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In this paper we introduce a cluster expansion method which is suitable for numerical calculations of
the density of electronically excited states of substitutionally disordered molecular crystals. This method
is based on an expansion of the density of states of the guest subband in terms of the localized densities
corresponding to various clusters and is valid for a large scattering potential and for concentrations of
guest molecules below the percolation concentration. The general features of the cluster expansion method
are illustrated by calculations for a simple one-dimensional molecular crystal. These numerical calculations
for the one-dimensional model are compared with the results obtained by the coherent potential approxi-
mation. The role of the localized states, which are not accounted for by the coherent potential method

can be elucidated.

1. INTRODUCTION

The coherent potential approximation (CPA) has
been recently utilized for the calculation of the den-
sities of electron, phonon and exciton states in substitu-
tionally disordered mixed crystals.*® The CPA was
introduced by Soven® for the study of electronic states in
substitutional alloys and by Taylor” for the study of
phonon states. An alternative systematic approach was
developed by Yonezawa.® The first order self-energy
is identical to the one derived by the CPA.7 The same
result was obtained by Onodera and Toyazawa® for
Frenkel exciton states and was utilized for the calcula-
tion of the density of excited electronic states and for
the optical properties of isotopically substituted naph-
thalene crystals.*?®

The attractive feature of the CPA is that only directly
measurable physical quantities are required as input
data for the calculations of the excited electronic states
of isotopically mixed crystals. The pertinent parameters
are the experimental density of states'® of the pure
crystal and the difference of the single molecule excita-
tion energies. The major shortcoming of the CPA
involves an inadequate description of localized states.
This theoretical scheme does not account for the fine
structure of the density of states introduced by the
clustering of the guest molecules. It has been shown by
Taylor” that the first order self-energy fails to explain
the fine structure of the density of states in the “for-
bidden gap” below the percolation concentration of the
mixed crystal.

The existence of the fine structure was demonstrated
by machine calculations performed by Dean' and by
Dean and Bacon® for one and for two dimensions, and
by Payton and Visscher®® for one-, two-, and three-
dimensional systems. Recently Bierman has presented a
statistical theory of localized states for a one-dimen-
sional crystal.® The localized modes beyond the band
edges which are not accounted for by the CPA are
important for the understanding of the optical absorp-
tion spectra*®1® of mixed crystals. These optical prop-

erties are sensitive to the behavior of the band edges.
Recent activity aimed towards the elucidation of the
electronic and optical properties of amorphous semi-
conductors emphasized the crucial role of the density of
states near the band edges.®18

In this paper an attempt is made to estimate the
effect of the localized modes on the densities of elec-
tronic excited states of a substitutionally disordered
crystal. In Sec. II, we briefly survey the CPA} and its
application*®? to Frenkel exciton states. In Sec. I1I we
introduce a new cluster expansion scheme for calculating
the densities of the localized states. The method which
is applicable for the strong scattering case below the
percolation concentration. In Sec. IV the cluster expan-
sion method is applied to a one-dimensional crystal.
Numerical data obtained by the cluster expansion
method and by the CPA are compared in Sec. V. The
numerical data presented in this paper focus attention
on a simple one-dimensional model. These results do
not pertain only to model systems, but may be of con-
siderable interest for the elucidation of the electronic
states of polymers® where a one-dimensional model is
strictly applicable. It should be noticed also that in
certain three-dimensional crystals the exciton band
structure is determined by (short range) intermolecular
interactions in one dimension. A good example was
provided recently by Hochstrasser and Whiteman®
who have demonstrated that triplet exciton states in
1,4-dibromonaphthalene correspond to a one-dimen-
sional chain.

