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In this paper we consider the nonradiative intramolecular decay of a large molecule utilizing Born-
Oppenheimer wavefunctions as a zero order basis, and bypassing the conventional Condon approximation
for the calculation of the electronic coupling matrix matrix elements. The electronic adiabatic wavefunctions
are expanded in terms of the Wigner-Brillouin perturbation series in the weak electronic-vibrational
coupling limit. We have applied a generalized version of Feynman’s operator calculus to derive general
expressions for the nonradiative decay probability of a statistical harmonic molecule characterized by
displaced potential surfaces. Numerical calculations were performed for the decay of the vibrationless
excited electronic state in the “non-Condon’ scheme. The numerical data for the decay rate in a two
electronic level system in the weak electronic vibrational coupling limit exceed the results obtained invoking
the Condon approximation by 2-3 orders of magnitude; the exact correction factor depends on the molecular
parameters, and, in particular, is roughly proportional to the square of the (frequency normalized) electronic
energy gap. Finally, the relevant off resonance coupling terms in the adiabatic representation are shown
to be appreciably smaller than the near resonance coupling terms, demonstrating the superiority of the
adiabatic basis over the crude adiabatic basis in describing electronic relaxation processes.

I. INTRODUCTION

The Condon approximation for radiative transitions
in molecules and solids rests on the assumption that
the electronic wavefunctions exhibit a weak depend-
ence on the nuclear coordinates, whereupon the electric
dipole matrix elements (connecting Born—Oppenheimer
molecular states) can be factorized into separate elec-
tronic and nuclear parts.! This approximation is justi-
fied for strongly allowed optical transitions, while for

symmetry forbidden transitions (to degenerate states)
the inclusion of linear (and quadratic) terms in nuclear
displacements provides the idealogical basis for the
well known Herzberg-Teller scheme.? The Condon
approximation has been extensively utilized in the
theory of nonradiative processes in solids*™® and non-
radiative transitions in large molecules.5™* The intra-
molecular coupling matrix elements between the zero
order vibronic states ¢.(r, Q)x,:(Q) and ¢:(r, Q)x:1;(Q),
in the adiabatic representation, are of the general form

Vi = (x::(Q) | {es(r, Q) [ 8/9Q | ¢u1(1, Q) )+ (8/8Q) | x15(Q))
+3(::(Q) | {eu(r, Q) | (8/0Q) - (8/3Q) | a(r, Q)) | x15(Q))

= ("“’(Q) 7.Q)~ Q)

where 1 are the electronic coordinates, Q represent the
nuclear coordinates, U(r, Q) is the electrostatic molec-
ular potential, while E,(Q) and E,;(Q) correspond to
the adiabatic potential energy surfaces which corre-
spond to the two electronic states. Finally, ( ) and
( ) represent integrations over nuclear and electronic
coordinates, respectively.

Following conventional trends!'? in the theory of
nonradiative processes the following approximations
are introduced at this point:

(a) The second contribution in Eq. (I.1) is dis-
carded.

(b) The energy denominator F,(Q)—F,(Q) is as-
sumed to be weakly dependent on the nuclear co-
ordinates and is set to be equal to a constant (say, the
electronic energy gap).

(c) The electronic matrix element (g, | dU/8Q | ¢;)

(e, Q) [3U(r, Q)/3Q | ¢i(r, Q)) 3
3Q
1i(Q) | {eu(x, Q) | (9/8Q) - (3/0Q) | eulx, Q)) | x1s(Q)),

xu(Q))
(L.1)

is assumed to be a slowly varying function of the nuclear
configuration.

Thus Eq. (1.1) is replaced by the approximate rela-
tion
V.. A <‘Ps(rv QO) I (aU/aQ) |Q(I‘Pl(r1 Q0)>
E.(Qo)—F(Qo)

d

(0@ | 5| @) (12
We should note that assumptions (b) and (c¢) pro-
vide necessary conditions for the validity of assump-
tion (a), as each of the matrix elements in (L.1) does
not separately involve an hermitian operator. Assump-
tions (b) and (c) constitute the Condon approxima-
tion for nonradiative transitions.
A number of recent publications® " criticize assump-
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tion (b). Sharf and Silbey® have originally pointed out
that the dependence of the energy denominator on
nuclear coordinates in Eq. (I.1) may lead to a serious
underestimate of the intramolecular coupling matrix
element calculated from (1.2), which is smaller by
about one order of magnitude than the result obtained
by utilizing the crude adiabatic functions as a zero
order basis set. We note in passing that the choice of
zero order basis set for describing a quantum relaxation
process is arbitrary, as long as this basis is complete
and a proper zero order Hamiltonian and perturbation
operators are defined in a self-consistent manner. The
crude adiabatic basis set has a serious drawback as the
off resonance coupling terms with other electronic states
are large, exceeding by about one order of magnitude
the off resonance coupling terms in the adiabatic repre-
sentations (see also Sec. V). Thus, only the adiabatic
set is adequate for a proper description of the non-
radiative decay in a two electronic level system, when
the role of other off resonance excited states is dis-
regarded. Nevertheless, Sharf and Silbey’s criticism of
the Condon approximation for the calculation of intra-
molecular coupling utilizing adiabatic wavefunctions
is perfectly valid. In this context Siebrand! has applied
a simple physical model to calculate the correction
term to (1.2) arising from bypassing assumption (b),
concluding that Vi ;4 is increased by a numerical
factor of 2-3 (so that the theoretical nonradiative
transition probability is increased by about one order
of magnitude.’® Also, Sharf and Silbey'® have recently
taken into account the Q dependence of the electronic
integral. From an approximate calculation of the non-
adiabatic coupling matrix element, Sharf and Silbey®
concluded that the near resonance coupling term is of
the same magnitude in the adiabatic and in the crude
adiabatic schemes, while for off resonance states the
crude adiabatic coupling exceeds the adiabatic coupling
by 1-2 orders of magnitude. The validity of the Condon
approximation for the calculation of nonradiative tran-
sition probabilities in solids was questioned by
Kovarskii.” Utilizing Feynman’s operator calculus!® and
taking the electronic—nuclear coupling term to be of
first order in nuclear coordinates, the formalism of Lax*
was extended to the non-Condon case. This treatment
is limited to the case of impurity centers in solids,
where the normalized (dimensionless) shifts of the
origins of the potential surfaces, A:, are appreciably
smaller than unity and one can get away with discard-
ing second order terms O(A.2) in the generating func-
tion.

In this paper we derive a general expression for the
nonradiative intramolecular decay rate of a zero order
Born-Oppenheimer molecular state without invoking
the Condon approximation, in an attempt to resolve
the following questions:

(1) What is the error introduced by the application
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of the Condon approximation for the calculation of
nonradiative transition probabilities? In this context
one has to consider both the nuclear dependence of the
energy denominator and of the electronic wavefunction.

