representing the initial and the final states are 

VdR, X) = f l(R) + f2(X) (6.1) 

B 
VI(R, X) = A + -~ -  + f2(X) (6.2) 

where fdR) , f2 (X)  and fz(X) can be chosen to be either Morse or harmonic 
potentials. The ground state potential (6.1) is similar to that previously used for 
some triatomic molecules, f l(R) corresponds to the bound N - O  potential in 
the ground state. It should be noted that the bound N - N  potentials fz(X) and 
fz(X) in the initial and final states may differ both in their equilibrium distance, 
in the vibrational frequency (for a harmonic potential) or in the characteristic 
reciprocal length and the effective dissociation energy (for a Morse Potential). 
In this approximate representation the X and R modes are independent and the 
vibrational wave functions are 

Z~,(R, X) = Z,~(R) Z~,(X), 

Zfaa,(R, X) = Zf~(R) Zfa,(X), 

while the corresponding energies are given by 

Eic~, = Ei~ q- Eic c , 

Ef~¢, = Ef~ + Ef t , ,  

(6.3a) 

(6.3b) 

(6.4) 

(6.5) 

We now require two indices to specify each vibrational state. Note that as before 
ZI~(R) represents an unbound state. 

The unimolecular rate constant is now given by 

k = ~ I<Hso>l 2 (6.6) 

2222exp( ei +Ei 'l ~" ~ ~' x k~T ] I(Zi~IZfa>lzI<ZI~'[Zca')Iec~(A+Eya+Efa'-Ei~-Ei~') 

Rewriting the delta function in (6.6) in terms of a convolution integral involving 
two delta functions we have 

2~ ( E;~-t (6.7) k =  hZ~z~lKHso)l  2 [. de ~ ~ exp - kB T / 

where Z~Z~, is the product of the two partition functions in the denominator 
of (6.6). 
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It will be convenient at this stage to define two auxiliary functions. 

1 ( 
F(e)= ~ ~ e x p  - kBT/I()~,~l)~y~>l 2 6(Z+E,re-Ei~,+e), (6.8) 

a(e) = ~ ~ exp - k~Z / I(Z,~, I z~a,>l 2 a(g~-a,- El=,- ~) (6.9) 

and to rewrite (6.7) in the concise form 

= 2~ i(Hso)]2 [, deE(e) a(e). k (6.10) 

Thus the quantum mechanical rate constant for the present model can be expressed 
in terms of a convolution integral involving two generalized line shape functions. 
The line shape functions F(e) (Eq. (6.8)) can be evaluated by the numerical methods 
described in Sections 3 and 4 which are based on the semiclassical approximation. 
Obviously F(e) involves the decay of the N - O  zero order vibronic into the 
continuum, however, now the N - N  modes come in and the onset energy A for 
tunnelling can be reached by different combinations of N - O  and N N  modes. 
Thus the metastable decaying states correspond to a combination of both N - O  
and N N vibrationally excited states. The role of the N - N  modes is incorporated 
in terms of the generalized line shape function G(e) (Eq. (6.9)). An explicit expression 
for G(e) can be provided assuming that the N N  vibrations in the initial and 
final states are harmonic both being characterized by a reduced mass/~2 and the 
same frequency oo2, while the origins of the N - N  potentials are displaced by (A X) 
in these two electronic states. In this simple case one gets the Fourier integral 
[32-36] 

A2 [coth(hC°2 I - is inco2t  } (6.11) G(e)= Sdtexp(-i~t/h)exp{- ~ -  \2ksT/(1-cosco2t) 

where the reduced displacement is defined by 

A = ( II2~2 ) l/2 A X . (6.11a) 

In the simple case when A = 0, thus the two N - N  potentials are not displaced 
between the two electronic states G(e)= 6(e) and Eq. (6.10) is reduced to 

= ~ [(Hso)[ 2 F(0) (6.12) k 
F t  

which is just the result of the one dimensional model discussed in Section 3. It 
is also interesting to note that in a manner completely analogous to the the- 
oretical study of optical selection in electronic relaxation [39], the present 
formalism can be extended to provide the vibrational population of the N 2 
molecules resulting from the unimolecular decomposition. We can define the 
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rate k~, for the production of the N 2 in the fi' vibrational state, so that 

k~, = ~-I(Hso>l 2 ~ deE(e) Ga, Ke) (6.13) 

where 

1 2 e x p  ( Ei~" 1 aa,(e)= ~-f~, ~, - kBT /I<xi~,IZTa,>I2,~(ETa,-E~,+~). (6.14) 

From the formal point of view the decomposition processes resulting in different 
vibrational levels of the N 2 product correspond to different decay channels and 
k = ~ k,,. Now in the simple case A = 0 we have G,,(e) = (exp(- Ei~,/kBr)) 6(e)/Z~, 

whereupon Eq. (6.13) takes the simple form 

k~,=~, = k e x p ( -  Ei~,/kBT ) (6.15) 
Z~, 

so that the vibrational states of the N 2 product assume a Boltzmann distribution 
characteristic of the ground state. In real life the situation when A # 0 a more 
complex distribution (6.13) is obtained. 

