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In this paper we provide an extension of the theoretical study of nonradiative decay of a single vibronic
level of a large molecule. We have derived theoretical expressions for the dependence of the electronic
relaxation rate on the excess vibrational energy in the excited electronic state of a “harmonic molecule”
which is characterized by displaced and frequency modified potential surfaces. The simple case of dis-
placed potential surfaces was handled by relating the potential surfaces via a simple displacemeut operator.
To handle frequency changes in optical selection we have applied Feynman’s operator techniques
to disentangle exponential operators which involve nonlinear terms. The role of frequency changes in

optical selection experiments was elucidated.

I. INTRODUCTION

Radiationless transitions from a single initial vibronic
level of an isolated! molecule have been of considerable
current experimental and theoretical interest.>~® Recent
work™® has applied the formalism of multiphonon proc-
esses in solids,’®!! utilizing Kubo’s generating function
method, ¥ for the calculation of the radiationless decay
of a Boltzmann-averaged manifold of initial states,
assuming rapid vibrational relaxation relative to the
electronic relaxation rate. This scheme also handles the
decay of the vibrationless level of an isolated molecule,
which corresponds to the zero temperature case.?? The
treatment of the decay of a single initial vibronic level®
is straightforward in principle, but is so tedious that
serious approximations were introduced by several
workers?™ in order to get manageable results. In a
recent work® we applied Feynman’s operator calculus':**
to derive a general expression for the radiationless decay
rate of a single initial vibronic level in a large molecule.
This theory of optical selection rests on the following
simplifying assumptions:

(a) A two electronic state system is applicable,

(b) The molecular vibrations are harmonic.

(c) The decay of each vibronic level | si) corresponds
to the statistical limit.

(d) The quasicontinuous manifold |Zj) does not
carry oscillator strength from the ground electronic
state | 00).14

(e) Interference effect between resonances which re-
sult from a second order coupling between different
zero order vibronic levels | s7), caused by their inter-
action with the same quasicontinuum, may be ne-
glected.

(f) The normal modes are identical in the two elec-
tronic states.

Conditions (a), (c), (d) and (e) are frequently en-
countered in a real life situation. The harmonic approx-
imation (b) is serious, and may lead to an underestimate
of the nonradiative decay probability. Restrictions (f)
and (g) correspond to the expansion of the change in
the potential surfaces AE(Q) = E,(Q) — E;(Q) between
the two electronic states up to first order in nuclear
displacements.

In this work we have extended the operator calculus
technique so that we have been able to derive a general
theoretical expression for the decay of a single vibronic
state in a two electronic level system, which involves
frequency changes. Cross second order terms in AE(Q)
are still neglected [Restriction (f) ]. We have developed
a scheme in which we can evaluate in principle the
nonradiative transition rate to any order in the relative
frequency changes. The first order expressions have
been worked out in a closed form which can be used for
numerical computations.

In Sec. IT of this work we derive the results for a
constant frequency model by an alternative and more
transparent method. This simple physical situation in-
volves just linear terms in nuclear displacement, and
we shall show that in this case Feynman’s operator
calculus is not required. When quadratic terms are in-
volved, we cannot get away with the simple technique
of Sec. I1. In Sec. IIT we demonstrate the application
of Feynman’s operator method to the nonlinear case
and these results are applied in Sec. 1V for the problem
of optical selection in a system of displaced potential
surfaces characterised by different frequencies. In what
follows we shall adopt the notation introduced in Paper
L