II. THE COHERENT POTENTIAL
APPROXIMATION FOR EXCITED STATES
OF MIXED MOLECULAR CRYSTALS

In this section we present some of the general results
which were obtained by Soven® and Velicky ef al.,” and
which were applied later by us® for the study of exciton
states in isotopically mixed molecular crystals. We
shall limit the discussion for a crystal containing one
molecule per unit cell, although the method can be

4138

Downloaded 22 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ELECTRONIC STATES OF

readily generalized.® In the CPA we are searching for an
unknown effective Hamiltonian determined in a self-
consistent manner. The procedure is based upon the
restriction that a single molecule which scatters the
electronic excitation should not produce on the average
further scattering.*7 The crystal Hamiltonian for a
particular configuration is given in the form

H=H+AY ¢, (1L.1)
while the effective Hamiltonian for a configurationally
averaged mixed crystal is

Hot(2) =Hot+ T 2.(2). (IL.2)
$.(3) represents the self-energy operator in the localized
representation. The virtual crystal Hamiltonian H, is
given by

Ho=3 | n)e(n| +J. (IL.3)
& is the mean excitation energy
€=CA(A€Af+df)+C]3(A€Bf+d!), (II4)

where Aex’ and Aep’/ correspond to the excitation
energies of the isolated molecules A and B while C4 and
Cg denote the concentrations of the two components.
&’ is the environmental shift (which is assumed to be
independent of the nature of the particular component).
J represents the excitation transfer operator while A is
the difference in the excitation energies between the
two components

A= AGA —Aer. (IIS)
§» is a random operator given by
Ea=tn | 0)n ], (IL.6)

where £, = —C, when site # is occupied by a molecule of
type B, and £,=Cp when the site is occupied by a
molecule of type A.

We shall now define a general perturbation W repre-
senting the deviation of the crystal Hamiltonian from its
configurationally averaged behavior

W=H—Hy= Y (f:0—2)= T 0. (IL7)

The excitation scattering can be described by total T
matrix
T=W4+W(G)T, (I1.8)

where (G) is the configurationally averaged Green’s
function defined by

(G(2))={1/(z—H))=1/[3—Her(z)] (IL9)

G (%) and its configurational average (G (z)) are related
by

G(2)=(G(2))+(G(=))TG(2)).  (IL.10)

When the configurationally averaged system is con-

sidered, the self-consistency condition® implies that
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the spatial average of the 7 matrix vanishes,>*®
(T'(z))=0. (I1.11)

T can be expanded in the local scattering matrices, ,,
associated with each site,>7

tn=wn+wn<G>tn, (II.IZ)
so that T is given by the expansion
T=3tot 2 Y talGMut---.  (IL13)
n n mEn

Now it is assumed that higher order terms in Eq.
(I1.13), arising from multiple scattering effects are
neglected, whereupon the exact equation (II.11) is
replaced by the approximate relation

{ta(2) )=0.

The diagonal matrix elements of the configurationally
averaged Green’s function in the local misrepresenta-
tion are given in the form

(n] (G) | m)=[{s"(E") /(52 () —e~E']}dE'

=fz—i—2(s)], (I1.15)

where p° is the density of states of the pure crystal.

Utilizing Eqgs. (I1.12) and (I1.14) one obtains the final
equation for the self energy*71

fla—e=2(2)]
= ZE/{CACrA 2@ AC—Cr) ~[E(@) .
(11.16)

The density of states p of the configurationally averaged
crystal is

(I1.14)

p(E)=(1/xN) Im Tr{G(E)), (I117)

where N denotes the number of unit cells in the crystal.
In the CPA one gets

p(E)=(1/xN) Im{0 | 1/[z—H—2(z) ]| 0),

) (IL.18)
where Z(2) is obtained from Eq. (I1.16).

OI. A CLUSTER EXPANSION METHOD FOR THE
DENSITY OF STATES

Consider an isotopically mixed crystal where the
concentration of one of its components is below the
percolation concentration. The two component mole-
cules which differ just in their (free molecule) excitation
energies will be referred to as the guest (minority
component) and as the host (majority component).
An expression for Tr G(E), which determines the ex-
citon density of states can be derived by the application
of the identity®

G(E)=G"(E)+G*(E)V[1-G(E)VI'G(E),
(IT1.1)
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where V is the perturbation matrix, which for an iso-
topically mixed crystal is given by

(n| V| n)=2n8um, (TIL.2)

where n=1 when the site # is occupied by a guest
molecule, while n=0 when the site » is occupied by a
host molecule. A [see Eq. (IL.5)7 is the difference
between the excitation energy of a single guest molecule
and a single host molecule. This definition implies that
in the present case V is a diagonal matrix in the localized
representation. The diagonal elements A and 0 are
randomly distributed with probabilities Cx and 1—Cj,
respectively. The trace of G(E) can now be represented
in the form*