(2) How does the relation between the Condon ap-
proximation and the general result depend on the molec-
ular parameters?

(3) To what extent does the present general treat-
ment, which bypasses the Condon approximation,
modify previous conclusions concerning the general
features of molecular nonradiative transitions (i.e., the
isotope effect,*® the energy gap law,”® and optical
selection effects®®), which were derived within the frame-
work of the Condon approximation?

We shall apply a generalized version of the generat-
ing function method to recast an expression for the
nonradiative transition probability without invoking
the Condon approximation. Our treatment differs from
the previous work of Kovarskii” as in the molecular
case we cannot utilize expansions in the linear coupling
parameters Ay, and our results are valid for A;~1. The
present extension of Kovarskii’s procedure is in fact
equivalent to Rickayzen’s modification® of Lax’s work*
on radiative and nonradiative transitions in solids within
the framework of the Condon approximation, which
was also utilized recently by us for the study of optical
selection in molecules.” In what follows we shall derive
rather complicated general expressions for the non-
radiative decay rate in a large (statistical) “harmonic”
molecule characterized by displaced potential surfaces.
Numerical calculations performed for the decay of a
vibrationless molecule level (i.e., the zero temperature
case for a molecule imbedded in an inert medium at
zero temperature) demonstrate the nature of the serious
deviations introduced by the Condon approximation
and their dependence on the relevant molecular param-
eters. Finally, it is encouraging to discover that the
general relations and correlations previously obtained
in the theory of nonradiative molecular processes are
not affected by bypassing the Condon approximation.

II. THE ADIABATIC ELECTRONIC FUNCTIONS

In this section we shall apply general perturbation
theory” to obtain approximate adiabatic electronic
functions as explicit functions of the nuclear coordi-
nates. The conventional adiabatic electronic equation is

(T,+U(r, Q))e(r, Q) =E(Q)e(r, Q), (IL1)

where T, is the electronic kinetic energy, and ¢(r, Q)
is the electronic function, which depends parametrically
on the nuclear coordinates Q.® Applying perturbation
theory we choose as a zero order Hamiltonian the elec-
tronic Hamiltonian at some constant nuclear configura-
tion Qo,

H0=Tr+U(r> QO) (112)
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assuming that the perturbation may be taken to first
order in the deviations q=0Q—Q, from this fixed con-
figuration

Ve=Ul(r, Q)= U(r, Q)= X (8U/3Qu)oqu. (IL.3)

The validity of this approximation depends of course
on the choice of the configuration Q.

The zero order electronic functions will be denoted
by ¢.2(r) or by | %) in Dirac’s notation (# is the elec-
tronic quantum number), while the corresponding
exact adiabatic functions will be denoted by ¢.(r, q)
(the nuclear coordinate being measured from the con-
stant configuration Qo). Applying the Wigner-Brillouin
perturbation expansion one gets”

L (1] V] (@)
‘Ps(r; q) =¢s (r)+ % E.q(q)—EnO
(m [ Ve|n)n|V.]s)

LE.(q) — EILE.(q) — EnY]

AL
=0+ E 0= Fu

+ X'y

m n

‘pmo(r)+ e

‘Pno(r)

R ALCIAD,
L =BT E (0 —Fa(@)]

msEn

ST+,

(I1.4)

where E,(q) is the exact electronic energy of the nth
electronic state, E,° is the corresponding zero order
energy (which is an eigenvalue of H,), while
E.(@Q=ESM(n| V. |n) (I1.5)
is the energy in first order. The prime in these expres-
sions denotes exclusion of the state s from the summa-
tion.
A condition for the validity of Eq. (IL.4) is
<" ' V. I ")/[Es(Q) _En0]<1 (IIG)
for every n. Now, if the constant energy E, exceeds
the minimum value of E,(q), there may exist {(and in
the harmonic approximation we shall always encounter)
a value of q for which E.°=F;(q). For such configura-
tion q and near it, the approximate description (II.4)
of the adiabatic function ¢,(r, q) breaks down. We
conclude that Eq. (I1.4) provides a proper description
of ¢(r, q) for Q values which are not far from Q,—the
nuclear configuration for which E, is minimum. Thus
for a single electronic state it will be convenient to
choose Qo=0Q,. When two relevant electronic states
are encountered, we must require for the sake of con-
sistency that these electronic states will be character-
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ized by small relative displacements of the origins of
their potential surfaces. The present representation of
the adiabatic wavefunctions is thus valid for the weak
coupling limit,® A<1. (A denotes these reduced dis-
placements). The fixed configuration Qy is then chosen
to be close to the minimum of both electronic surfaces.

We now approximate Eq. (I1.4) by neglecting all
the terms which include nondiagonal matrix elements
of V. with powers higher than unity, to get

Sas(r) q) Z‘Pso(r)

+ 2 {{n | Ve | )/LEAQ) ~En(@) Nea(x).  (IL7)

Strictly speaking we must add here a normalization
factor, of the form

(X0 (n | Vels) ¥/ E(q) ~Eu(Q) [21}7,

but in the following discussion this small correction
term will be disregarded.

We shall now follow Kovarskii” by taking the fol-
lowing approximate relation for the energy denomi-
nators in (I1.7):

E(Q)—E.(Q)~E~E~ ¥ fiw, A, (I18)
n

where A, is the (dimensionless) displacement of the
projection on the uth vibrational mode of the potential
surface of the nth electronic state relative to that of
the sth electronic state; while g,=Q,—Q¢*=0,—0Q*.
E and E,? are the zero order electronic energies taken
at Q,. Note that

L= % Z ﬁwp ( AM") 27
n

which represents half the Stoke’s shift and which
usually appears in this place, is contained in the defini-
tion of E,°. This is just the amount by which E,
exceeds the minimum of the nth potential surface.

In all fairness we must confess that the approximate
relation (I1.8) seems to be somewhat doubtful. The ex-
pansion to first order in q is, of course, valid. The major
difficulty pertains to the validity of the definition of
the A, terms, or, in other words, whether these terms
can be identified with the displacements obtained ex-
perimentally from spectroscopical data. This identifi-
cation is equivalent (for harmonic potential surfaces)
to the approximation

Ei(q) —E.(q)~E.(Q) — E.(q).