Glossary of Symbols

s Initial electronic state
{ Final electronic state

(g) The frequencies are identical in the two elec- |si), |lj)  Vibronic levels
tt:onic states, so that a given vibrational mode is just | 00) Ground state
displaced between the two electronic states. W, Nonradiative decay rate of the level | si)
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L(t) The generating function [Eq. (2.2)] II. RADIATIONLESS TRANSITIONS FROM A
L(t) The x mode contribution of the generating SINGLE VIBRONIC LEVEL IN THE
function [Eq. (4.2)] CONSTANT FREQUENCY MODEL
H, H Nuclear Hamiltonians for the s and [ elec- . . . . .
tronic states . In this section we s'hall provide an alternative deriva-
0 The uth normal coordinate tion of the nonradiative decay rate of a single vibronic
q“ Dimensionless normal coordinate level in a two-electronic-level system characterized by
I;sl ©) Perturbation operator in the nuclear space d.lspla.ced identical potential surfaces. For this physical
[Eq. (2.3)] situation the two potential surfaces can be related by
o Electronic matrix element (for a definition simple displacement operator. Our starting point is
see Ref. 9) the expression for the nonradiative transition prob-
P Number of promoting modes ability:
M General mode index 1 [
K Promoting mode index W= #2 ]_w L(t)dt, (2.1)
F f th d . . .
Lj} Mrz(slsu f)?cti:mogempo cH where L(¢) is the generating function,
m
A, Relati‘vg (dimensionless) displacement of L ()= (i | V,,(Q) exp[iH,(¢/%) V' (Q)
the origin of the u the mode between the : . i
two potential surfaces Xexp[—iH,(¢/f)]] ). (2.2)
Ko Single mode vibrational function (for the  {ging the explicit form for the perturbation matrix
mode g in the electronic state s) "
Vou Population of the mode u in the electronic _ ( i ) 9 _
state s Va(Q) = EC‘” M.22) 80, Kz_:l Ve, (2.3)
(2u)r Averaged (thermal) population of the
mode u [Eq. (2.25)] g .
h Hamiltonian of the mode u in the elec- _ N ( a ) o (_ )
tronic state s L) El(zl Vs exp tHzﬁ (Vo) tesp| —iH, =) | )
Pu Momentum (dimensionless) of the mode u
¢ . e
a,f, a, tChr:zifllgge ind annihilation operators for + Z Z‘ G| Vo exp (sz ) (V. )fe¥p<_lH )|z)
x=1 x/=1
AE Electronic energy gap (E,—E:) oy
N Frequency change (2.4)
£, Relative frequency change [Eq. (4.9)] )
d (v, 1) Promoting mode matrix element [Eq. The second term may be neglected if A,=0 for every
(2.6 romoting mode,’ whereupon
p g p
L =ep (—ibB %) Z 7.0 L a0, (25)
B
where
Te() = (X (Q, ve0) | Vo exp[ihss(¢/5) TV or" expl—ihs (¢/%) ] | Xl Qr, vox) )
= | d(vex, vaxt1) |2 expicod) + | d(vac, vs—1) [ exp(—iwnd), (2.6a)
| d(var, vt 1) 2= | Cor* [*ise(vat-1), (2.6b)
I d('vsky 'Us,('—l) |2=% | Cslk lzﬁwxvsx, (2.6C)
and
8u(8) = (Xuu(qu, Vou) | exp[i(h#+Hicoudugut3Fic0,A2) (8/%) Jexpl—ih#(t/h) 1| Xou(qu, Van) )- (2.7)

We note here that we have changed the definition of g,() relative to that in Paper I [Paper I, Eq. (I1.28) ]
IT &.(®)

so that

pFEK

includes in it the nuclear relaxation energy Eu.

The relevant nuclear Hamiltonians in Eq. (2.17) are
~ 370, (8%/89,%) + 3hiwug?,
= §Fiwu[0%/8 (qut0,) * ]+ 3w (gut4,)%

e A,‘+1ﬁw A2=

(2.8)
(2.9)
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These Hamiltonians may be related by the simple transformation
hs”'l’ﬁquu'{'%ﬁ“’uAnz =€xXp (ipuA) e exp(— iPuAu) y (2.10)

in which p, is the (dimensionless) momentum conjugate to g,. This transformation also holds for any function
of &, so that

gu(t) = <Xw(%u; Vo) l exp(ip,.A,,) eXp[ihs“(t/’ﬁ)] eXp(—iPnAu) exp[—ih;‘(l/ﬁ)] l Xou(qu, Vg) )
= (Xou(gu, vau) | exp[iA,,p,‘(O)] exp[—iA,‘p,.(t)] , Xou(qu, V) )- (2.11)

Making now the following substitutions:

£u(0) = (i/V2) (g, ~a,), (2.12)
Pu(t) = (i/\/?)[aﬂf eXp('L'w“t) — CXP(—iwut) l (2.13)
] Xsu(Qm Vew) >=[1/v8ﬂ!)1/2](aﬁl1) Ven ' O>, (2.14)

Eq. (2.11) takes the form
g(D) = (1/2,1) (0| (a,)** exp[~ (8,/V2) (@t —a,) ] exp{ (A,/V2) [a,' exp (iwut) — ay exp(—iw,t) T} (a,1) "= | 0).

