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In this paper we consider the optical properties of heavily doped molecular crystals where the con-
stituents differ by isotopic substitution. Four different situations were considered determined by
the perturbation strength relative to the second moment and to the width of the density of states in the
pure crystal: (a) separated bands; (b) persistence case; (c) incipient band gap; (d) amalgamation limit.
The properties of the effective Hamiltonian for a configurationally averaged mixed molecular crystal
containing an arbitrary number of molecules per unit cell were explored. Information on the intensity
distribution in optical absorption by a binary crystal can be obtained from the moments of the spatially
averaged mixed crystal Hamiltonian. In the amalgamation limit the crystal exhibits the gross features
of a virtual crystal and the number of the polarized intensity distributions is equal to that of the pure
crystal, while in the separated band case and in the persistence case the number of polarized intensity
distributions is double that in the pure crystal. The coherent potential approximation based on a local
approximation for the self-energy and on neglecting multiple scattering effects was extended to handle
the general case of a multiply branched exciton band. Concerning the general question of the persistence
of the Davydov splitting in a mixed crystal, general arguments are provided that symmetry restrictions
can be relaxed and that the Davydov splitting is exhibited by a substitutionally disordered system de-
scribed by a Hamiltonian which is characterized by a random diagonal part and by a translationally in-
variant off-diagonal part. The number of these Davydov components is determined by the perturbation

strength.

1. INTRODUCTION

In recent studies of Frenkel-Davydov exciton
states’™ in pure molecular crystals it has become
fashionable to search for some general unified experi-
mental and theoretical information concerning the
entire exciton band structure. A major breakthrough
in this direction was provided by the theoretical work
of Rashba? and of Colson ef al.® and by the experi-
mental work of Shpak and Sheka® and of Colson,
Hanson, Kopelman, and Robinson’ who have applied
the technique of hot band spectroscopy to monitor the
density of states of the lowest singlet exciton states of
crystalline benzene and naphthalene. Complementary
information on the density of states function can be
obtained from the study of low-concentration isolated
impurity states in molecular crystals.5™ Extensive use
was made of the Koster-Slater Green’s function
method!* with a recent emphasis on the connection
between the one-particle Green’s function and the
density of states function for the pure crystal.2:3

The most challenging problem in the theoretical study
of mixed molecular crystals involves the understanding
of the band structure and the optical properties of
heavily doped molecular crystals. This problem is of
considerable general interest in relation to the vigorous
current activity aimed towards the elucidation of the
electronic structure of disordered systems.® Y Com-
bined experimental and theoretical studies of isotopically
mixed substitutionally disordered molecular crystals
can be extremely useful in this context because of the
following reasons:

(a) In isotopically mixed crystals of organic mole-
cules the two components differ to a good approxima-
tion in the molecular excitation energies. Thus the

theoretical model of a binary crystal, where the two
components just differ in the diagonal matrix elements
of the Hamiltonian while the off-diagonal matrix
elements (in the localized excitation representation)
are invariant,” can be applied to a real physical
system.

(b) The study of the optical properties of isotopically
mixed molecular crystals will provide a powerful tool to
explore the “‘one-particle” properties of the elementary
excitations. This type of a direct information cannot be
easily obtained for one-particle (equilibrium) properties
of other elementary excitations such as electrons or
phonons in binary alloys.

The excited electronic states of a rigid, perfect, pure
crystal reveal some universal features which result from
perfect translational symmetry of the system:

(a) The crystal quasimomentum kis a good quantum
number so that the crystal wavefunction possesses
perfect phase coherence and all states are extended in
the ideal crystal.

(b) The dispersion relation ¢7(k) describes the
energy for the jth branch of the f exciton band, which is
a continuous analytic function of k within each branch
except at certain points.

(c) Well-defined band edges which correspond to
extremum points of ¢/ (k) occur for each exciton band.

(d) The density of state reveals Van Hove singulari-
ties at extremum and saddle points of the energy
dispersion relation.

(e) The optical absorption bands correspond to
delta functions located at k=0 of each exciton branch.

Now all these features break down when a (sub-
stitutionally) disordered system is considered, and the
following questions are then pertinent:
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(a) The localization problem: The “breakdown’ of k
as a good quantum number provides just a necessary
but by no means a sufficient condition for energy
localization, as it is well known from the theory of
isolated impurity states'™14.7.18 that virtual scattering
(delocalized) states can be induced by a moderately
weak local perturbation. Current theories'®'" of amor-
phous semiconductors assume the existence of regions
of exclusively localized states separated by “critical
energies” from regions of exclusively extended state. A
similar classification of electronic excitation in a mixed
crystal will be of interest.

(b) Energy of exciled states of the disordered system: In
this context it is interesting to inquire under what cir-
cumstances the pseudoparticle concept is still valid.
Extended excited states in a substitutionally disordered
system may be then characterized to a good approxima-
tion by a complex energy where the imaginary part
describes the strength of the scattering.! If the impurity
scattering effects are strong localization might be en-
countered. Such a general approach will be pertinent for
the understanding of energy transfer phenomena in
disordered systems.

(c) Density of stales in disordered systems: A proper
theoretical description of the density of exciton states
in a substitutionally disordered crystal may lead to
“forbidden zones” (density of states zero), “allowed
zones” (density of states finite), and “almost forbidden”
energy regions (where the density of states is nonzero
but small). In this context interesting questions arise
whether one can define an effective band edge (which
provides a boundary between the “allowed” and the
“almost forbidden” zones).®

(d) Erosion of Van Hove singularities: Obviously,
topological concepts are no longer applicable and critical
points do not exist in the density of states of disordered
systems. However, it is interesting to inquire how fast
are these singularities erased, as this problem may be
pertinent for the understanding of the optical properties
of some disordered systems, in particular polymers®
where a one-dimensional model is applicable.