TrG(E) = NG#(E)+d InD(E) /dE, (IIL3)
where D(E) is the determinant
D(E)= | 1—GE)V | (I11.4)
and
G (E)={n|G*(E)| n) (IIL5)

is the diagonal matrix element of the unperturbed (pure
crystal) Green’s function G°(E). The density of states
of the mixed crystal is given by

p(E) = (1/xN) Im TrG(E)
=p(E)+(1/7N) Im[d InD(E)/dE]. (IIL6)

Provided that the matrices G°(E) and V are properly
constructed, the factorization of D(E) can be easily
accomplished. The pure crystal Green’s function in the
localized representation can be partitioned into four
submadtrices

Go’(E) Gu(E)
G°(E)=< ) (IIL.7)
Gi(E) Gu(E)

The matrix G,,’(E) corresponds to sites occupied by
guest molecules only, so that

[Gavo(E) Jim= <"‘ ’ GO(E)| m) (TIL.8)

where sites # and m are occupied by guest molecules.
In a similar manner the matrix G;s?(E) corresponds to
sites occupied by host molecules, while G0 and G,;°
represent the guest-host matrix elements.

The matrix V has the following form

vV, O
V= ,
o O,

where V, is a diagonal matrix of the same order of
Gy’ (E).

(I11.9)

V,=Al,.

O, is a null matrix of the order of Gy2(E).
The matrix [1—G°(E)V] can now be recast in the

(II1.10)
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form

1,—AG,*(E) O
1—GV= . (IIL11)
—AGy(E) 1,

Employing Eq. (IT1.11), the determinant D(E) is
D(E)= det | 1,—AG,(E)|. (I11.12)

Equation (III.12) represents the Koster-Slater® result
which implies that for a local perturbation the order
of D(E) is given by the number of guest molecules.

In order to facilitate a further reduction of D(E),
specific approximations have to be invoked. These
approximations are closely related to the distribution of
guest clusters in the crystal. It will be useful at this
stage to survey briefly the notion of clusters.?* We
shall examine an “island” of the guest molecules em-
bedded in the crystal. Following the notations intro-
duced by Rushbrook and Morgan? and by Elliot and
Hemp,”® a molecule A is considered to belong to a
particular cluster if it is not separated from any other
member of the cluster by more than a preassigned
distance. In the present work, only the nearest neighbor
clusters are considered. Let N., denote the number
of clusters of size # and of shape e, and let P, be the
probability of finding a cluster #a. It was previously
demonstrated that**

Pro=N,o/ N=KCs*(1—Cy)™, (II1.13)

where m is the number of peripheral host molecules
isolating the cluster from the rest of the crystal. K is
the number of geometrically equivalent clusters. For
example, the probability of finding an isolated impurity
is given by Py=Ca(1—Ca)?, where z is the coordination
number of the lattice. Behringer® gives the probability
for doublet and triplet clusters for a simple cubic face
centered and for a body centered cubic lattice.

Expression (I11.12) for the determinant D(E) is not
manageable for a finite impurity concentration. The
determinant D(E) is still of an infinite order and cannot
be simplified without invoking some approximations
concerning off-diagonal matrix elements of the Green’s
function. Our aim is to factorize D(E) into partial
determinants D,,(E) of finite order, each corresponding
to the appropriate cluster #na. To achieve this goal we
assume that:

(a) The perturbation strength A is large relative to
the pure crystal exciton bandwidth, 2a. We thus neglect
the off-diagonal matrix elements of the Green’s function
linking sites which correspond to different clusters.
Since we consider clusters consisting only of nearest
neighbor guest molecules, the off-diagonal matrix
elements of Green’s function are taken to be zero except
for the matrix element connecting nearest neighbors.

(b) The concentration of the guest molecules is
assumed not to exceed the percolation concentration.
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In the concentration range below the percolation con-
centration, the probability of encountering an infinite
cluster is negligible. Above the percolation concentra-
tion, there is a major contribution to the density of
states from subdeterminants D..(E) of infinite order.
This assumption is particularly suitable for the study
of one dimension crystal, where the percolation con-
centration is unity.