This matrix element may be evaluated by utilizing the following operator relations: 219
exp(xa'+ya) = exp(xa') exp(ya) exp(3xy), (2.16)
exp(xat) exp(ya) =exp(ya) exp(xa’) exp(—xy), (216"
exp(—xat) a” exp(xa?) = (a+2)", (2.16)
h exp(—ya) (a")" exp(ye’) = (a'~y)". (2.16")
Using these relations Eq. (2.15) may be recast in the form
0 =eut 3 DO ey g enpin) 1) .17
where
() = (8,/V2)[1—exp(—iw,t) ] (2.18)
Making use of Egs. (2.1), (2.5), (2.17) and (2.18) we get, after some algebra,
W= ;—’é exp(—% 2“: A2) /_: dt {[; d(ve, vex+-1) exp (—i(AE—ﬁw.‘) %)
+ 37 d(vax, v—1) exp (—i(AE-I—ﬁwK) t-)] expl3 X A2 exp(iwad) ] ] v ff (—AD" I—:-ILC—OS&JL)]—T} . (2.19)
% i u [ — (Deu—1) !(2])?

This result for the decay of a single level was previously derived by us [I, Eq. (IL.45) ].
The case of rapid vibrational relaxation in a medium may also be handled in a simple manner. In this case we
must thermally average the rate W,; [Eq. (2.19) ]. The thermal average equivalent of Eq. (2.15) is

(gu(t) r= <eXP[“ (4,/V2) (0" ~au) ] exp{ (A./V2) [a’uf exp (fwut) — a, exp (—iw.d) 1} >T7 (2.20)

(Ar=T.[exp(—Bh)A],  B=(ksT)™. (2.21)

As the operators in the two exponents in Eq. (2.20) commute with their commutator we may rewrite Eq.
(2.20) in the form:

where

(8.(8) )r=exp{ 14,2 exp (iwut) —exp(—iw,t) ]} (exp[ A (1) au—N* (1) 0" . (2.22)
Using now the well known relation!® .
(exp(4) )r=exp(3{4*)r), (2.23)

where A is a linear combination of harmonic oscillator coordinate and momentum, we get
(gu (1) )r=exp{(4,2/4) Cexp (fwut) —exp(—iwat) 1} exp{3{h(8) aa—N* (1) ¢, P)r}
=exp{ A, [exp (iwt) —exp(—iwd) ]} exp[—3 | M(2) P(2¢u)r+1) ], (2.24)
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(vu)r=[exp(Bfiw,) — 117",

AND J.

JORTNER

(2.25)

Utilizing now Egs. (2.1), (2.5), (2.6), (2.18) and (2.25) we get [, in (2.6) is averaged to give (z.)r:

_ | Csl |2wx
Wor= 24

exp[—3 2 A22{w)r+1) ] fj dt {[[coth(%ﬂﬁwx)—l—l] exp (—i(AE—ﬁwK) %)

+[coth(36%iw) —1] exp (—-i(AE—}-’fm,) %)] exp[2. 342 )r+1) exp(iwd) + 3 34K v)r exp(—twu) ]} .

This is the result for the decay rate of a thermally averaged vibronic manifold, and is identical to the expres-
sion previously given by Freed and Jortner.! Thus we have derived all our previous results in a concise and phys-

ically transparent manner.

III. FEYNMAN’S DISENTANGLING PROCEDURE
FOR THE NONLINEAR CASE

In Paper I we have utilized Feynman’s method to
disentangle exponential operator of the form

exp[it(Fata+Ma'+Na) ],

where F, M, and N are numerical factors.
We shall now extend the same method to disentangle
exponential operators with nonlinear terms:

K= exp(it{Fa*a+MaT+Na-I—G|:(a*)2+a2]} ), B

where G is another numerical factor.
Feynman’s theorem® is

3 exp (AtA(T)dT> €xp </:B(T)d'r>
— exp (fotA(T)dT)cs exp (/OLB(T)dT), (3.2)

where the operator 4 (+) commutes with 4 (7') for r5£7/,
B(r)=exp (— [ 4 (#)dﬁ) B(r) exp ( [ 4 (T')dT') ,
0 0
(3.3)

and 3 is the time ordering operator defined by Feyn-
man.’® We now use the following operator relations:

exp(—pa'a) (a')" exp(ua'a) = (a")" exp(—un),

(3.4a)

exp(—pa'a) a* exp(uata) =a” exp(un), (3.4b)

exp(—ua) (a?)™ exp(pa®) = (a'—npa~)",  (3.4c)
exp[—p(a")*Ja exp[u(a")"]=La+nu(a") 1]

(3.4d)

together with Feynman’s theorem (3.2) to disentangle
K. The first step is simple and corresponds to the usual

transformation into the interaction representation:
K =exp(itFa'a)3 exp (i /l [M exp(—iFr)at
0
+N exp(iFr)a+G exp(—2iFr) (a*)?
~+G exp(2iFr) aﬂd-r) . (3.5)

In the next step we disentangle the (a)? term. To
achieve this goal we have to replace each a by

a=a+2G( [ 4’ exp(—2iFr") ) at
d=a (j; exp(—2¢ )) a
=a+(G/F)[1—exp(—2iFr) Ja (3.6)

according to Eq. (3.4d). Note that the change is of
first order in G/F. The result is

K=exp(itFa'a) exp[ (G/2F)i:(t) (a)?]
Xexp[— (G*/F)t— (G*/F*)w* (1) ]

X3 exp (i f Cdrl— (26 F)7 () a'a

+[M exp(—iFr)+Niu(r) exp(tFr) (G/F) Ja*
+N exp(iFr)a+G exp(2iFr) (G/F) (1) F(a")?

+G exp(2iFr)a2}> , (3.1

where

(1) = 1—exp(—2iF7) (3.8)

The time ordered part of the right hand side of Eq.
(3.7) is similar in structure to the operator K itseif,
given in Eq. (3.1). That means that we may repeatedly
disentangle this expression along the lines described
above. Every cycle generates terms of higher order in
G/F. This procedure may be continued to any desired
order.

The final step will be to disentangle the a' term,
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retaining within the time ordered part of (3.7) only
the operators ¢ and @2 The time ordering operator
may be omitted at this stage. The result is

K=010s, (3.9

with®®
Q1=exp[—i(G¥/F)t— (G*/2F)w* (1) +8 () +-- -],
(3.10)

3(¢) =i/' dr[Ny(t) exp(iFt)+Gvy(1)? exp(2iFt) ],
0

(3.11)
y(t) = (M/F)#(t) +(NG/F?) exp(—iFt)[#(t) P+---,
(3.12)
() =1—exp(—iFt), (3.13)

Q:=explit(F+--+)a'a]
Xexp{[(G/2F)s () +- -+ 1(a")?}
Xexp({ (M/F)i()+ (NG/F?)
Xexp(—iFt)[i* (1) P+ - - }a')
Xexp({— (N/F)a*() + (GM/F) [i* () P+ - - }a)
Xexp[— (G/2F)#*(H)a*]  (3.14)

IV. RADIATIONLESS TRANSITIONS FROM A
SINGLE VIBRONIC LEVEL WITH
FREQUENCY CHANGES

We now turn to the task of generalizing the result
(2.19) to the case where the potential surfaces of the
two electronic states differ not only in their origins but
also in the frequencies of the normal modes.

Our starting point will again be Eq. (2.1). Expres-
sion (2.5) for L(#) is still correct provided that A,=0
as the second term on the rhs of Eq. (2.4) vanishes
because of symmetry restrictions.? Equations (2.6) for
the d terms and Eq. (2.7) for g,(f) should of course be
modified. In order to perform this extension we start
from the nonvanishing part of Eq. (2.4)

L()= él‘(l), (4.1)
Lx(t) = (i | Vo expliH,(t/5) TVt
Xexp[—iH, (/%) ]| 1). (4.2)
For Vit is easy to get
Vor=Cor (ih/ M) (3/9Qx) = — Cor*(Fiwwe) 2, (4.3)
where
pe=—1(3/0q) = (i/V2) (&' —a). (4.3