(e) Optical properties: In view of disorder scattering
in a disordered system the absorption bands are
expected to be broadened. (This effect is similar to the
consequences of exciton-phonon coupling in a vibrating
crystal.) The most interesting question arising in this
context is concerned with the number of the (broadened)
absorption bands in the disordered crystal, and whether
the Davydov splitting of the crystal energy levels arises
primarily from symmetry relations or can orginate
from resonance coupling between randomly distributed
molecules on the lattice sites.?!12%2.%

Experimental work on heavily mixed isotopically
substituted benzene and naphthalene crystals was
reported by Broude and Oprienko,” Broude and
Rashba,? Sheka,?¥ and recently by Hong and Robin-
son.” The major conclusions follow.
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(a) Persistence of the Davydov splitling in some binary
mixed crystals: In isotopically mixed crystals of naph-
thalene and deuterated naphthalene, where the differ-
ence in the electronic excitation energies exceeds the
half-bandwidth of the exciton band, three polarized
Davydov components were experimentally observed.
The energies of these components exhibit a monotonic
(roughly linear) concentration dependence.?s#

(b) Line broadening: Considerable line broadening of
the Davydov components is encountered in the mixed
crystal. % The experimental failure? to detect the
second ac polarized component in naphthalene-
deuteronaphthalene mixtures (which is very weak in
the pure crystal) may be attributed to these line
broadening effects.

Early theoretical studies® of the electronic states of
heavily doped mixed molecular crystals were based on
physical intuition. Broude and Rashba? have proposed
a simple scheme designed to yield the center of gravity
of the absorption bands in a mixed crystal invoking the
hypothesis of “exciton democracy,” that is, the ampli-
tudes of the local excitations are determined only by the
site occupation and by the molecular orientation in the
unit cell. Phillpott and Craig" have bypassed the
problem of the random distribution of impurities and
have performed numerical calculations of the electronic
states of a superlattice compatible with the guest con-
centration. An interesting machine calculation of the
electronic states of a substitutionally disordered polymer
was reported by Herzenberg and Miomides.* An im-
portant development in this field was provided by the
exhaustive studies of Yonezawa and Matsubara who
were concerned with the problem of the electronic
structure of binary alloys.” In a series of formal papers
it was demonstrated how to sum a selected class of
terms in a perturbation series for a random alloy
Green’s function. This general scheme? was further
extended by Onodera and Toyozawa?® who have derived
a manageable approximate interpolation formula for the
self-energy of Frenkel excitons and electron states,
which is valid for various limiting situations (i.e., zero
bandwidth, zero concentration limit). An important
application first considered by Onodera and Toyozawa
involved the optical properties of mixed crystals.
Recently Hong and Robinson® and somewhat later the
present authors® utilized the Onodera—Toyozawa
approach?®® for the study of isotopically mixed molecular
crystals. On the basis of numerical calculations®®
several important conclusions were obtained concerning
the persistence of the Davydov splitting for an iso-
topically mixed crystal when a band gap appears in the
density of states function.

The purpose of the present paper is to discuss the
electronically excited states of isotopically mixed
crystals, with an emphasis on general relations and cor-
relations rather than on numerical calculation based on
approximate theoretical schemes. We shall proceed in
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two stages: first we shall consider the general properties
of the excited electronic states of a random, isotopically
substituted, heavily doped crystal without referring to
any specific approximation.® Second, we shall adopt the
coherent potential approximation (CPA) recently
developed by Taylor for phonon states® and by
Soven®3¢ Valicky, Kirkpatrick, and Ehrenreich® for
electron states of binary alloys to the study of exciton
states in isotopically mixed crystals.

The most general approach to the problem of the
electronic states of an isotopically mixed crystal can be
based on a single assumption invoking the hypothesis of
complete random distribution of molecules on the
lattice sites. An effective Hamiltonian determined only
by the concentration and by the strength of the random
perturbation can be defined® for the spatially averaged
mixed crystal. The physical situation is somewhat more
complex than previously considered® since for a crystal
containing several molecules per unit cell the effective
Hamiltonian is nondiagonal in the exciton representa-
tion. The moments of the density of states and of the
spectral absorption bands of the mixed crystal can be
expressed in terms of the density of states and the posi-
tions of the Davydov components in the pure crystal.
General properties of the (complex) self-energy can be
established which determine the conditions for the
appearance of a band gap® and determine the number
of the Davydov components in the mixed crystal. The
general properties of the self-energy provide a basis for
the introduction of the CP approximation.

The CP approximation®—3¢ is extended to handle the
case of multiple-branched exciton bands. This approxi-
mation, which invokes the hypothesis that multiple
scattering effects are negligible, turns out® to be
equivalent to the Onedora—Toyozawa expression.?® The
CP approximation is generalized for a crystal containing
an arbitary number of molecules per unit cell and for
any general form of the pure crystal exciton band. This
approach will be useful to determine the range of validity
of the CP approximation and to provide practical
recipes for the systematic evaluation of correction terms
and for extensions of this scheme. It will be shown how
the optical properties derived by the CP approximation
are obtained in various limiting cases such as the low
concentration case, the virtual crystal, and the atomic
limit. In this context the nature of the Broude-Rashba
approximation® can be clarified.

We hope that the results of the present study will
lead to a better understanding of the numerical calcula-
tions performed by Hong and Robinson? and by us,®
and will provide impetus for further experimental work
on the optical properties of heavily doped crystals which
will contribute to a better understanding of the general
phenomena arising from substitutional disorder.

II. THE EFFECTIVE HAMILTONIAN

Consider an isotopically mixed molecular crystal
consisting of two types of molecules characterized by
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the concentrations (i.e., molar factions) Ca of com-
ponent A and Cp=1—C, of component B. Further-
more, we shall make the following assumptions:

Assumption (A) The two components substitute the
sites of the perfect empty lattice without any change in
molecular orientation.