The matrix elements of G,,°(E) are constructed in

Ny
times

|
-
GY(E)

G/(E)

D(E) =

where G,.’(E) is a # dimensional square matrix corre-
sponding to the cluster #a. The determinant D(E)
can now be factorized into the product of determinants:

D(E) = I1 [Dna(E) P¥ne, (IIL.15)
where D,,(E) has the form
Daa(E) = | 1,—AG2(E)].  (IIL16)

Utilizing Eq. (ITL.15) it is possible to rewrite Eq.
(II1.6) in the following form

p(E)=p"(E)+(1/7) 22 (Nua/N)

X Im[ (d/dE) InD,o(E)], (IIL.17)

where
dInDy.(E)/dE=D,,/ (E) /Dy (E). (III.18)

Each of the determinants D..(E) can be expanded
around its zeros, E,(na), in a Taylor series up to first
order

Do E) = Dyo/[En(na) [E—En(na)], (II1.19)
where
Dy’ (E) =dD..(E)/dE.
Thus we get
D1/ (E)/Dna(E) =1/[E—En(na)]. (II1.20)
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such a manner that there is one to one correspondence
between the sets of ordered rows (and columns) of
G, (E) [and of D(E)], and the sets of molecules
belonging to the various clusters. Invoking assumption
(a) the matrix G,°(E) can be represented in a quasi-
diagonal form, where each member of the submatrices
along the diagonal represents a particular cluster. For
the nath cluster there will be N,, identical square
submatrices each of the order #. The determinant D(E)
can now be explicitly recast in the form

G (E) Noa ;

times

|
c :
G..*(E)

(II1.14)

The imaginary part of [E—E,(na) ] is given by
(1/7) Im{1/[E— En(nc) ]} =6 E~En(na) .
(ITL.21)

Throughout the energy region of the guest band the
density of states, p?, is now given by

P(E)= 3 Poa X [E—En(na)]. (II1.22)

From this result it is obvious that the cluster expansion
method yields the density of states of the guest band in
terms of a superposition of the localized densities
within each cluster weighed by the appropriate prob-
abilities.
The ith moment u;¢ of the density of states of the
guest band is
wi’= [p?(E)YEE/ [p?(E)dE, (111.23)
where p?(E) is obtained from Eq. (I11.22) while the

normalization factor is given by

[p?(EYdE= Y nP,o=Ca. (II1.24)
The summation (II1.24) represents the probability
that a guest molecule of type A belongs to any arbitrary
cluster. p;? can be finally expressed in terms of the zeros
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of D,o(E) in the form
pi?=(1/Ca) 3= Pua > [En(na) . (II1.25)

The major limitations of the cluster expansion method
are:

(1) When the ratio A/2a is not sufficiently large some
of the roots D(E) are located near the edge of the host
band. Under these circumstances one cannot neglect
the off diagonal elements of the Green’s function linking
different sites which are separated by more than one
lattice distance. For the same reason the method
collapses for the energy region within the host band.

(2) Inorder toseparate the contributions of different
clusters, off diagonal matrix elements of the Green’s
function connecting different clusters were neglected
invoking assumption (a). For the sake of self consist-
ency one has also to neglect the off diagonal contribu-
tions within a single cluster (of order higher than two)
connecting cluster members separated by more than
nearest neighbor distance. As a consequence, the deter-
minants Dp.(E) for large clusters may yield some
unphysical roots outside the allowed energy region for
the mixed crystal.

These two limitations of the method can be checked
in the light of a theorem originally introduced by
Lifshitz,” which postulates that the mixed crystal
cannot have states in the energy region which is for-
bidden for the pure crystals of components A and B.
In the present context the components A and B corre-
spond to the guest and to the host molecules, respec-
tively. This theorem was proved for the special case of
one dimensional alloy by Luttinger.?® Kirkpatrick ef al.?
have recently proved this theorem for a substitutionally
disordered crystal without referring to any specific
dimensionality of the crystal. Taking advantage of these
general arguments we may assert that the roots of D(E)
outside the pure host band are confined to an energy
region spanned by the pure guest band.