In Appendix A we see that this approximation is
valid provided that the two relevant electronic states
(involved in the nonradiative process) are much closer
to each other than any other electronic state. We con-
clude that in this case the relevant adiabatic electronic

(IL.9)
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functions are given [according to Eq. (I1.7) ] by
(1, q) = (r)

+ X7 {{n | Vel )/ [E(@) —Ea(@) Teu(x), (I1.10)
ei(r, q) = (1)
+ X' | Ve | D/LE(Q) ~Ea(@) e (x), (IL11)

where the q dependence is given by Eqgs. (IL.3) and
(T1.8) 2

III. THE GENERATING FUNCTION

In this section we display the nonradiative decay
rate of an excited electronic state of a large molecule
in terms of the corresponding generating function, with-
out applying the Condon approximation.

3363

The nonradiative decay rate in a large molecule is

Wei= (27|'/ﬁ) Z I Vsi,IjA !23(Elj_Esi); (IIIl)
i

where | si) denote the vibronic component 7 of the
electronic state s, and W,; is its decay rate into the
quasicontinuous manlfold of the vibronic level= |17} of
a lower electronic state I.

The states |/f) and |si) are taken to be Born-
Oppenheimer states: |lf)=¢;(r, Q)x:;(q); |si)=
@s(1, qQ)x:i(q), where q is the normalized nuclear co-
ordinate meagured from the minimum of the potential
surface of the sth electronic state. In the harmonic
approximation x,:(q) is a product of harmonic oscil-
lator wavefunctions centered around q=0, while x;;(q)
is a similar product of harmonic oscillator wavefunc-
tions which are shifted in origin by a vector A. The
matrix element in Eq. (II1.1) is

Vet = (xu(Q) [— Z fiwnloi(r, @) | 9/3u | 0u(r, 4))(8/0gu) =% 3 finleu(r, @) | 8%/8g.2 | 04(r, ©)) | x05(a))-

(II1.2)

Utilizing (11.10) and (I1.11) we get for the matrix elements in the rhs of Eq. (II1.2)

<‘Pl(r, q) l a/aQ# | ‘p-‘?(ry q) >=

H UG )/ TE(Q) =B @+ X (] Ua | 5)g2(8/0¢,) [E. (1) —En(@) T,

(T1L.3)

Heulr, @) [02/09.2 | @(r, Q))= (| Uy | 5)(8/0g)[E(Q) —Ei(@) T +3 T (1| Ua | 5)q2(8%/09.2) [Es(q) —Ei(Q) T,

(I11.4)

where U,=(8U/8(Q.)q,- In these expressions we have neglected the terms which involve more than one non-
diagonal matrix element of V.. This assumption immediately implies that the | ) states in Egs. (I1.10) and (11.11)
(where n#s, I) do not contribute to the matrix element in first order.

Inserting (I11.3) and (II1.4) into (II1.2) we get

Viigi=— (i(Q) | La | x5:(q) ),

where

La=

<ll Ullls> a ~ a
Fiog {| —A 12 v L R — B T | 2
P {[Es(q)—Ez(q) + >a: ¢l1Uals) aq, [E.(@) - Ei(q) ] ]

(IIL5)

g,

FU U - DB =@+ 0] 0, I [E (Q)— E(q)J—}. (I1L6)

It will be convenient to rewrite Eq. (III.6), separating out the promoting modes, k=1.-

+ P, which are character-

ized by (!| U, |s)70. For these modes we shall assume? that A,=0. From Eq. (I.8) it is thus clear that the
energy denominators in Eq. (ITL.6) do not contain coordinates of the promoting modes, whereupon the third
term on the rhs of Eq. (IT1.6) will vanish. Equation (III.6) may be now recast in the form

Li= T fio | Ud| s)/[E(Q) —E(q) 1} (8/8¢) + ¥ (X (| Us | 5)g.) (8/84,) LE.(q) —Ei(q) T

+3 2 feo(Z (| Us| 5)ge) (82/09,5) [E(q) —Ea(g) 1.

The following remarks are in order:

(a) Looking at the exact expression for L,

(ei(r, q) | 8U(r, q)/9qc | 0:(1, q))

(I11.7)

LA= Zﬁa’x

E.(q)—E:(q) ’

(IT1.8)
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we notice that the first term in Eq. (1I1.7) is identical
with what we obtain from Eq. (III1.8) by replacing
(1, q) and ¢, (1, q) by ¢,(r) and ¢,°(1), respectively,
by taking U(r, q) to first order in g and by making
use of Eq. (I1.9). Thus the first term in Eq. (IIL.7)
includes the dependence of the energy denominator on
the nuclear coordinates, disregarding the change of the
electronic wavefunctions with nuclear displacement.
The dependence of the electronic wavefunctions on the
nuclear coordinates contributes to the second and third
term in Eq. (IIL.7).

(b) Expression (I11.7) for L, contains also the
second derivative of the electronic wavefunction with
respect to the nuclear coordinates. This term has to
be retained here to insure the Hermiticity of the per-
turbation operator in the non-Condon case.

It will be convenient to recast the perturbation oper-
ator in an alternative form. Let us define

(E.(Q) —Ei(q) T '=[E— ¥ vqI'=£(q), (IILY)

where
E:ESO—EI(]:AE”—EM, (lIIlO)
Ey=%3 fiwAzl (ITL.11)
B
Y =H A, (111.12)

A, is the displacement of the /th potential surface rela-
tive to the sth potential surface, projected on the co-
ordinate ¢,. AE,; is the energy gap between the pure
electronic origins of the s and ! potential surfaces. We

NITZAN AND 7J.
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also define the momentum conjugate to g,:

Py=—1(8/dq,).

In terms of these quantities L, will now take the
form:

La=iY fio (| Ue] s)E(q) Pe

=52 (| Udl$)g Z w22 E()] (IIL14)

(II1.13)

The generating function related to W,; is obtained®$:?
by taking the Fourier transform of the é function in
Eq. (III.1) and then introducing the energy expo-
nential into the matrix elements, and finally replacing
the energies by the corresponding (nuclear) Hamil-
tonians, so that

1 = -
W o f_ L), (IT1.15)
where
L(y= 2 ({si| Vaexp[iHuo(t/) ][ 1))
X Yy | Vat expl—iHuwo(¢/f) ]| si)) (I11.16)

Hyo is the Born-Oppenheimer Hamiltonian defined by
its operation on the Born-Oppenheimer functions:

Hpo(x(@)e(r, ))= (T4 U(r, ) Ix(q)e(r, q)
+e(r, q)Tox(q), (II1.17)

while V4 is the nonadiabatic perturbation operator

whose matrix elements where defined above [ Eq. (1.1) ].