Assumption (B) The tight binding Heitler-London
scheme is applicable for the description of the excited
states.

Assumption (C) The excited state of a pure crystal of
either one of the two components can be described in
terms of a single configuration (multiply branched)
exciton band, so that crystal field mixing effects
between different electronic states are negligible.

Assumption (D) The environmental shift terms' D/
for the two components are equal and concentration
independent.

Assumption (E) The intermolecular transfer inte-
grals! are invariant under isotopic substitution.

Assumption (F) The two components are character-
ized by the same electronic wavefunctions and differ
only in the molecular (gas phase) excitation energies
Aea’ and Aeg’. This difference results, of course, from
the isotope effect on the zero point vibrations. As
previously demonstrated, changes in nuclear kinetic
energy due to isotopic substitution can be regarded as
a local perturbation.!*1?

As in the theory of dilute impurity states!®? two
different zero-order basis sets can be used for the
expansion of the crystal states. The localized excitation
representation

lm)Eanaf=a¢naf H ‘Pmﬂo

i

(IL.1)

is given in terms of an antisymmetrized product of the
free molecule wavefunctions ¢,, (the indices 0 and f
referring to the grand and excited state, respectively,
while the double index ne labels the number of the unit
cell n=1-+:N and the molecule in the unit cell a=
1-++0p). The exciton delocalized representation is given
in the form

| kj)=y¢/ (k) =N 3 3 Baj(k) exp(ik-Ru)and’.

(11.2)

The coefficients B,;(K) represent the elements of the
unitary transformation matrix from one site exciton
states to the pure crystal states. j=1-«.op corresponds
to the op branches of the exciton band.

The isotopically mixed crystal Hamiltonian can be
now displayed in the form

H= ¥ 3 | naYena(na | +J—Eo,  (IL3)
where E, is the ground state energy, J is the excitation
transfer operator

TJ= 22 | na} namp(mB |,

na<mf

(I1.3%)
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and Jaamg are the excitation transfer matrix elements
which constitute of Coulomb Cpams and exchange K,ams
contributions. As we are interested in the weak {elec-
tronic-vibrational) coupling limit?? we set J,amg=
(Cramgt Knamg) S», where S, is the vibrational overlap
Franck-Condon factor. €,, is a random variable so that
€na=Aea”+D'=¢x when the site na is occupied by a
molecule A and e,,=Aep’D'=¢p when this site is
occupied by a molecule of type B.

This simple Hamiltonian is characterized in the
localized representation by translationally invariant
off-diagonal part and by random diagonal matrix
elements. It will be convenient now to separate the
translationally invariant part H, and the random
contributions Hy:

H=Hy+H,, (I1.4)
where
Ho= 33 | noYelna| +J—Fo,  (I1.4a)
& corresponds to the mean excitation energy
é=Ca(Aea’+D/)+Cr(Aer/+ D)
=Caear+Caes, (1I1.5)
while 3
Hi=A% 3k, (11.4b)
where )
E’na= I na)Sna(na |- (II.4C)

£na is a random variable which takes the values £,,=
—Ca when the site na is occupied by B, £.=Cp when
the site is occupied by A;

A= Aey —AerEeA—eB (116)

is the difference in the single molecule excitation
energies. Finally it will be convenient to choose the
zero energy so that

Aep’+DI=A/2 (I1.7a)
and

Aep’+DI=—A/2 (I1.7b)
so that on this energy scale

e=1A(Ca—Cn). (I1.5")

The virtual crystal Hamiltonian Hy is translationally
invariant and diagonal in the | kj) representation, so
that

(kj | Ho | K'j')=bwdip[e+e;(k)],  (IL8)
where the exciton dispersion relation ¢;(Kk) is
ei(k)= 2 ZB: Baj(k) Bgj(k) Lap(k)  (IL9)

with the energy matrix L determined by the exciton
transfer integrals

Lap(K) = 3 Jnamp exp[ik+ (Ra—R,) ] (I1.10)
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All the pertinent physical information is contained in
the Green’s function

G(z)=1/(z—H). (I1.11)

The “honest” way to proceed is to solve the problem
for a fixed configuration and then average over all
possible distribution of molecules on the lattice site.
However, for a given crystal configuration the solution
of the problem is unmanageable. We shall therefore
employ a “dishonest” procedure invoking the assump-
tion.

Assumption (G) Molecule-molecule spatial cor-
relations are neglected. The properties of the con-
figurationally averaged system will be thus considered.
The configurationally averaged Green’s function is

(G(2))=(1/(z—H)), (11.12)

where ( ) corresponds to an ensemble average over all
distribution of the two components.

An effect Hamiltonian Hes which describes the
averaged crystal is defined by the relations

(G(2) )=1/[s—Hett(3) 1=1/[z— Hy— £(z)] (1L.13)
Hut(3) = Hot2(2), (I1.14)

where £(z) is the self-energy operator of the mixed
crystal with respect to the virtual crystal, which
describes the shift and the broadening of the states of the
virtual crystal. This operator can be formally rep-
resented as a sum of site operators Z,, (of unknown
form): . .
3(z)= 2 Znal2). (I1.14)

Unlike in conventional generalized perturbation
schemes, one should not attempt to break down the
effective Hamiltonian into unperturbed and perturbed
parts. Rather, the effective Hamiltonian is considered
as an unknown of the problem.3

In view of the configurational averaging procedure
employed, the effective Hamiltonian has the following
general properties®:

(a) It possesses the full crystal symmetry.

(b) The effective Hamiltonian is energy dependent,
determined by the (complex) energy 2.

(c) The effective Hamiltonian is non-Hermitian.

(d) The effective Hamiltonian is analytic in both
complex half-planes for all z not on the branch cut.

{e) The poles of (z— H.s)™* determine the positions
and the widths of the states of the configurationally
averaged crystals.