IvV. A ONE-DIMENSIONAL MODEL

Two- and three-dimensional clusters are rather com-
plex, as a cluster of size # can appear in several different
geometrical configurations. In a one-dimensional crystal
any cluster of order # is characterized by a single
geometrical shape. The probability of finding such a

cluster [Eq. (IT1.13) ] is just
Po=Ca»(1—Cy)2 (IV.1)

The probability of finding a guest molecule belonging to
a cluster of order » is #P,=nCy"(1—Ca)?, while the
total probability, P, of finding a guest molecule in any
cluster is

P= 3 nP,=Ca(1—Ca)2(142Cs2+ -+ +nCa" 1) =Ca.

(IV.2)

HOSHEN AND J. JORTNER

P represents the probability of the occupation of any

crystal site by the guest molecules [see Eq. (II1.24)].
The determinant D.(E) [see Eq. (II1.16)] is now

characterized by the two matrix elements

g={0|G(E)[0) and g=(0|G(E)|1),

being characterized by the simple form

1—gA —gdA 0 ... 0
~pndA 1—gA O - 0
D.(E)=| O (IV.3)
(.) ‘ 1—.goA
This determinant can now be transformed into
X 10
1 X 1 0
Dy(E)y=(—gA)*j0 1 X , (Iv4)
0 - 1
1 X
where X is given by
X=(1—gd)/(—gd). (IV.5)

The zeros of the nth order determinant are simply
Xn®=2 cos[nr/(n+1)], (IV.6)

where m=1, 2: - -n. The energy dispersion relation for
the pure one dimensional crystal is taken in the form

E(k)=a cosk,—n<k<w (IvV.7)

so that the matrix elements of the Green’s function in
the localized representation are

2(E) =21/ (E*—a?)12 (1V.8)
and
(B) =™/ (B—a)ts,  (IV.9)
where
w P =[—EF (E*—a*)"*]/a. (Iv.10)

Here 4 corresponds to the energy range E>a while
u™ is taken for the energy range for E<a.

The combination of Egs. (IV.5), (IV.6), (IV.8), and
(IV.9) yields a quadratic equation for the zeros of the
determinant D, (E)

EZ[ (a+Xm(n)) 2_. (Xm(n)) 2]_ zaXm(n)E
— o[ (a+X,™)24+1]=0, (IV.11)

where a=ga/A. Finally we should note that the physi-
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cally significant roots of Eq. (IV.11) satisfy the in-
equality
a—A<E<a+A. (Iv.12)

A comment should be made concerning the results
previously reported by Bierman for a one dimensional
model. In this work,* two guest subbands appear below
and above the subband. This result is incompatible
with the general theorem introduced by Lifshitz,? as
these two subbands cannot be simultaneously located
within the energy region defined by Eq. (IV.12).
Bierman has neglected off-diagonal matrix elements of
the Green’s function except for nearest neighbors, in a
similar way as done by us., Unfortunately, the physical
implications of these approximations were not realized
in the previous work.

Focusing attention on the CPA, it is possible to derive
analytical expression for the density of states of a one-
dimensional lattice” Setting Aeg’=0, A=Aexf and
utilizing Eq. (I1.15) the following expression is obtained
for the matrix element (I1.15):

fLE—CAA—Z(E))=i/{a*—[E—CsA—Z(E) )12

(Iv.13)
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F16. 1. Model calculations for the density of excited states in
the guest band of a one dimensional isotopically substituted
crystal. ¢=50 cm™ and A=300 cm™. The solid curve is calcu-
lated by the CPA. The vertical segments represent the energy dis-
tribution of states per molecule calculated by the cluster expan-
sion method, the numbers signifying the cluster size which
contributes to the particular segment.
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TasBLE I. The zeroes of D,(E) for a one-dimensional crystal
by the cluster expansion method.

Cluster

size Zeroes of Dp(E) (em™)

A a=50cm?!; A=150 cm™?