T, here is the nuclear kinetic energy operator.
Utilizing Eqs. (ITL1.5) and (I11.14) we get

LO=RL (xo: | Z (s | Ue| D —iead (@) pet-3ge T L p, (@) 1) expliHuo' (/1) ] | x1)

m

X i | Z Q| Ul s)iwd () pe—3gc Z wal 2, £(a) 1} exp[—iHyo* (/7)) ] [ x:).  (II1.18)

m

In the derivation of (III.18) we have utilized the fact that p, is a Hermitian operator, while [ p.2, £(q) ], which
is the commutator of two Hermitian operators, is anti-Hermitian. Hyo! and Hypo® denote the nuclear Hamiltonians

for the electronic states / and s, respectively.
Making use now of the closure relation:

2 x) (i 1=1,

we get the general result:

(111.19)

L(t)=ﬁ2¥ Z, GUANDA Ue | s)aoe{ (xor | £(Q) pi expliH o’ (/%) () per expl—iHuor (¢/%) ] | xo1)
+3 01 | £(q) pe expliHuo! (¢/10) Jgur 22 (en/en) P2, £(g) ] expl—ilHuo (/1) ]| xo)
F3 06 [ g 2 (w/w)[ps, £(q)] ex;[iH,,o’(t/ﬁ)]E(q)/hr expl—iHpo" (¢/7) ] [ x.1)
—106i | g X (w/w) [, ‘E‘(Q)] expliHyo' (/%) Jgu ; (ww/we) Low, £(@) Jexp[—iHpo® (¢/f) ]| x5} (IIL.20)

I

It is easy to demonstrate that if A,=0, the mixed terms where x>’ will not contribute to L(¢). To prove this
point we note that {2, £(q) ]=0 and also (x | pupe | x) = (x | ¢gc | x) = (x| g | x) =0 for any pair of promot-
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ing modes k> «’. The expression for L(#) will thus reduce to a single sum:

L(ty=123 | (s | Uc| D) PLA() (IIL.21)
with

Lx(t) = Ac(8) + (1/2) B() + (1/2) (1) ~ 1Dk (1), (111.22)

where
A () = w2 (xoi | £(q) pe exp[iHpo' (¢/7) J6(q) pe expl—iHyo® (¢/%) ] | xs1), (I1L.23a)
Bx(t) =‘*’x(X-w' I E(Q) P« eXp[iHnol(f/ﬁ) :]QK é wu[puz; E(Q)] eXP[—iHnos(t/fi)] | Xsi), (IIIZSb)
Ce(t) = (Xsi | 4 § wu[ p2, £(q) ] expliHpo'(¢/7) JE(Q) px exp[—iHuo® (/7)) ] | Xs:), (I11.23¢)
D, (t) = (xsi | qx § w“[p,,z, E(Q)] exp[iH;m’(l/ﬁ):]qK E wu'[pu’27 E(Q)] exp[—iHBo‘(t/ﬂ)] | Xsi)- (111.23d)

‘The basic details concerning the evaluation of these matrix elements are presented in Appendix B, while the
actual evaluation is given in the Appendixes C and D. The final results for the simplest case of the zero temperature
limit (or for the decay of the zero vibrational level) take the form

t o0 0 - - - -
A1) = —Fwl exp <iAE, ‘f_f> / dr / di'lA(r, 7', ) —A(r, =", )+ A(—7, —1'; ) —A(—7, 75 1) ], (111.24)
o o
Cu(t) =B.(1)
i T T’ _ = _ _
* = §iw, exp <——iAEK 7;7,> 2 {w,‘ / dr / dr’[B*(r, 7'; ) —Be(r, —7'; D+B*(— 7, —7'; ) —B*(—r, 7'; l)]} ,
' 0 0

»

AE,‘ © o0
t) > {w,.w,u/ (17/ dr’
7 L 0 0

X[D-‘“‘/(T, 7' t)—D““'('r, ) -|—D"“'(—~r, —7': 1) —D"‘“'(—T, ) ]} , (IIL.26)

(111.25)

D (t)=—%exp (—i

where
AE,=AE,—fiw,, (111.27)
A(r, '; ) =exp[—iE(r+r") K (7, 7'; 1), (II1.28)
B“(‘r, 7’5 1) = (2i/V2) exp[—1E(74+7") Jrv. Qv+ (v, /V2)) exp(iwd) K (r, 75 1), (I11.29)
Dw (T> 7'/5 =2 CXP["iE(T'F T’) ]T'YMT"YM’ CXPD ("-’u+wu’) t] (>‘u+ (i'}’;ﬂ'/\/?> )()\#’+ ('i'Yu’T//\/Z) )K(T7 Tl} 1) ,
(I11.30)
and

K (r, 7'; ) =exp(Z {38 explict) — 11— (1,2/4) (r+1%) — (ivhFAD) (1) — [ explicad) /237" }).

(1I1.31)

In these equations E=AE, ;— Ey;, where Ey =33 fiw,A2; and N, = (Au/V2)[1—exp(—iwa)].
Equations (III.21), (II1.22), and (III.24)-(II1.31) summarize our result for the generating function L(t).

IV. NONRADIATIVE DECAY RATE IN THE NON-CONDON CASE

We now turn to the task of transforming the generating function into an expression for the nonradiative decay
rate:

1 0
Wsi: f?‘l /;w dtL(t)

=2 G|UIDP f_w L(t)at. (IV.1)
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Our aim is thus to perform the integration over the ¢ variable. This may be accomplished by utilizing the steep-
est descent method.®® As we are interested here only in rough estimates, we shall apply a simpler scheme, assuming
that we may replace all the molecular frequencies by a common average frequency. Invoking this assumption, we

may perform the integration over ¢, using the relation®

2 dBEda)

® ¢
/ dt exp [——iAEx -+ > d, exp(iw“t)] ~
o i

o (AE/fid)!’ (v.2)

where

d= 3 d,.

m

(IV.3)

With this relation the ¢ integration becomes straightforward, the final result for the nonradiative decay rate of the
vibrationless level being

1451 aU/3g. | 1) 2 g

s - =— IV.
° 2h0 exp(—¢) € &! 7 (IV4)
where
=13 42 (IV.5a)
I
corresponds to the coupling strength, and
&=AE /Ha=~AE/fio—1=¢—1. (IV.3b)

is the effective energy gap, corresponding to the electronic gap modified by the promoting mode.
The resulting expression, Eq. (IV.4), has just the form obtained in the Condon approximation multiplied by a
“correction” factor  which is given by

n=75é /w /m dxdx’{Re[ A (x, x') — A (x, —a') ]—2g Im[ B(x, 2’) —B(x, —2') ]—2e. Re[C(x, #") —C(x, —x') ]
o Yo

+2g2 Re[L(x, &) — L(x, —x") ]—2g Re[M (x, o) — M (%, —2") ]+ 2¢(e,— 1) Re[ N (x, x') — N (x, —x') ]},