Since Hess has full crystal symmetry and so has Hy we
expect that 2(z) is invariant under all the crystal space
group operations. This conclusion implies that 2(z) is
diagonal in k; however, it is nondiagonal in the excita-
tion branch index j (i.e., the pure crystal exciton
branch). The situation is reminiscent of the treatment
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of exciton states in a pure crystal containing several
molecules per unit cell, but further complications are
introduced as the complex energy plane is considered.
Without any loss in generality we can display the level
shift operator in the localized representation

2(2) =TT T3 | #0)0nams(2) (mB], (I1.15)

n m a B

where

Onams(2) = (nat | 2(2)| mB). (IL.16)

Turning our attention to the | kj) representation we can
write the general matrix elements

(k| £(2)| K'")=N1YL T T 3 Bu/*(k) Bg; (k')

n m a B
X e"PD( K. Rn— k- Rm) ]anamﬂ(z)
which can be easily reduced to the form
(k| £(2)| K" )= T 2 B (k) Bay (B)laa(5, ),

(I1.18)

(I1.17)

where
ls(2z, K)= 3 exp(ik:R,)o¢amp(z). (11.19)

The following conclusions are immediately apparent:

(a) For a crystal characterized by a center of sym-
metry we can write

Ls(2, &) =2 3 cos(k-Ry)ooams(z)  (I1.19)

and choose the expansion coefficients B,;(k) to be real.
However, (11.18) is still, of course, complex.

(b) The diagonal matrix elements l..(z, k) are in
general equal for all values of « only for special direc-
tions of the k vector (i.e., perpendicular to or lying in a
symmetry plane of the pure crystal).

(¢) When the exciton dispersion relation in the pure
crystal is dominated by short-range intermolecular
interactions the B,;(K) coefficients are independent of %
and are determined by the factor group operations.'
In this case we expect that

(kj | S(2)| K )= g Ba;(0) Bgji(0)log (2, k)

and that the diagonal term l..(%, k) is independent of a.

(d) The restriction of short-range interactions is not
sufficiently discussed in (c) to lead to the vanishing of
the off-diagonal matrix elements (kj[Z|kj’). It
should be borne in mind that Hes(2) and Z(z) are non-
Hermitian and satisfy the relations®

Hees' (2) = Hots (2%)
St(z) = 2(2), (I1.20)

whereupon even in a crystal characterized by a center
of symmetry where the coefficients B,;(0) can be chosen
to be real we still have

[ap (2) 1% = lga (5%) (I1.21)
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and the off-diagonal matrix element of 3(z) in the
| kj) representation does not vanish.

To summarize this discussion the effective Hamil-
tonian can be displayed in the form

(kj | Hets | K5’ ) =681 { 8,5 e+€:(K) ]
+(kj | Z(2)| kj")}.

The mixed crystal energy levels can be deter-
mined (in principle!) by solving the secular equation
det | z—Hess | =0, the (complex) solutions leading to
the energies and the widths of the states.

In view of these complications we have to proceed
with some caution. Let us define the matrix elements of
the averaged Green’s function in the | k7 )representation

(ki [(G(2))| ki )=g(kj, k', 2);  j#j
=¢(k,j, 2); j=4". (I1.23)

We should note in passing that the Dyson equation
which relates (G(z)) to the Green’s function G%(z) =
(2— Hy)™ of the virtual crystal

(11.22)

4

(G(2))=C"(2)+G(2) 2(2)(G(2)) (11.24)
leads to the relations
8(kj, k', ) =g(k,j,2) T (lej | 2| kj”)
Xg(kj”, kj',z), (I1.25a)

gk, ,2) =¢(k, j, ) +£(k, j, 2
X T (kj | 2| k" )g(kj", kj, 9, (I1.25b)

where
g (k, j, 2) = (kj | G°(2)| kj)=1/[z—e—e;(k)] (I1.26)

corresponds to the elements of the diagonal matrix of
G°(z) in the |kj) representation. Equation (25)
reflects again the fact that in general Hs is nondiagonal
in j.

It will be useful at this stage to define the spectral
density matrix .S which is intimately connected to the
optical properties of the mixed crystal. The matrix
elements S(kj, ki, E) are defined in terms of an
integral representation

= S(kj, kj', E')dE’

kj, kj', )= f (1127
8(kj, kj’, 2) = (IL.27)
whereupon when z approaches the real axes

S(kj, kj’, E) =r"1Img(kj, kj’, E—40%). (11.28)

In particular we shall be interested in the diagonal
matrix elements which we shall refer to as the spectral
density functions

S(k, j, E)=S(kj, kj’, E) == Img(k, j, E—i0%).
(I1.29)
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This formal definition leads to a convenient rep-
resentation of the density of states and of the optical
properties. The density of excited states (per molecule)
in the averaged crvstal is

p(E) = (1/7Nop) Im Tr(G(E—i0*)) (IL.30)

which can be expressed in view of (I1.28) and (TL.29)
by the spectral density functions

p(B)=(1/Nop) ¥ S(k,, E).  (IL31)

Alternatively, the density of states can be expressed in
terms of the localized representation

p(E)=(1/xNop) Im 3. 3° (nax [{G(E—10%) )| nor)

= (1/70p) Im Y. (nex |(G(E—i0%)) | nat). (IL32)

If the molecules in the unit cell are crystallographically
equivalent this expression can be further simplified by
noting that (G(z)) possesses full crystal symmetry,
whereupon

p(B)=r"1Im(na |(G(E—i0t))| na). (I1.32)

Finally, in a manner formally equivalent to the
Koster-Slater scheme, one can define a generalized dis-
persion relation for the complex function®-#

f(z)=(1/Nop) Tr(G(2)) (IL.33)
which in view of (11.32)
p(E) =71 Tmf(E—i0*) (11.34)
so that
© JE’ , ,
sa= [T eE). )

The optical properties of the system can be expressed
in terms of the susceptibility term induced by the elec-
tromagnetic field.¥:# The dipole strength per unit
energy, I(E), is

I(E) =771 Im(0 | (p.- &) (G(E—~1i0%) }(p.-€) | 0),
(11.35)

where |0} is the ground state wavefunction, p the
electric dipole operator, and e the polarization vector of
the exciting light.