7. Discussion 

In this paper we consider a general theoretical scheme for the nonadiabatic 
unimolecular decomposition of some triatomic molecules, which involve a change 
in the electronic state, and is thus amenable to study in terms of a thermally 
induced intramolecular radiationless decomposition, in complete analogy to 
molecular predissociation (classified by Herzberg [38] as case 1 c) and to electronic 
relaxation in the statistical limit. We have advanced some simple general criteria 
(Eq. (2.7)) for describing the decay process in terms of Fermi's golden rule, and 
were able to present general expressions for the decay probability of a single 
vibronic level (Eq. (2.8)) and for the thermally averaged unimolecular rate constant 
(Eq. (2.11)). The general quantum mechanical rate expression (2.11) for the non 
adiabatic reaction (subjected to restriction (2.7)) is characterized by a pre- 
exponential factor which is determined by the square of the interstate coupling 
matrix elements, in a manner analogous to electronic relaxation process [1], and 
as was previously asserted on the basis of transition state theory for this class of 
reactions [11]. The general behavior of the rate constant at low and high tem- 
peratures is of considerable interest. At low temperatures the rate constant is 
determined by tunnelling from the small number of zero order vibrational levels 
{i~} just above the continuum threshold A, so that Eia > A whereupon 

~ -  exp( - A/k• T) (7.1) I<zi~ I zf~>[ 2 
k ~ I<Hso>l 2 2 Z~ 

while at high temperatures the general rate constant (5.7) represents non radiative 
transition occurring at the intersection of the two potential surfaces. Note that 
the notion of an activated complex does not enter into these considerations and 
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this concept can be defined only in the high temperature limit as corresponding 
to the configuration satisfying Eq. (5.7). 

We have then proceeded to present the results of model calculations for the 
unimolecular decomposition of N20 adopting one or two dimensional linear 
models. Applying the semiclassical approximation the microsopic rate constant 
calculated for the one dimensional model result in an oscillatory function of the 
energy and cannot be handled within the framework of the Landau-Zener [14, 15] 
approximate scheme. This conclusion concurs with the results of the original 
work of Gilbert and Ross [19], however, we believe that some of our arguments 
(Section 2 and 6), the physical models and the computational method employed 
by us are somewhat more general. The numerical results obtained herein for the 
one dimensional model confirm our general considerations. Similar results for 
thermally induced predissociation of a diatomic molecule (see appendix) also 
provide support to our general conclusions. In particular, it is important to 
notice that the calculated apparent activation energy varies from the value of A 
corresponding to the continuum onset at low temperatures to a value close to Eo, 
which represents the intersection point of the two one dimensional surfaces, at 
high temperatures. 

An important conclusion originating at this point is that unimolecular 
reaction rates which correspond to processes involving a change in the electronic 
states, cannot be described over a broad temperature region in terms of the 
Arrhenius equation, and experimental activation energies can be compared to 
the theoretical data only over a narrow temperature range. 

The one dimensional and the two dimensional linear models employed herein 
are admittedly crude, but they are very helpful in the elucidation of the gross 
features of the physical problem at hand. In particular, it is important to notice 
that in describing the potential surfaces for the initial and the final states we have 
completely discarded the conventional notion of normal modes [8]. As the 
decaying resonance states involve an admixture of highly excited vibrational 
ground state levels and continuum states, the use of normal modes (which is 
only valid for a small number of low lying bond vibrational levels) is quite useless 
in this context. The use of vibrational modes corresponding to different bonds 
was utilized in the semiquantitative description of molecular ground state potential 
surfaces [8, 38]. It was felt for some time that the highly excited vibronic levels 
of a lower electronic configuration which act as a dissipative channel in intra- 
molecular electronic relaxation processes in large molecules are inadequately 
described in terms of normal modes, however, the problem of an alternative 
description of nuclear motion in a large molecule was not yet resolved. 

We were able to provide a theoretical scheme for the linear dissociation process, 
the inclusion of the N-N  vibrational mode being of considerable interest in relation 
to the vibrational states of the N 2 molecules which result from the unimolecular 
dissociation of N20. In the case when the N - N  coordinate remains unchanged 
between the initial and the final states the partition of the N 2 vibrational states 
in the final product will be the same as in the initial ground state molecule. 

The most serious sin of omission involved in the present treatment is the 
complete disregard of the doubly degenerate ground state bending vibration which 
will result in non linear dissociation (i.e. to an O(aP) atom flying apart at an angle 
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O < rc relative to the N 2 ( ' ~  ) molecular axes). This problem can be handled (at 
least within the framework of the harmonic approximation) by assigning additional 
out of plane imaginary frequencies for the N-O motion. This interesting problem 
deserves a further study. 