(IV.6)
where
Az, ) =Fx)F())«G(x)G(x"), (IV.7a)
B(x, o) =F(x)F(«")*G(x)G (") x, (IV.7b)
Clx, &)= (F(x)F(«"))*'G(x)G(«") [ix—ax"], (IV.7¢)
Lix, 2') = (F(x)F(x'))«G(x)G(x") xx’, (IV.7d)
M(x, 2"y =(F(x)F(z") )G (x)G (") [F(x) +F(x') Jax’, (IV.7¢)
N(x, )= (F(2)F(x))«"G(x)G(), (IV.71)
F(x)=1+41x; G(x) =exp(iex—3g47). (IV.7g)

The first term in Eq. (1V.6) [involving the 4 terms (IV.7a) ] corresponds to A4, in (I11.23), the following two
terms in (IV.6) corresponds to B,=C, in (I[1.23), while the last three terms in (IV.6) correspond to the D,
term in Eq. (I11.23). Looking more closely at the origins of these different terms we notice that the 4 term cor-
responds to the contribution arising from the q dependence of the energy denominator alone [the first term in
Eq. (I11.6) ], while the other five terms correspond to contributions in which the q dependence of the electronic
wavefunctions and also the term involving second derivative of the electronic function were taken into account.

We see that the 7 factor is a sum of double integrals, each of which may be expressed as a product of two simple
integrals. Thus # may be easily calculated numerically for various molecular parameters ¢ and g.

V. NUMERICAL CALCULATIONS herein for the calculation of the decay rate of any single

initial vibronic level or of a thermally averaged mani-

So far we have outlined the mathematical procedure
for calculating nonradiative decay rates of excited
states of a large molecule in the harmonic approxima-
tion. In principle we may utilize the procedure outlined
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fold of vibronic levels. As we have seen, the zero tem-
perature result is complicated enough so that we have
limited our numerical calculations to the zero temper-
ature (or the vibrationless initial level) case, further
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approximated by taking a single average molecular
frequency. We note that if this approximate calculation
was our ultimate goal, we could have performed numer-
ical integration of Eq. (IIL.6) in the q space taking
xs:(q) to be the ground vibrational state in the s elec-
tronic level, and choosing for x:;(q) the corresponding
(energy conserving) vibrational state in the / electronic
manifold. The present theoretical treatment is, of
course, much more general.

Consider first the nonradiative decay originating from
near resonance coupling in the two electronic levels
system. In Table I we display the results of our calcu-
lations utilizing the adiabatic basis for the correction
factor 9 for different molecular parameters ¢ and g. To
gain some further insight into the nature of this term
we decompose it into two contributions n=n4+7ns,
where n4 corresponds to the contribution due to the q
dependence of the energy denominator alone, while 7z
includes the contributions of the q dependence of the
electronic wavefunctions and the second derivatives of
these wavefunctions. These results lead to the following
conclusions:

(1) The non-Condon result exceeds the result ob-
tained in the Condon approximation by 2-3 orders of
magnitude. This correction factor depends on the elec-
tronic energy gap, the molecular frequencies, and the
coupling parameter g.

(2) The correction factor  increases with increasing
the (frequency normalized) electronic energy gap e
approximately as ¢ (note, however, that n= ke, where
k>£1). It should be noted that this relation is by no
means accurate, providing just a reasonable guess. It
should also be noted that the correction factor depends
on the coupling term g, increasing with increasing g
values in the weak coupling limit.

(3) The difference between the Condon and the
non-Condon results may not be attributed to the q
dependence of the energy denominator alone as previ-
ously asserted.’®* We see that the contribution of the
factor 74 is smaller than 5. Thus one cannot get away
with incorporating just the nuclear coordinates depend-
ence of the energy gap, but must include the dependence
of the adiabatic wavefunctions on these coordinates.

(4) In the previous works by Englman and Jortner®
and Freed and Jortner® on the energy gap law, where
the Condon approximation was applied, one gets for
this single oscillator model in the weak coupling limit
W (1/€) (g¢</ex!). For large energy gaps the approxi-
mate relation nec e results in Wy ge«/ei!, leading to a
simplified version of the energy gap law for nonradiative
decay in large molecules. Previous conclusions con-
cerning the deuterium isotope effect do not depend on
the form of the coupling matrix elements and will not
be modified.

(5) The dependence of the correction factor on the
electronic energy gap fit the qualitative suggestion of
Sharf and Silbey.”* However, the approximate relation
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TaBLE I. Non-Condon correction to the nonadiabatic decay
rate® in the weak coupling limit from the ground vibrational level
of an excited electronic state.

€ g n4 8 7 n/é
8 0.25 11.0 78.4 89.4 1.40
8 0.50 11.5 89.1 100.6 1.57
8 1.00 12.7 118.9 131.6 2.06
10 0.25 13.9 129.7 143.6 1.44
10 0.50 14.3 143 .4 157.7 1.58
10 1.00 15.4 178.2 193.6 1.94
12 0.50 17.2 211.5 228.7 1.59
12 1.00 18.3 252.0 270.3 1.88
1 0.50 1.2 —0.2 1.0 1.01
2 0.50 4.1 4.1 8.2 2.07
3 0.50 5.2 12.5 17.7 1.96
4 0.50 6.2 20.8 26.9 1.69
5 0.50 7.4 32.8 40.2 1.61
6 0.50 8.8 48. 57.0 1.58
7 0.50 10.1 67.0 7.1 1.58
8 0.50 11.5 89.1 100.6 1.57
9 0.50 12.9 114.5 127.4 1.58
10 0.50 14.3 143 .4 157.7 1.58
11 0.50 15.8 175.7 191.4 1.58
12 0.50 17.2 211.5 228.7 1.59

8 The low € values are significant only in the following context: (a)
Specification of the square of the resonance coupling matrix element. (b)
Nonradiative decay rate in a dense medium when the final |Ij) states are
broadened due to vibrational relaxation.

n=ke (k##1) and the dependence of the correction
factor on the molecular coupling parameter g contra-
dicts their conclusions.

(6) Previous work on optical selection studies®® uti-
lized the Condon approximation assuming that the
electronic coupling matrix element is independent of
the initial vibronic state. Utilizing the theoretical
scheme outlined in the present work, one can calculate
the changes of this coupling term between different
initial vibronic states. Such calculations are rather
cumbersome and were not yet attempted by us. How-
ever, earlier numerical computations® of the correction
factor n4 using a simple harmonic model indicate that
this non-Condon correction factor does not vary by
more than 2% between different initial vibronic levels
of the benzene lowest excited singlet state. Therefore
our general conclusions concerning the theory of the
optical selection problem are not modified.