158.11

178.57; 130.00

185.91; 150.11; 111.68
189.35; 171.29; 142.25; 95.57

BN

B. =50 cm™; A=200 cm™!

206.15

227.77; 178.57

235.7; 206.15; 163.53

239.44; 219.99; 190.14; 154.50

241.48; 227.77; 206.15; 148.68

242.72; 232.56; 216.28; 194.91; 170.01; 1446

243.53; 235.70; 223.05; 206.15; 185.87; 163.53;
141.78»

- N B

C. a=50 cm™; A=300 cm™

304.13

326.9; 277.27

335.53; 304.13; 264.28

339.62; 318.58; 288.16; 257.28

341.87; 326.92; 304.13; 277.27; 253.10

343.24; 332.1; 314.67; 292.81; 269.69; 250.55

344.13; 335.53; 321.85; 304.13; 248.06; 269.27;
248,80+

SN B LN

& These roots represent nonphysical energy values whose appearance
is due to neglecting high order off diagonal matrix elements of the Green's
function.

Inserting the expression for f®in Eq. (11.16) resultsin a
cubic equation for the self-energy”:

33(CpA— E) + 32 (B2— 2ECAA— Cp2A*+4CACpA2— ¢?)
+23CACa(Ca—Cp) A —CAXCp2A*=0. (IV.14)

Within the energy band of the mixed crystal the self
energy has an imaginary component of finite magnitude.
We therefore search for a solution of the cubic equation
(IV.14) corresponding to E values for which two roots
are complex conjugate. The density of states can be
then easily obtained by substituting the value of Z
thus obtained in Eq. (I1.16) and by making use of
Eq. (I1.18).

V. NUMERICAL CALCULATIONS

In this section we present some numerical results
based on the cluster expansion method and on the CPA
for a one-dimensional isotopically mixed crystal. Utiliz-
ing Eq. (IV.10) we have calculated the zeros of the
determinants D, (E) for various values of A (for A> 2a).
These results obtained by the cluster expansion method
are presented in Table I. It is apparent that as the ratio
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TasBLE II. Moments of the density of states for a one-dimensional crystal [units (cm™)¢]. 4=50 cm™; A=300 cm™.

Moments Cluster method CPA Cluster method CPA

Ca=0.05 Cx=0.1

1 303.9 303.9 303.7 303.7

2 62.23 60.56 124.8 121.5

3 —383.2 —16.66 —776.8 —65.73

4 4.402X 10 7.253X108 9.971 X104 2.886X 104

5 —4.883X108 —4,945X 103 —1.167 %108 —3.878 X104

6 3.542 X107 1.081X108 9. 111Xx107 8.505x10¢

7 —6.067X108 —1.23X108 —1.765X10° —1.912X107
Ca=0.2 Ca=0.3

1 303.3 303.3 302.9 302.9

2 251.2 244.6 378.3 368.6

3 —159.3 —235.9 —2436.4 —471.5

4 2.308 X105 1.141 X108 4.060%105 2.525X108

5 —3.084 108 —2.704 X105 —5.685X 108 —7.862 X105

6 2.691 X108 6.546 <107 5.420 108 2.105X 108

7 —35.892X10° —2.577X108 —1.253x10% —1.083x10°

A/a increases, the number of ‘“unphysical” energy
levels (marked in Table I by crosses), which violate
relation (IV.12), diminishes. The number of localized
slates per molecule derived by the cluster expansion
method and which correspond to the guest subband are
displayed in Fig. 1. These results are compared with the
CPA density of states. The averaged CPA density of
states cannot reflect the fine structure pattern exhibited
by the results of the cluster expansion method, which
may be revealed in the optical spectrum at relatively
low (Cs=0.1-0.3) concentration region of the isotopic
impurity. In particular it should be noted that the CPA
does not account for the “tails” of the density of states
due to the contribution of large clusters which appear
outside the energy region spanned by the averaged CPA
density of states.

The moments of the density of states up to the
seventh order computed by the cluster expansion
method [employing Eq. (IIL.25)7] and by the CPA
[employing Eqgs. (II1.23) and (I1.18)] are presented
in Table II for A=300 cm~! and ¢=50 cm™!. Moments
of higher order than one are given about the mean. The
marked feature of the odd moments calculated by the
CPA is that they are significantly smaller than those
calculated by the cluster expansion method, indicating
that the CPA density of states is more symmetrical.
The negative values of the odd moments calculated
by the cluster expansion method suggest that the num-
ber of “tail” states is greater in the gap between the
host and the guest band than on the other side of the
guest band.