Any theoretical study should be tested in terms of the correlations it provides 
for the available experimental data and, most important, in terms of the suggestions 
for new experiments. The following comments are now in order: 

a) The activation energy for the nonadiabatic unimolecular dissociation of 
N 2 0 ,  C O 2 ,  C S  2 and COS should vary in the range A H ° < = A < E A < E o < D  
(see Table 1). The only exception of this general conclusion (i.e. E A < D) involves 
the high pressure dissociation of the CO2 molecule [40] where E A = 110 kcal/mole 
while A Ho ° = 126 kcal/mole. As the experimental data were obtained from shock 
wave experiments autocatalytic effects cannot be excluded. A further experimental 
study of ko~ for this reaction will be desirable. 

b) The thermally averaged rate constant is rather uniformative and it will be 
very interesting to obtain direct experimental information concerning the energy 
dependence of the microscopic rate constants W~ for the decay of a single vibronic 
zero order ground state level. In view of anharmonicity effects these highly excited 
vibrational levels located above the continuum onset A may be accessible to 
optical excitation by either one photon absorption or, alternatively, by multi- 
photon absorption utilizing intense high power laser light sources. Such experiments 
of laser induced unimolecular decay of a single vibronic level will be of considerable 
value. Such optical selection experiments seem to be feasible by combining 
modern laser techniques with sensitive mass spectrometric detection methods. 

c) The distribution of vibrational energy among the diatomic molecules 
resulting from conventional thermal dissociation or by optical selection of a 
single level (above A) is of considerable interest for the test of the general theory 
outlined in Section 6. To monitor the vibrationally excited states of homonuclear 
N2 resulting from • 2 0  dissociation one can utilize antistokes Raman scattering 
from a laser. In the cases of nonadiabatic unimolecular decomposition of CO2, 
CS2 or COS one can monitor directly the infrared emission from the resulting 
heteronuclear molecule. In the suggested thermal experiments vibrational relaxa- 
tion of the products by the buffer gas has to be taken into account. 

In conclusion, we would like to state that the formalism developed for non- 
radiative processes can be successfully applied to nonadiabatic unimolecular 
reactions. The present treatment is by no means limited to triatomic molecules. 
In the case of large molecular systems, it might be sometimes feasible to consider 
a "submolecule" within a large molecule (leaving out all the vibrational modes 
which are unchanged between the two electronic states) and to treat unimolecular 
thermally induced nonadiabatic decomposition or optically excited predissociation 
in large molecules by the adaptation of theoretical scheme employed in the present 
work. 
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A p p e n d i x  

Some Calculations on the Collision Induced Predissociation of O2(3X~) 

In the Schumann-Runge band of 0 2 a line broadening due to predissociation 
can be experimentally observed. Murrell and Taylor [24] calculated this line 
broadening by numerical evaluation of the Franck-Condon factors and investigated 
the influence of the form of the repulsive potential while Child [23-] has applied 
the W K B  method for this system. We repeated this calculation with the method 
outlined for a R K R  potential [41, 23] a Morse-potential and a harmonic potential. 
From the results for the line broadening in Fig. 6, it can be seen that the pattern 
of the line broadening is quite sensitive to the different bound state potentials as 
well as to the absolute value of the crossing point. The absolute values for the 
line broadening were calculated with a spinorbit interaction value of 70 cm- 1 as 
for this value the absolute line broadening is in best agreement with the experimental 
results. The line broadening A v is given by the formula 

Avi = h Wi (A.1) 

We next turn our attention to the problem of collision induced predissociation 
[42] of O2(3SZ) electronically excited states initially excited optically in the pres- 
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Fig. 6. Line broadening for the Schumann Runge spectrum of 0 2. a for the R K R  potential  with 
- - E  o = 2359 c m - x ;  _ _ _  Eo = 2604 c m - 1 ;  b for the harmonic  potential with Eo = 2760 c m - 1 ;  
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ence of an inert gas at sufficiently high pressure to satisfy relation (2.9). Thus we can 
consider a decay process where the lowest vibrational level of the excited electronic 
state 32;~- is optically populated and assuming that this electronically excited 32~2 
state arrives in thermal equilibrium before nonradiative (predissociated) decay. 
The microscopic rate constants, which are proportional to A v  i (Eq. A.1), were 
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Fig. 7. Ra t e  constants  versus T -1 for  the thermal ly  induced predissociat ion of  02(3Z.). F o r  the 
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used to calculate the thermally averaged rate constants and the activation energies. 
The results are given in Figs. 7 and 8. As expected, the rate constants are of 
the same order of magnitude for the different potentials chosen and yield zero 
activation energy for low temperatures while at high temperatures the energy 
value corresponding to the crossing point of the two potential surfaces is obtained. 
These results for thermally induced predissociation of an excited electronic state 
of a diatomic molecule concern with the results of our general analysis. 
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