Making use again of the | kj) representation and of
Egs. (I1.23), (I1.28), and (11.29), and bearing in mind
the k=0 selection rule for excitation of the pure crystal,
the following result is obtained:

I(E)= X O] p-e | 0)5(0j, 05", E)
X (05’ | p-e|0). (IL.36)

The matrix elements of the dipole operator which appear
in Eq. (I1.36) are nothing but the transition moments
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for the pure (or virtual) crystal exciton branches
m(7)=[p[05)=3 O] p|na)Be;(0), (IL37)

where (0| | na) is the transition dipole element of a
single molecule. In special directions of the polarization

vector say e=e;, we get for crystals of interest

m(j)-e;=m(7)-ed;;=m(4)8; so that only one
Davvdov component is excited by the linearily polarized
light.*? (Thus, for example, in a monoclinic crystal
containing two molecules in unit cell these special
directions are e; || b and e; 1 b, where b is the mono-
clinic axes.) Under these circumstances only one of the
diagonal matrix elements of the spectral density is
retained in Eq. (I1.36). We can then define the dipole
strength for polarized absorption to the jth excitation
branch in the form

I;(E)= | m(§)[PS(0,4, E). (I1.38)

Hence the pertinent information on the optical proper-
ties can be extracted solely from the diagonal matrix
elements of the spectral density.

To conclude the exposition of notation and definitions,
it will be useful to list the Greenions and the correspond-
ing physical properties of the virtual crystal

g(k,j, 2) =1/[z——¢;(k) ], (I1.39)
f(2)=f*(z—&) = (1/Nop) );_‘, 2 [a—e—e(k) I,

So(k;jy E) =5[E“‘€—6](k) ]:
p*(E) = (1/Nop) g 2 [E—e—ei(k) ],
LYNE)= | m(j)|[[E—é—e;(k)].

III. MOMENTS OF THE DENSITY OF STATES
AND OF THE SPECTRAL DENSITY

Without referring to any specific approximations, it
will be useful to consider the asymptotic behavior of the
configurationally averaged Green’s function for large 2.
Such expansion will lead to useful information concern-
ing the moments of the density of states and of the
diagonal elements of the spectral density, and how these
quantities are related to the moments of the density of
states and to the energy levels of the virtual crystal, or
rather to those of a pure crystal of one of the constitu-
ents.”” In this section we shall follow closely the work of
Velicky et al.?! on the electronic states of binary alloys.
This treatment is of interest to us as it will lead to some
general results for the optical properties.

Considering the asymptotic behavior of {(G(z)) for z
we can write for energies far removed from the allowed
band (or bands) of the mixed crystal:

] P
6= —mri= 3
=0 3

P

(I11.1)

It will be useful now to introduce the basic definitions
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of the moments of the density of states

w= [ dE(B)EF (1m.2)

and of the spectral density function
Mk, j) = / " dES(k,j, E)E»  (IIL3)

which in view of Eq. (I1.32) are related by
Bp= Zk: Z Mp(k:j)-
2

These definitions can be used to expand the following
quantities, making use of Egs. (IL.12), (IL.23),
(I1.27), (11.29), (I1.33), and (III.1):

[ YAy
gk, 0= [ T5 S, E)= TEEEE
- (k7 1(G())] ki)

e (ki [(H?)| ki)
-EHR

o "dE'
f(z)=/_wp,@_)_£

(1IL.4)

(IIL.5)

z—FE’
S-S
0 271
= (Nop) ™ Tr(G(2))
Tr(H )

= (Nop) 3 (TIL6)

p=0

One immediately obtains the followmg relations:
= (Nop)=' Tr(H?) (TIL.7)

M (K, j)= (ki [(H?)| kj). (IT1.8)

The moments of the virtual crystal Hamiltonian are
obviously

and

<Hop>=Ho"= (e+I)? (111.9)

so that the moments of the density of states of the
virtual crystal [u,’]] are just

[u,"T= (1/Nop) TrHs»= (1/Nop) ZkI 2 [etei(k) I
(II1.10)

It will be convenient to choose the moments . of the
virtual (or pure) crystal so that 4, =0 whereupon

= (1/Nop) TeT»= (1/Nop) T T (6(10)) .

(TI1.11)

The moments of the spectral density of the virtual
crystal are obviously!?

M (k,j) =[e+e;(k) ] (TI1.12)

939

and the moments of the optical spectrum are given by
M,(05).

The averaged moments of the mixed crystal Hamil-
tontan (II.4) can be readily obtained from the ex-
pansion®

(H?)=(H")++- - (H1?) (T11.13)

and by making use of the relation &+ AC,Cr=A%/4.
In this way one obtains®

(H)=1,

(H)= (H)y=e+J,
(H?)=(H?)+-A’CACp=1A4-2eT + 77,
([3)=31eA+ (RA-@) T+ 2e2+ 3. (111.14)

The lower moments of the density of states of the mixed
crystal are
mo=1,
m=[wT=¢
[l,2=[1.20+%A2. (IIIIS)
Finally the lower moments of the spectral density are
Mo(k, j) =M (k, j) =1,
Mi(k, j) = M(k, j) =é+e;(k),
My(k, j) = Ms*(k, j) +A°CaCh.
As pointed out by Velicky ef al.? these results make it
possible to derive the asymptotic behavior of the effec-
tive Hamiltonian. This result will provide us with
some insight concerning the asymptotic form of the
self-energy and its matrix elements in the | kj) rep-

resentation.
From Eqs. (I1.12) and (III.1) one can write

(ITL.16)

Hr )\
=i+J+ Zl ;;" (TT1.17)
=

and the self-energy operator can be expanded in the
asymptotic form?