2083

The Hamiltonian H, is
H,= Z b=~ Z (ﬁz/ 2M n) (62/ aQM) +%M M2quu2-
N B

(4.4)
For H; we may write

H=—AE+ X b, (4.5)

where AE is the electronic energy gap and 4 is to be
obtained from %# by shifting the origin and changing
the frequency. First we make the transformation
Wt to get

}.Ll"= - (ﬁQ/ZM“) (62/6Qu2) +[1+ (nn/wﬁt) ]2% (ann‘l) Quz-
(4.6)

Transforming now into dimensionless coordinates by
the substitution

Qu= (M yw./h) II2Q“’

the expressions for 4 and & become

h# = — T, (8%/99,%) + 3 iong, (4.7)
ht#*= —3Fieu(9/0q,3) +[14 (/) PhFicong,?
= 37i0u (9%/8¢,%) +3Hiwu (14-£.) 0.7, (4.8)
where
= (2me/n) + (/i) (4.9)

h#* may now be written in the form [analogous to
Eq. (2.10)]
hz“=exp(ip“A,,)}-zz" exp (—ipudy), (4.10)

so that, in terms of creation and annihilation operators,
we get

ht=Hwata,, (4.11)
hi# = exp (ipuly) {fiw, (14-38.) au'au
+ b (a.1)Fal+ 1]} exp(—ipub,), (4.12)

with p, given by (4.3a). In Egs. (4.11) and (4.12) we
have neglected a constant factor 37, which is going
to be cancelled anyway after substituting in Eq. (4.2).

Making use of Egs. (4.12), (4.11), (4.5), (4.4),
(4.3), and (4.2), we get

Lr(t) =Fiea | Co* [* exp[—iAE(t/%) ]
Xexp[ (i/4) 22wkt Vi (8) H¢gu’(t), (4.13)

where J./(¢) and g,/ () represent a generalized version
of the J, and the g, terms of Sec. II, and are given by

T () = (v | P exp(t{on(14+3£) ala.
%wx&[(axfy‘"axz]} A exp(—itw.(a‘*ax) l vee)  (4.14)
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and
g/ ()= (Von | exp(ipuly) exp Git{w.(1 +%£u) aa,
+ %w,‘f,.[(d,.*) 2+au2]} ) €xXp (—ipuby)

XGXP(—'”“’#GJ“M) l Tou ),

| vsn>= (Veu !>-1/2(a“‘r) Vs I 0).

Our aim now is to recast expressions (4.14) and
(4.15) in a computable form. We begin with the ex-
pression for g,/ (¢) and rewrite it in the form

g/ () =explitw,[(1+£) (42/2) — ]}
X (vou | exp Gt{en(1+38) a'a,
+(8,/V2) w0, (14+4,) (e, +a,)
+iedl (@) +a 1)) [ o) (4.17)

It is straightforward now to utilize (3.1), (3.9), and
(3.11), with

(4.15)

where
(4.16)

Fi=w,(1438),  Gu=1wd,
M, (=N,) =w,(14£) (A”/\fZ) (4.18)
to get
g/ () =Uu() Vioowoon(t) explitwu(buve/2) ], (4.19)

where U,(#) =Qu(1) explitw,(1+8) (42/2)] [Qu(0) is
given by Eq. (3.10) with F, M, and G defined by
Eqg. (4.18) 1 is a function which does not depend on
Uy, and

V“Paur"w(t) = <'Z)w l exp[)\z“(i) (aut)2]
Xexp{[A# () +0e() Jau'} exp{[—M* () +24(8) ]

Xexp(iFul) a,} exp[~M*(1) 0] [ 0,), (4.20)
NA() = (M/F) [1~exp(—iFu) ],
M(1) = (G,/2F,) [1—exp(—2iF0) ],
NA(D) = (M,Gu/ B [* () F exp(—iF,d).  (4.21)

With the J./ term we shall deal in a similar manner,
noting that the p« terms yield four different matrix
elements. The result is

JS () =R (1) exp[lon(£va/2) JA(L), (4.22)
where R.(¢) =(:(t), with F and G given by Eq. (4.18)

where

A. NITZAN AND 7J.

JORTNER
and with M =0, is again a function which is independ-
ent on the initial occupation numbers v,,, and
A(8) = v exp[ —itwe (14-3£) TS o (1)

+ (vct1) explitor(14-38) JS2eettoecti(1)
F [ (Vo1 ]2 {exp[iteo, (14-5£0) ]S,2ertt vt