It is important to emphasize the difference in the
magnitude of the adiabatic coupling terms in the near
resonance (Table I) and in the off resonance case. In
Table I we display numerical results for the relation 7
between the coupling matrix elements | V,:,1/4 |? calcu-
lated for off resonance coupling both in the Condon
approximation and for the non-Condon case. Here
| si) is taken as before to represent the vibrationless
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TasLE II. Non-Condon correction to the square of the off
resonance coupling matrix element | (si| V4| ) |2 between the
ground vibrational level of the electronic state s and a lower
vibrational level 7, of the electronic state /.

€ g J o ma 8 n n/é
8 0.5 0 1.0 2.5 3.5 0.06
8 0.5 1 1.3 3.6 4.9 0.08
8 0.5 2 1.7 5.3 7.0 0.11
9 0.5 0 1.0 2.6 3.6 0.05
10 0.5 1] 1.0 2.7 3.7 0.04
8 0.25 0 1.0 2.4 3.4 0.05
8 1.00 0 1.1 2.6 3.7 0.06

level of the sth electronic state, while | /§} is now a lower
vibrational level of the /th electronic manifold (taken
to correspond to the ground or to the lower excited
vibrational levels) . These numerical results demonstrate
that in this off resonance case the » correction factor is
lower by about 2 orders of magnitude than in the
resonance case, (i.e., 7~1-10) provided that the adia-
batic zero order basis is employed. This result is by no
means surprising, being a direct consequence from our
previous conclusion that for the resonance case 7o ¢,
combined with the observation that the off resonance
coupling matrix elements just correspond to a near
resonance coupling term calculated for a different elec-
tronic energy gap. We may thus conclude that the Con-
don approximation is not too bad for the calculation of
off resonance coupling terms between lower vibrational
states corresponding to different electronic configura-
tions, and those off resonance coupling terms will be
lower by about 2 orders of magnitude than the cor-
responding near resonance coupling terms.

A qualitative rationalization of these numerical re-
sults can be readily provided by noting that the Condon
approximation involves essentially the application of
the mean value theorem of integral calculus, taking out
from the integral a function F(g) which is assumed to
be weakly dependent on nuclear coordinates, F(q)=2
F(qo). This approximation will be justified provided
that the function f(g) retained in the integral (i.e., the
product of the vibrational wavefunctions) is a smooth
function of q. However, if f(q) oscillates widely, even
small deviations of F(q) from F(qo) may appreciably
modify the integral [F(q)f(q)dq.

VI. DISCUSSION

It will be useful to survey, at this point, the nature
of the approximations involved in the derivation of
the general equations for the nonradiative decay prob-
ability. These assumptions involve three different as-
pects: The approximate description of the electronic

A. NITZAN AND J. JORTNER

adiabatic wavefunctions; the calculation of the matrix
elements of the nonadiabatic coupling V4, and the
features of the simplified molecular model. The expan-
sion of the electronic wavefunctions up to the first
order in the nondiagonal matrix elements of V. [Egs.
(I1.10) and (II.11) ] rests on the following assumptions:

(a) The diagonal matrix elements of the scrambled
zero order states | #) are smaller than the energy de-
nominator.

(b) The weak electronic-vibrational coupling limit
is considered.

(c) The relevant electronic states s and ! are closer
in energy relative to their separation from any other
electronic state #.

Assumption (b) provides a necessary condition for
the validity of assumption (a). It also allows us to
use the expansion of the potential Eq. (IL3) up to
first order in the nuclear displacements ¢. Assumption
(c) makes it possible to derive the coupling parameters
A; from experimental spectroscopic intensity distribu-
tions. By invoking this assumption we limit the validity
of our theory to a two electronic state system. We
should note, however, that assumption (c) provides a
restriction on the physical interpretation of the coupling
parameters A;; nevertheless, it does not affect the
validity of the general mathematical scheme presented
herein. A two electronic state model system was con-
ventionally applied in vibronic coupling theory and in
previous studies of electronic relaxation®?; however, in
real life, the role of the other electronic states #» may
be of considerable importance. An interesting extension
of the present work will involve a further study of
these coupling parameters in a multielectronic level
system. It should be stressed that our simplified theo-
retical model does not involve any other auxiliary re-
strictions concerning the molecular parameters (i.e.,
the magnitude of the electronic energy gap or the molec-
ular frequencies) besides those mentioned above. In
regard to the perturbation scheme employed herein,
it is worthwhile noting, at this point, that the expansion
(11.10)-(I1.11) of the adiabatic wavefunctions em-
ployed herein, which rests on the Wigner—Brilloin per-
turbation expansion is more general than conventional
perturbation expansions.

Concerning the evaluation of the matrix element of
the nonadiabatic perturbation operator we assume
that:

(d) Nondiagonal matrix elements of V, are retained
only to first order.

(e) As we focus attention on the weak coupling limit
[see (c)], the contribution from the vicinity of the
crossing of the potential surfaces is neglected by taking
the principal part of the integrals (see Appendix B).

Concerning the molecular model we invoke the follow-
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ing simplifying assumptions:

(f) The adiabatic potential surfaces are harmonic.

(g) The potential surfaces corresponding to the two
electronic states are characterized by the same fre-
quency, thus being identical except for a shift of their
origins.

The present treatment is limited to the weak cou-
pling limit which is adequate for the study of most
cases of electronic relaxation processes in large mole-
cules. The strong coupling limit which may be of con-
siderable interest for the understanding of photochem-
ical rearrangement reactions, may be also handled with-
out invoking the Condon approximation, provided that
we limit ourselves to a single oscillator. In cases when
first order time dependent perturbation theory is still
applicable one can perform numerical integrations in
the q space utilizing the general q dependence of the
electronic wavefunctions and potential surfaces, which
was worked out by Kubo and Toyozawa.?

To conclude this discussion, we would like to point
out that the Condon approximation is useless for quan-
titative estimates of nonradiative decay probability of
a model system which mimic the features of large mole-
cules, leading to results which will be too low by 2-3
orders of magnitude. This conclusion concurs with the
recent numerical estimates of Burland and Robinson,
who found that the Condon approximation grossly
underestimates the nonradiative decay of the 3By, state

3369

of the benzene molecule. It should be, however, empha-
sized that this discrepancy just reflects the failure of
the Condon approximation utilizing a proper adiabatic
basis set and does not justify, in principle, the use of
crude adiabatic functions. Our numerical data for the
nonradiative decay in the weak coupling limit, utilizing
the adiabatic basis, are within a numerical factor of
1-2 from the result which would be obtained adopting
a truncated crude adiabatic basis set for a two level
system and invoking the (unjustified) assumption that
the adiabatic and the crude adiabatic potential surfaces
are identical. Although the complete crude adiabatic
basis set is adequate from the formal point of view,?
one cannot get away with truncating this set and con-
sidering just a two electronic level system, as off reso-
nance coupling terms with other electronic states in
the crude adiabatic representation are large. As we
have seen in the adiabatic case, the relevant off reso-
nance terms are smaller by about one order of magni-
tude.