(TIL.18)
where the operators K,, can be determined by using
(I11.14). The lowest terms are®

Ki=CaCat,

Ry=—CsCa(Ca—Ca) 22,

Ro=CaCaA?(@4p0),

K= —CaCaA(E—ptau?).  (II1.18")

The following interesting feature of this result should
be noticed:
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(a) The asymptotic form of the self-energy operator
is determined by a numerical power series up to the
fifth order.

(b) The matrix elements of the self-energy operator
in the | kj) representation for asymptotic values of z are
independent of k.

(¢) These asymptotic matrix elements are diagonal
in the exciton branch 7 and the diagonal terms are equal
for all 5.

These conclusions are of importance for choosing an
approximate form for the self-energy operator.

In order to utilize the results obtained herein for the
moments of the density of states and of the optical
spectrum (i.e., the moments of the spectral density at
k=0), some further information is required regarding
the problem whether the density of states does or does
not reveal an energy gap. This problem plays a central
role in the theory of disordered systems and was con-
sidered for a binary alloy® by Luttinger,® Soven,3
Toyozawa and Oneduna,® and by Velicky et al.®

In a binary mixed crystal under consideration the
following physical situations can be encountered®:

(a) Separated bands: The mixed crystal cannot have
states in the energy region which is simultaneously for-
bidden for the pure crystal of both A and B. Therefore,
if the energy difference A exceeds the total bandwidth
W of (either) pure crystal, i.e.,

ASW  (A>0), (I11.19)

two separate bands result. Condition (II1.19) providesa
condition for a band gap in the disordered system,
specifying the existence of forbidden regions (between
the two bands and outside the bands) where the
density of states is strictly zero. One should note in
passing that the “atomic limit” when W—0 (or J—0)
will always correspond to separated bands.

(b) The persistence case: As previously pointed out
by Soven® and by Onodera and Toyozawa® there are
“nearly forbidden” energy regions, inside the range
spanned by the two bands of the pure components
where the density of states is extremely small. Therefore,
Condition (III.15) is too strong for obtaining a bandgap
between allowed energy regions. For a binary substitu-
tionally disordered system it was demonstrated by
Velicky et @l that for reasonably large A values, the
Green’s function g(k,j, z) can be expanded in the
moments of the subbands, around z= — (€). The follow-
ing behavior is then exhibited around this point®

g(k, j, 3) = —[CaCpA2—p"](24€) +O[(W/A)*].
(I11.20)

Therefore, to a good approximation one expects
g(K, 7, 2) to vanish for all values of k and j whereupon
p(—&€)~0. These conclusions are valid only provided
that the density of states is a nonnegative quantity,
whereupon one obtains the following necessary condi-

HOSHEN AND J.

JORTNER

tion for the vanishing of the density of states (at one
point £= —§) between the bands:

CaCpAZ2> . (I11.21)

Thus when (I11.21) is fulfilled we expect that the bands
will be split at least at one point, and we can further
speculate that a band gap of “nearly forbidden” levels
is formed between the bands. It should be noted, how-
ever, that these arguments do not hold for Ca~—0. We
shall thus define the persistence limit by the following
relation:

W22 CaCpA22 . (111.21)
(c) Incipient bandgap: When
CaCBA? S, (11L.22)

an intermediate situation between the persistence
[case (b)] and the amalgamation [case (d)7] limits is
encountered. One may expect that there will be a mini-
mum in the density of states around —&. Such a con-
clusion cannot be proved from general considerations;
however, it is made plausible on the basis of approximate
models. 323
(d) The amalgamation limit: Finally, when

ALy d < W2, (I11.23)

one band exists in the density of states function. The
electronic properties of the crystal can be then reason-
ably well described by using the virtual crystal Hamil-
tonian, whereupon just the center of gravity of the band
is shifted relative to the pure crystal.

For general orientation purposes we have displayed
in Fig. 1 a schematic representation of the pertinent
energy regions for the excited states of a binary crystal.
We have chosen a model band of the pure substance
characterized by W =1 and u>=0.125. All the electronic
states are restricted to the strips parallel to es and to g,
when | A| is varied. For A>1 the subbands must be
separated. The zero of g(k, 7, 2) (or rather vanishing of
the density of states at that point) is presented by
heavy lines which were drawn for the two concentra-
tions Ca=0.1 and C, =0.5. This feature appears first at
A=0.83 and at A=0.5 for C,=0.1 and for Cx=0.5,
respectively, thus separating the two subbands and
providing a reasonable condition for persistence of a
bandgap.

To apply these general considerations to a real life
problem we have summarized in Table I the lowest
singlet exciton bandwidths and the second moment of
the exciton band for pure crystalline naphthalene and
benzene as obtained from hot band spectroscopy’*3
as well as the corresponding data for the lowest triplet
band in naphthalene®? obtained from theoretical cal-
culation of the electron exchange terms, which concur
with the experimental spectroscopic data.* The differ-
ences in the molecular excitation energies for the differ-
ent isotopically substituted molecules are well known. 1213
We can now state for which isotopically mixed crystals
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941

Tasig I. Empirical data on the nature of some of the lowest excited electronic states of binary isotopically mixed crystal (data refer
to the lowest vibronic component of the given electronic state).