+exp[ — it (14+3£) ]S tmeetl() ), (4.23)

with
Sere2(8) = (o | exp[h*(8) (ah) 2] exp[ —N* () ad] | w).
(4.24)

This is a special form of » [Eq. (4.20)] corresponding
to )\1= )\32 0

Inserting Eq. (4.20) and (4.22) into Eq. (4.13), we
get the following expression for £5(f):

Lx(#) =t | Cor* [* exp[—1AE(t/%) ]
Xexp[ (4/4) 2- wakul JR(2) [LI Uu(0)]

Xexp[(i/2) 2 wuénvut]AK(t)[I#I Vewon(t) ], (4.25)

The functions R, and U, can be expressed to any de-
sired order in £. We note that if we use the expressions
for R, and U, up to the first order we get an extension
of Freed and Jortner’s first order result® for the case
1> 0. However, this first order result is open to criti-
cism, An examination of the functions R,(¢) and U,(?)
reveals that their structure is essentially of the follow-
ing form:

exp[O(§) exp(iwt) +O(#) exp(2iwt) ].

In an attempt to simplify their general result, Freed
and Jortner’ neglected the higher order terms in the
exponent. This function is yet to be Fourier-trans-
formed, which means that this approximation is not
justified (Appendix A). So we cannot get away by
taking R,(¢) and U,(¢) in low order for the calculation
of the component L*(f) of the generating function.
This difficulty may be overcome by substituting for
the term R,(¢) and U,(#) an alternative form which is
valid to any order, while the matrix elements S and V
are retained to first order in £ To this end we note that
15.=0 (for every u), L*({) must be given by the exact
result of Jortner and Freed,® which we denote by D*:

(4.26)

) = Anexp (-

= | Co P exp[—iAE(t/R) ] f(1) 11 fu(D), (4.27a)
(1+"lu/wu)‘1AM2{ l'eXP[i(wu+nu) t]} ) (4.27b)
(2+77u/wn) (I4n/wp) 71— (/) (1+n./wu) ™ eXPD (wutma) t] ’
(ne/we) )
m {1—exp[2¢(wetne) t]}) , (4.27¢)

Fe(8) =3 (14ne/w0) V2 (wetne) Ax expli(wctn) ] <1+
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and where
1
Au= exp _%inﬂt) [(1+77u/wu)_1+ <_

That means that L*(f) may be recast in the form

Le(t) = D"{exp[ith( 1+%£x) ]le'l(t) }—1 exp(%i Z wuguvaﬂt) Ax

2 14/,

11 2085

w. \2 —1/2
'ﬂ/_“) {1—6Xp[2’i(w,.+n,‘)l]}i| (4.27d)
J IR ACTOR (4.28)

B

A simpler expression may be obtained for the common case in which #,,=0 for every promoting mode. Then

Eq. (4.28) will be reduced to

L*(2) (v=0) = D* exp (31 D, wubuveul) 1 Vurowos(4). (4.29)
n uF*x
The last step is to evaluate the matrix elements V, and S,. These matrix elements are of the general form
Z*(a; B;v; 8) = (ulo!)7%(0 | &° exp[a(a’)*] exp(Ba’) exp(va) exp(da®) (a')* | 0), (4.30)
in terms of which we have
Vrvo(t) = ZoooD Ak (1) ; ME () 0 (8) 5 — M (1) 0 (1) exp(iFut) ; —M\* (1) ], (4.31)
Seroe(f) = 2200 (1) ; 0; 0; — A () ] (4.32)
For Z we get (Appendix B)
min{ v—r,u—q}
AMCH L HOEICT T R ' x 2, 20Dtad d(r)d(g)
=0 qe=0,2w—l,u =02 io—l v riglsi{v—r—s) (u—q—s) |
Xa(l/?)rﬁv—r—s,yu——q—aa(lﬂ)q, (433)
where
d(2n)=1X3X5X++ X (2n—1). (4.34)

Equations (2.1), (4.1), (4.23), (4.27), (4.28), (4.31),
(4.32), and (4.33) summarize our derivation of a com-
putable form of the nonradiative decay rate in the
nonlinear case. Equation (2.1) now gives the decay
rate of the level | si), where L(#) is given by Eq. (4.1)
as a sum over the contributions of all the promoting
modes. This contribution L*(¢) is given by Eq. (4.28)
in terms of Freed and Jortner’s® zero temperature re-
sult, Eqs. (4.27a)-(4.27d), and the auxilliary functions
A() Eq. (4.32), Sivex(d) [Eq. (4.32) ] and V,oroa(t)
[Eq. (4.31)]. In these functions the relevant matrix
element Z** is given by Eqgs. (4.33) and (4.34). The
integration over f may now be performed numerically
using the procedure described in Paper 1.