Any quantitative estimate of the nonradiative intra-
molecular decay rates (provided that the adiabatic
potential surfaces are available) will have to bypass
the Condon approximation. It is comforting to note
that previous theoretical conclusions concerning the
gross features of radiationless processes, such as the
energy gap law and optical selection, which emphasize
general relations and correlations rather than numerical
estimates of the decay probabilities, are not modified
by going beyond the Condon approximation.

APPENDIX A: THE ¢-DEPENDENCE OF THE ENERGY DENOMINATOR

The Wigner—Brillouin perturbation series for the electronic energy of a given electronic state may be summed
using a similar method to that applied in Eq. (I1.4) to get up to first order in nondiagonal matrix elements of V,

E(@)=E(Q+ X {| (n| Ve s) F/[E(q) ~En(a) T}

(A1)

Suppose now that the state ¢, is close in energy to ¢, so that the contribution of other states to E,(q) is rela-

tively small, whereupon

E(Q)=E.(q)+| ¢ | V.|s) /[E.(q)—Ei(q)].

(A2)

This is a second order equation for E,(q) whose solutions are

E(@) =3[E(Q) +E(Q) J[13E (@) —E(@Q) 1+ ¢ | Ve s) ],

(A3)

The second small (nondiagonal) term in the square root will be neglected. If ¢, is higher in energy than ¢, the
exact energy E,(q) will be higher than the zero order energy E(q) so that we must choose the plus sign in Eq.

(A3) .2 We get

E,(q) —Ei(qQ)~E.(q) - Ei(q).

"= (n| (0U/3q)s | n)

To calculate the vector

(A4)

(AS)

which is defined in terms of the elements v,"= (n | (U /3¢,)q | #); u=1-+-N, we make use of the relation

(n ] (dU/8q)o | n)={en(r, Q) | 9U(1, @) /39 | ¢a(1, Q) ) lo=0

(A6)
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which is just the Hellmann-Feynman theorem applied to our case, and

En(q) =En0_% Z ﬁwﬂ(Aﬂn)2+% Z ﬁw“(q“—}—A,,")?, (A7)
& u

where, as in the text, q and A" are measured from the equilibrium configuration of the state, s, and E,'= E,(¢=0).
This yields

En(q) =E+ <” I V. [ ”>=En0+[aEn(Q)/aQJ lq=0'q=En0+T'q=En0+ Z ﬁquunqn (A8)

so that for our molecular model

Eu(q) —En(q) = ES~ E,04 ¥ Fuougu( A — A
I

=E,(qQ) —En(q) (A9)
for any two electronic states, m and ».
Utilizing now Eq. (A4) we obtain

E.(q)—Ei(q)~FE.(q)—E:(q) =E,(q) — Ei(q) (A10)

for the two relevant electronic states, s and /; moreover, the same remains true even if / is replaced by any other
electronic state »:

EA(q)—E.(q) =E.(q)—Ei(q) +E:(q) —E.(q)~E,(q) — E:(q) + Ei(q) — En(q)
:Es(q)_En<q) (All)

which is what we wanted to assert.

APPENDIX B: OPERATOR AND COMMUTATION RELATIONS FOR THE EVALUATION OF
THE GENERATING FUNCTION

Here we present the fundamental relations required for the evaluation of the matrix elements which appear in
Eq. (I11.24) for the generating function. First, we note that we have to perform integration in the q space, where
the integrand contains terms of the form £(q) = (E—3 ,v.g.)~". These terms diverge at many points in the q
space, but as the integrand changes sign by passing through such a divergence point, it is reasonable to take the
principal part of the integral as the relevant result. Bearing in mind that these divergence points correspond to
the crossing of the electronic potential surfaces, we may conclude that in the weak coupling limit (which we have
introduced already in Sec. II) the contributions from the crossing zone are negligible, so that the manner in which
the integration is performed there is not in any way important.

We thus interpret £(q) as P[1/(E—3_,v.q.) ], where P denotes principal part. Now we utilize the following
relations (for 6—04);

(b—ia)~l=¢/0°° exp(—ibr) dr, (B1)
Phi=Re(b—i6)'=14i f " (exp(—ibr) —exp(ibr) )dr (B2)
0 that 0
£(@) =P T ) =i [ " 4G —G(=n] (B3)
and also
(i el =4 | " (Fu(r) = Fu(—n) r, (B4)
where
G(r) =exp(—iEr+1 % VuduT) 5 (BS)
Fu(r) =[p2 G(r)J=exp(—iEr)[p2, exp(ivugur) ] exp(i MZ#:“ YwgwT) - (B6)
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The matrix elements in Eqs. (IT1.24) are now most easily evaluated by making use of the creation and annihila-
tion operator representation for the harmonic oscillator coordinates, in terms of which

= (1/V2) (au1+an):

Pu= (1/‘/2) (a,‘*——a,,), (B7)
and by utilizing the relation (see Appendix C)
(a2, exp(iyugur) 1= (2iv,ur/V2) exp(—1viir?) exp[ (dv,7/V2) a,'](a,t —a,) expl(yur/V2)a,]. (B8)
We shall also make use of the following form of the vibrational Hamiltonian and wavefunctions:
xoi= IT (2!)2(a,") 10 | 0), (B9)
I
N 32’ N
Huor= & (~ o 2 +Hg) = T (B10)
a=1 99, a=1
N 9
Hgol= 2 (‘"%ﬁwn 52 +%ﬁwu(9u+Au)2) —AEq=Hgo'— E+ ¥ vugu. (B11)
#=1 » [

Utilizing Feynman’s techniques® it can be demonstrated® that

exp[— ihy (t/ﬁ) :I eXPD'hu (t/ﬁ) +i7uqn(t/ﬁ) :] = eXP{ - % (”) w,‘Af-*-%AM?[CXp(iw“t) - 1]} exp()‘uauf) CXP( - >‘u*aﬂ) ’

(B12)
where
M= (8,/V2)[1—exp(—iwd) ]. (B13)
The following operator relations will also be required:
exp(aa) | 0)=|0),
(0| exp(aa®)=(0], (B14)
exp(—aa)a” exp(aat) = (a+a)*,
exp({—aa) (a")* exp(aa) = (a"—a)*, (B15)
exp(—aat) exp(a) exp(aa’) =exp(a+ta),
exp(—aa) exp(at) exp(aa) =exp(at—a), (B16)
exp(A+B) =exp(A) exp(B) exp(—1[4, B]) (B17)

for
[A; [A) B:D:[B) [A) B]:]=0

Using these relations we may evaluate the desired matrix elements for any given vibrational state of the mole-
cule. We may also get a thermal averaged result using the relation

{exp(A) )r=exp[3(A2)r], (B18)

where 4 is an operator which is a linear combination of the coordinate and momentum operators of a harmonic
oscillator, and ( )r denotes the thermal (Boltzmann) average.