The first moment of the density of states u?=ZFE and
the width of the guest band o= [us— (u1%)2]"%/ue? (the
standard derivation of the distribution) are displayed
in Fig. 2 for several values of A. The moments calculated
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by the cluster expansion method and by the CPA, are
compared with the results obtained by moment ex-
pansion'® method. The moment expansion method
introduced by Velicky et al.! does not refer to any
specific approximation and is valid for the separated
band situation.» These moments provide a good test
for any approximate theory of substantial disorder. The
first moment and the width of the distribution up to
second order in 2a/A are given by'*

#0=CA)
m=A+(1®/8) (1-Cy), (V.1)
o= (Catm), (v2)

where p®=4%/2 is the second moment of the pure
crystal density of states.

There seems to be good agreement between the
results for' the first and for the second moment obtained
by the three different methods. The slight deviations
are easily understood on the basis of the approximations
involved. The moment expansion method does not
yield the exact zero concentration value because Eq.
(V.1) depends on an expansion in A~ up to second
order. The smaller width of the guest band computed
by the CPA is due to the “tail” states which are not
properly accounted for by this method.

VI. DISCUSSION

It is useful to summarize the general features of the
CPA and to compare them with the cluster expansion
method. The inherent assumption involved in both
schemes is that all statistical correlation between
different crystal sites are neglected. In the CPA the
physical characteristics of the mixed crystal are deter-
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mined by averaging over all possible configurations,
while the cluster method assigns statistical weighting
factors to any particular configuration of the binary
crystal. In the limit of an infinite crystal the two
methods correspond approximately to the same physical
situation.

The major advantages of the CPA can be sum-
marized as follows: (a) The scheme is symmetrical in
the concentration (Cs and Cs). (b) This scheme faith-
fully reproduces the virtual crystal' and the atomic
limit.> (¢) Finally, only directly measurable quantities,
such as the density of states of the pure crystals are
required as input data. Additional information con-
cerning the exciton transfer integrals is not required.
A major disadvantage of the CPA is that the effect of
multiple scattering is neglected. In principle, this scheme
can be systematically extended®” by taking the higher
terms in Eq. (II.13). Yonezawa® has speculated that
higher order terms in the self-energy, which represent
the effect of clusters, are responsible for the fine
structure in the density of states which was not ex-
hibited by the results of the CPA. According to Yone-
zawa,® the contribution of these higher order terms in Z,
should play an important role below the percolation
concentration.

The cluster expansion method introduced herein is
just applicable and useful in the (relatively low)
concentration region where the CPA is unreliable. The
major advantages of this scheme are: (a) The localized
modes of the guest subband are explicitly represented
below the percolation concentration. (b) It is useful for
the strong scattering case. It seems that the multiple
scattering effects which were ignored by the CPA are
implicitly introduced by the cluster expansion method.
The limitations of the cluster method are: (a) This
method is suitable only for the concentration range
below the percolation concentration. Above the critical
concentration there is a major contribution from infinite
clusters. In that case the cluster expansion diverges.
Thus the cluster expansion method cannot yield an
extended band structure. (b) Satisfactory results are
obtained only for the strong scattering case when
A/a>>1. (¢) The method is not applicable within the
energy region of the host subband. (d) A detailed
knowledge of the intermolecular exciton transfer
integrals is required, at least for nearest neighbors.

It is possible to extend the cluster expansion method
for a weaker scattering situation provided the cluster
distance (as defined in Sec. II) is increased to include
next nearest neighbors. This in turn will further com-
plicate the cluster structure, and introduce additional
off-diagonal Green’s function matrix elements into the
calculations. This method can be also applied to two and
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three dimensional crystals, however, in these systems
the number of geometrically equivalent clusters in-
creases with the order of the clusters, thus making the
calculations rather cumbersome.

The cluster expansion method should be regarded as
complementary to the CPA, each of these schemes
being useful in a different composition range of the
mixed crystal. The most interesting conclusion emerging
from the present model calculations, based on the cluster
expansion method, is the appearance of a “tail” in the
density of states, and that this “tail” extends in the gap
between the host and the guest band. Although the
present treatment is restricted to the problem of sub-
stitutional disorder, we should notice that these ‘“‘tails”
in the density of states play a central role in the Mott—
Cohen-Fritsche-Ovshinsky model'®:¥ for the electronic
states of amorphous solids.
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