V. DISCUSSION

In this paper we have provided a theoretical treat-
ment of the nonradiative decay of a single excited
vibronic level of a large “statistical” molecule, using a
two electronic state model characterized by displaced
and frequency-modified harmonic potential surfaces.
All the previous treatments of the related problem
concerning the decay of a Boltzmann averaged mani-
fold, which consider changes in the molecular frequen-
cies between the two electronic states, resulted in
complicated approximate expressions. These complica-
tions arise from the fact that the coupling between
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electronic states is taken to contain second order terms
in the nuclear displacements [Eqs. (4.8) and (4.10)],
while if only origin shifts are taken into account, the
coupling contains only first order terms in these dis-
placements. We are aware of three previous works in
which attempts have been made to include frequency
changes in molecular nonradiative transitions theory.
Freed and Jortner® have derived the exact result for
the zero temperature case, which we have also used
in the present paper [Eq. (4.27)7]. Their attempt to
simplify this exact result by expanding to the first
order in small parameters is, however, open to criticism.
We have demonstrated above that this expansion of
the exponent of the generating function in powers of
£e®t where £ is small, is illegitimate, as higher powers
of et may substantially contribute to the Fourier-
transformed final result for the transition probability.
[See the discussion concerning Eq. (4.26) and Appen-
dix A.] An earlier attempt by Lin and by Lin and
Bersohn’ to include frequency changes in their treat-
ment of the thermally averaged decay probability is
also incomplete for the same reasons. Another treat-
ment by Fischer'® is unjustified due to other reasons.
This author included frequency changes by taking the
nuclear Hamiltonian in a particular electronic state # to
be of the form

2 fwrata+ 2 g, (' +-ay) (5.1)
# #
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where w,* is the frequency of the uth normal mode in
the electronic state #, and g,» is related to the origin
shift of the potential surfaces of this electronic state.
However, the author has disregarded the change in the
creation and annihilation operators themselves due to
the frequency changes. In fact, the creation and annihi-
lation operators for a harmonic oscillator are defined by

a= (Mw/208)""[q+ (ip/Mw) ], (5.2)
= (Mw/27)""[q~ (ip/Mw)], (5.3)

where ¢ and p are the coordinate and momentum of the
oscillator, so that if o't and ¢’ are the corresponding
creation and annihilation operators for an oscillator of
the same mass and a different frequency «’, the follow-
ing relations hold"”

@' =& a'+&a,
II’T = 81(1+82(1T,

8= 5[ (w'/w) = (w/w) V%],
8y=3[ (o' /) 2+ (w/w) V2],

Fischer’s relatively simple result is thus an outcome of
an approximate treatment.

In the present paper we have also utilized an expan-
sion of the generating function in powers of £ exp (iwt)
but this expansion is performed on that part of the
generating function which even in its lowest order form
contains contributions of higher powers of exp(iwt)
[Eq. (4.33) ], so that it is sensible to expect that in this
case the expansion will not cause a serious error.

In order to get some insight into the nature of our
final result it will be useful to inquire what properties
which were obtained for the simplified constant fre-
quency model are conserved in our more general case.
For the simple model without frequency changes (see
Sec. IT) we have found that:

(5.4)
where

(1) The generating function can be recast as a prod-
uct of separate contributions from different vibrational
modes. In particular, we may factorize the contribu-
tion of the promoting mode from that of the accepting
modes.

(2) The generating function consists of two terms,
one which is proportional to v,, while the other behaves
like v,,+1. This leads in a case of a large energy gap
to the relation®

I/I/vsi('vax¢())/[/Vsi('ualtzo)E Z (21’6K+1) ’

indicating the enhancement of the nonradiative decay
of vibronic levels which contain promoting mode(s).