APPENDIX C: PROOF OF THE RELATION (BS8)
Into the commutator [#?, exp(ag) ]=R we insert [Eq. (B7)]
p=(i/N2)(a'—0a),  ¢=(1/V2)(a'+a),

R=—3[((a")*+a?—2aa"), exp((/V2) (at+a))]. (C1)

to get

Utilizing Eq. (B16) we get
R=—} exp(3e?) { ((a")*+a*—2aa"), exp[ («/V2)a"] exp[ («/V2)a]}
= —% exp(3o?) (Ri+ R:—2Rs), (C2)
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where
Ri=[(a")? exp((a/v2)a") exp((a/V2)a)], (C3)
R.=[a* exp((«/V2)a") exp((a/V2)a)], (C4)
Ry=[aa', exp((a/V2)a') exp((«/V2)a)]. (C5)
Making use of Eq. (B14) we obtain for these commutation relations the following results
Ri=exp[(a/V2)a"] exp[(a/V2)a][— (2/V2)aa'+}a?], (Co)
Ry=exp[(a/V2)a'] exp[ («/V2)a][(2/V2) aa+}a?], (C7)
Rs=exp[(a/V2)a"] exp[ («/V2)a][(«/V2)a'— (a/V2)a—}a?]. (C8)

Inserting these equations into Eq. (C2) we obtain the final results (B8).

APPENDIX D: CALCULATIONS OF THE MATRIX ELEMENTS (II1.24)

We shall present herein in detail the evaluation of the term A,(f) Eq. (II1.24a). The evaluation of the terms
B.(1), C.(¢) and D.(¢) Egs. (II1.24b)-(II1.24d) is very much the same.

Into Eq. (II1.24a) for A,(¢) we insert the expressions (B9) and (B10) for Hpo® and Hyo'. Bearing in mind that
£(q) does not contain ¢, we may separate out the integral related to this promoting mode, obtaining

Au() =0 (xue | po explik(1/%) Jpe expl—ihe (1/7) ] | 2.0 44 (1), (D1)

where
AL (1) = (x| £(q) exp[iHpoV (t/7) JE(q) exp[—iHuo" (t/B) ]| x:i") (D2)

in which the prime denotes exclusion of the x mode, i.e.,

Xsi’ = H xi’#(q#)

o
Hgyo¥' = g Py, Hypo!=Hpo"' — E+ Z“: Yudu- (D3)
Py
Utilizing Eqgs. (B3) and (B5) we may rewrite Eq. (D2) in the form '
4/ =G [T [ aTA G 0 A (2, = )= A, =25 ) = A (=1 750, (DY)
0 o
where
A'(r, 75 ) = (xa' | exp(d g vugu7") exp(iHno" (t/f)) exp(i E Yugur) exp(—iHpo" (/%)) | xsi') exp(—iE(r+7"))
i x
=exp[ —iE(r++"+(¢/%))] g S (D3)
vy
with

Su= (xsu [ exp(i'Yu‘IuT,) eXP(ihu(t/ﬂ) +i7u(lu(t/ﬁ) ) exp(i"/u%ﬁ) exp("“ihﬁ(t/ﬁ) ) | xxn)

= (2o | exp(—ihu(t/%) ) exp(ivugur’) exp(ihu(t/f)) exp(—ihu(t/F) ) exp @l (t/F) +ivugu(t/7) ) exp(ivagur) | 2on).
(Do)

Utilizing Eq. (B12) and also the transformation relation
exp(—ih,(1/7) )q. exp(ihu(t/%) )= q.(t) =V2~'[a, exp(iwyt) +a," exp(—iwyd) ] (D7)

we get
SP = EXP{ - % (“) quu2+%A»2[€XP (iw#t) - 1:' }
X (s | expf (dyur’/VZ) [a exp (fwut) +a." exp(—iwud) 1} eXP(’\;ﬂuT) exp(—N\¥a,) expl (ivu7/V2) (au'+a,) ]| xo)
(D8)

where
’ Fep) = (vSMI)_llz(auT)v’“ | 0). (D9)
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For the simplest case where v,,=0, we get, applying Egs. (B14)-(B17) in a straightforward manner,

su=exp{ =} (i) 0>+ 34 exp (twud— 1) ] 3y, (7 417%) — (v N* VD) (74+77) = 3[v* exp(iw,t) Jrr'}.

(D10)

We still have to evaluate the integral over ¢, in Eq. (D1). This is
L= (2w | exp(— ik (t/71) ) pe exp (il (t/5) Ypo | xon)

= — 3 (xu | [ac" exp(—iwt) — ac expliwd) J(a —al) | %e)

which, for the zero vibrational level, takes the form

I,=15 exp(iwd).

(D11)

(D12)

Utilizing now Egs. (D1), (D4), (DS), (D10), and (D12), and redefining some functions as in Egs. (II1.29)
and (IT1.32), we obtain after some elementary algebra Eq. (111.24) for A,(f). The expressions (III.25) and
(111.26) for B,(t)=C,(t) and D,(?) are obtained in a similar manner.

Evaluating similar expressions for a general vibrational state is also straightforward though somewhat more
cumbersome. We may also derive the thermal averaged analog of A,(f). To exhibit this possibility we apply

Eq. (B16) to rewrite Eq. (D8) for s, in the form
sp=exp} —3 (1) w, A2+ 3A exp(iwad) — 1]}

Xexpld | M P—i(7u/2V2) (N NF) (r+7') +§vlexp(—iwut) —exp(iw) 77"}, (D13)

where
"= (o | €Xp (32— 3 0,") | 3s) (D14)
e Y= (i’ N2) exp (icud) -+ (e /V2) — M*. (D15)
Replacing the matrix element s5,” by its thermal average and utilizing (B17), we get
(s dr=exp{—| (o) +3) ). (D16)
We also need the thermally averaged analog of ., Eq. {D11). This is
r=3[((w)r+1) exp(iod) + (W )r exp(—iwd) ]. (D17)

Equations (D17), (D16), and (D13) may now be applied for obtaining the thermally averaged equivalents

of Eq. (IIL.25).
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