Molecular Pure crystal Wea a? lal®b Physical situation

Components excited state exciton states (ecm™) (cm™?) (cm™) in mixed crystal
CgH/CsDys 1By, 14, By, 1Bay, 1Bs, 60 110 200 Separated bands
CsDH;/CsH; 1By, 144, 'Biu, *Bau, By 60 110 35 Persistence
C1oHs/C1oDs 1Bs. 14,,1B, 160 1410 115 Persistence
C1oH3/8-C1eDsH, 1B, 14,, 1B, 160 1410 78(74) Incipient bandgap
C,oHg/a-CoDsH,y 1B3. 14, 1B, 160 1410 55(51) Amalgamation
CmHg/a-CmH';D 133,, 14 uy lBu 160 1410 21 Amalgamation
CioHs/a-CoH;D 3Bs. 34, 3B, 11.2 9 21 Separated bands

8 Pure crystal exciton bandwidth and second moment for singlet states b Perturbation strength from Refs. 11-13.

from hot band spectroscopy (Ref. 7) and for triplet naphthalene from
theoretical calculation (Ref. 12).

a band gap is expected to appear in the density of states.
These conclusions concur with the results of the approxi-
mate calculations reported by Hong and Robinson? and
by us.?

In the case of separated bands or in the persistence
case one expects a splitting of the density of excited
states. Let us then consider the two subbands—which
will be labeled by & and 8. Some useful information can
be then obtained concerning the moments and spectral
density in each subband.

The total density of states can be now decomposed
into two separate contributions

p(E) = pa(E)+ps(E) (IT1.24)

and it will be useful to define the moments of the sub-
bands relative to the centers of gravity of the exciton
bands of the pure components es and ep:

we= [ AE(E—ex)7oul ),
fi= / dE(E—en)?ps(E).  (IT1.24")

The moments of the total density of states can be then
expanded in terms of the moments of the subbands

wp= [ AEEpu(B)+os(E) ]
- /_ " AE(E—eat-ex)7pa(E)
+ /_ " AE(E—es+e) Pps(E)

[(ea) iupr®+ (e8) up-£J. (111.25)

I
It

The resulting equations involve in principle an infinite

set which for reasonably large A values (i.e., u?/A2< 1)
can be solved by truncation. This restriction is
reminiscent of the intermediate and deep trap limit
for a single impurity state. The solution of Eq. (IT1.24)
including terms up to second order in A leads to the
following results for the lower moments of the density of
states in the subbands:

pe*=Ca; po?=Cs,
%= CaCrus®/A; wf=—CaCrul/A,
o= Calus®; P = Crusd. (IT1.26)

From these results we conclude that:

(a) There are Cy states in one subband and Cg in
the other subband. The sum rule uo*+4u®=1 is obeyed.

(b) The centers of gravity Ey*# of the two subbands
are located at

Fpe= AeAf+D/+ (CB#ZO/A))
Ef=Aep/+D/— (Cap’/A). (ITL.27)

(c) In the limit of zero concentration of one of the
components (say Cp—0)

= Aes’+ DV,
Ebﬁ= AEBI-I—Df-— (MQO/A) (11127/)

which reduces to the situation in the single impurity
deep trap limit where the host band is unshifted and the
guest impurity level outside the band is determined by
second-order perturbation theory.

(d) The “widths” Y, and ¥4 of the two subbands
are given by

o= (us/ o) — (i*#/ue#)?  (I11.28)
which to second order in A take the form
Vo= (Can?)'2,
Y= (Cpu") 2. (111.28")

Thus the widths of the two distributions are given by
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A (arbitrary units)

-5 -0 -05 0 05 | 15
Energy (arbitrary units)

Fic. 1. A schematic representation of the different energy
regions for the excited electronic states of an isotopically mixed
crystal. ---, exciton density of states in pure crystal. Hatched
area, absolutely forbidden energy regions. Unhatched area,
allowed and nearly allowed energy regions. — (1), vanishing of
density of states for Co=0.1. — (2), vanishing of density of
states for C4=0.5. Heavy dots represent the lower limit of A
required for the vanishing of the density of states at one point
at the given concentration.

the square of the second moment of the pure crystal
density of states scaled by the squares of the concentra-
tion.

These general model-independent conclusions are
useful to test the results of numerical calculations based
on approximate schemes. Of greater interest are the
moments of the spectral density in the two subbands.
Obviously in the forbidden and almost forbidden
energy regions S(k,7, E)=0 or is vanishingly small
(except for delta function singularities in the almost
forbidden regions). The spectral density can be then
decomposed into separate contributions from the two
subbands (for each k and 7):

S(k;]: E)=Sa(k,], E)+Sﬂ(k7]) E) (IIIZQ}

The moments of the spectral density in the regions of
the two subbands can be defined as follows:

My ) = [ AE(E-)?S.(k,j,B),

Mk, j) = f_ " AE(E—es)?Sa(k, j, E). (IT1.30)

The total moments of the spectral density for each

branch j can be expressed in a manner analogous to that
of (II1.25)

M, (K, j) = [_ " AE(E—eaten)7Sa(k, ], €)

+ / AE(E—enten) Ss(K, j, E)

» [P
= f\;"(l > (M, (ea) ™My P (en) V]
(I11.31)

AND J.

JORTNER

The lowest moments of the spectral density can be
now expressed in the form?

M (K, j) = Ca+2CaCre;(k) A7

—3CaCr(Ca—Cr) b;(k) A2H+0(A™D),
MF(k, §) =Cr—2CsCre;(k) A~

+3CsCr(Ca—Cr)b;(K) A=24+0(A),
M= (k, ) =Ca%;(k)

+CaCrL3CAb; () +uJA 40 (A™),
M?(k, j) = Crle;(k)

—CaCa[3Csb;(K) +u]A+0(A72),
M (K, j) = Ca®Cru+Ca¥le; (k) P+O(AT),
MA(k, ) =CaCriu+Cr¥e;(k) P+0(A™),

bi(k) ="[e;(k) P—ps.

From these results we conclude that:

(I11.32)

(a) For a given excitation branch j the sum rule
Ma(k, H)+MP(k,7)=11s obeved for all k.
(b) When

e;(k) /AL, (I11.33)

the zero moments or areas of the spectral density scale
linearily with the respective concentrations, i.e.,

M@ (k,j)—Ca;  MP(k,j)—Cs. (IIL34)

When Condition (II1.33) is not obeyed deviations
determined by the A~ term will be appreciable.