(3) The simple result, Eq. (2.19), demonstrates the
propensity rule for the promoting mode, namely that
it must gain or lose one quantum of vibrational excita-
tion in the electronic transition.

(4) The simple result Eq. (11,19) yields (via nu-
merical calculations)® an exponential increase of the

A. NITZAN AND J. JORTNER

decay rate as a function of initial excess vibrational
energy in the statistical limit, and a varying behavior
in the small electronic energy gap case.

Turning now to our theoretical result for optical
selection studies including frequency changes, the fol-
lowing remarks may be made:

(a) The generating function may still be factorized
into independent contributions of normal modes. This
factorization holds as long as we do not introduce
mixed second order terms into the coupling, which will
then lead to different normal modes in the two elec-
tronic states.

(b) The effective energy gap is now modified by an
additional term of the form % ), ., (including the
term which corresponds to the promoting mode).

(c) The generating function contains now four addi-
tive terms [see Eq. (4.23)], but for v,,=0 we shall get
only one term as in the simple case.

(d) The terms which appear in A(¢) [Eq. (4.23)]
still contain the promoting mode frequency in a way
which leads in the simple case to the propensity rules
for this mode, However, in the present case the energy
gap is modified by the term 3w.@. [see (b) ], and also
by terms appearing in S..

(e) Conclusion (2) for the simple case will not hold
as the dependence of the result on v, is now very
complicated.

(f) If the promoting mode does not change its fre-
quency, we shall regain all our previous conclusion
which concerned it (propensity rules and dependence
on vy).

(g) When all the frequencies are set equal in the
two electronic states the new general result (Sec. V)
reduces to the simple case, Eq. (2.19), providing a
good consistency check.

(h) It is plausible that the numerical results for
optical selection including both origin shifts and fre-
quency changes will not modify qualitatively our pre-
vious conclusions.” This suggestion rests on the fact
that qualitative considerations which involve the effects
of the density of states and of the Franck—Condon
factors will not change. So we will expect that the
decay rate in the statistical limit will increase in higher
initial levels and will exhibit varying behavior in case
of small electronic energy gap. To obtain quantitative
results one must, of course, perform the numerical
calculation as prescribed above. This is a straightfor-
ward but cumbersome task.

APPENDIX A: A COMMENT ON THE
CONVERGENCE PROBLEMS

Suppose, for example, that £/w is an even integer
and we want to compare

f * @t exp[—iEt-+£ exp(iot) ]
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and
/ dt exp[ —iEI+-2 exp(2ict) .
Expanding the integrand in the form

explt explion)J= 3 L explinar), (A1

it is easy to get
/” dt exp[—1Et+£ exp(iwt) =21 3, %6(E—nw).
—w n=0 7.
(A2)

In the statistical limit it may be shown that
8(E—nw) may be replaced by 6gne, so that we get
2x[(£)El*/(E/w) !]. In the same way we get

(£2) Bl
(E/2w) 1’

which is greater than the first result for every £ Of
course higher order terms may vanish. If E/kw is not
an integer, the kth order term will not contribute. That
means that the sequence will converge even if the lower
contributions will not diminish regularly.

/w dt exp[ —iEt+ £ exp(2iwt) ]=2r (A3)

APPENDIX B: EVALUATION OF
MATRIX ELEMENTS

Starting from
Z=(ul!)~2{0 | a® exp[e(a’)?]

Xexp(Ba') exp(va) exp(da’) (ah)*[0) (B1)
and using Egs. (3.4c) and (3.4d), we get
Z=(ulw)~V2{0 | (a+2aa’+B)*(at+28a+v)* | 0).

(B2)

It is easier to evaluate the generating function of this
matrix element

Z=(ul!)~120 | exp[p(a+2aa’+8)]
Xexp[e(at+26a+7)]]0)
= (wlo1) 1" explag®) exp(8p) exp(po)

Xexp(ye) exp(ds?) (B3)

2087

In terms of Z we have
Z=(0"Z/8p°36") |pmgmo. (B4)

In performing the derivatives we make use of the
relation

" /aX" exp(aX?) |;=0=0 if  is odd
=1X3X5X -+ X (n—1) (2a) "2
if # is even. (BS)

Using this, Eq. (4.33) is reached after some algebra.
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