(¢) When (II1.33) is obeyed, the centers of gravity

of the two generalized spectral distributions behave like

E~x(k, )= Aep”-+DI+Cye;i(k),

Ef(k, 7)) =Aeg/+ D' +Cpe;(k).  (II1.35)

Again correction terms to this linear behavior are
expected to be important in the persistence case.

(d) The “widths” ¥, and Y of the distributions will
take the limiting form for sufficiently large A

Ya(k, j) = Ys(k, j) = (CaCop") "

being then independent of k and j in this limit.

(ITL.36)

Trom these results we are able to extract some
features of the intensity distribution in optical absorp-
tion. Obviously, the general treatment as presented up
to this point does not provide us with direct information
concerning the shape of the (polarized) absorption
bands; however, useful information concerning these
distributions can be obtained from the moments of the
spectral density function. The moments N(j) of the
polarized absorption bands are obtained from Egs.
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(11.38) and (II11.3):
No(i)= [ 1(B)EsiE

= | m( )M 5(0, 7). (ITL.37)

Let us now consider two different physical situations:

(a) When a gap exists in the density of states
function (separated bands and persistence cases), we
can consider 20p different intensity distributions in the
binary crystal. In the region of each subband, ¢p
intensity distributions, each characterized by a different
polarization, are encountered. We can then assign
moments N,2( 7) and N,#( ) to the optical lines in the
two different subbands.

(b) In the amalgamation case op different intensity
distributions, each characterized by a different polariza-
tion, will appear.

The only information required to express the moments
of the optical absorption bands in the mixed crystal
involves the positions of the Davydov components
(relative to the center of gravity) in the pure crystal
t;=¢;(0) and the moments of the density of states in
the pure crystal (see Table I). In the case of split bands
we have the following physical parameters for the 2¢p
spectral intensity distributions:

(al) The relative integrated intensities of the
absorption bands 4%( 7) and 4#(4), up to second order
in A2, are

A4( ) =Ne() /[ m( )

= Ca+2CACotA—3Cs (Ca—Cp)biA™2,
AP(§) =N/ m(f)[?

= Cp—2CsCatiA143C4 (Ca—Ca) b;A72,

(T11.38)
where b,=b;(0) [see Eq. (I111.32)].

(a2) The centers of gravity E.*(j) and EPA(j)
of the optical absorption bands are given up to first
order in A™! in the form

E2(7)=Aes”+ D7

+ (Catj+3CsCsb;is '+ CpusA) / (14-2Cpt;471),,

E#(f)=Ae/+ D’

+ (Cpt;—3CaCab;A= 1~ CapdA™1) / (1— 2Cat; A7) .
(II1.39)

Strictly speaking, these results are valid for the deep
trap limit. However, if 2Caf;A7'~2Cs{;A71<0.5 the
terms of the order of A™? will be relatively small.
Furthermore, in this case Eq. (II1.39) can be recast in

943

the form

E (1) =Aea’ + D' 4-Cati+CaCpl A1
—3CaCru® A1+ CpusA™,

E#( )= Aes/+D/+-Cati— CaCut?A™
+3CACauPA"1—CaufA™,

The resulting energies behave properly in the zero
concentration limit (for C4—0 or Cp—0) leading to the
“deep trap” values E.*(j)=Aea’+D/4uLA™? and
EFf(j)=Aeg’+D'—puA', As demonstrated in the
study of single impurity states,’®®® these “zero con-
centration” energy levels provide a good approximation
for both the deep and the intermediate impurity case.
Thus Eq. (39a) will be considered as a useful interpola-
tion formula, which is strictly applicable for the case of
separated bands but will be also used for the persistence
case.

(a3) The standard deviations (i.e.,, widths)
¥Y2(j) and ¥8(j) of the distribution of intensities are
given (to the lowest approximation) by

V() = [(CaCous+Ct2) — (Caly) T2 (CaCrps?) 17,
Y8( ) = [(CaCru+Cr) — (Cpt;) 2 ]2= (CaCru) V2.
(111.40)

We should note that for the separated bands and
for the persistence case the optical properties are
derived in terms of a power series in A~ These results
[Egs. (I11.38)-(I11.40) ] can be safely applied for the
case of separated bands. On the other hand, in the
persistence case these results are of somewhat limited
applicability. The intensity ratios (II1.38) are expected
to be reasonably good, while Eq. (II1.40") for the energy
levels can be considered only as aninterpolation formula.

In the amalgamation limit exact results can be easily
obtained for the lower moments of the spectral density.
The characteristics of the op intensity distributions are
readily obtained from Eq. (III.16) and reveal the
following simple features:

(I1I1.39")

(b1) The areas of each “absorption band” (for a
given 7 value) are equal to the integrated intensities of
the corresponding Davydov component in the pure

crystal
A()=No(§)/| m(HP=1. (I1L.41)

(b2) The center of gravity of each intensity dis-
tribution corresponds to the position of the Davydov
component in the virtual crystal, being thus linear in
concentration:

E.(7) =Ca(Aea’+D')+Cp(Aes’+D') +1;.  (111.42)

(b3) The “width” of each intensity distribution is
independent of the excitation branch and is determined
by the perturbation strength A:

Y(j)=|A|(CaCs)™ (11L.43)
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To demonstrate the usefulness of these results we
have performed simple calculations for the intensity
distribution in the lowest singlet state of isotopically
mixed crystals of naphthalene and of benzene. We have
considered the following representative cases:

(1) C4Ha/C¢Ds, which corresponds to the separated
band limit. For this system”24 | A| =200 cm™ and
p?=110 cm=2. The positions of the three allowed
Davydov components are according to Colson®:
h=-—35cm™; la=+4 cm™; = +9 cm™? while the for-
bidden component is located at #4=-+25 cm™. The
physical situation can be faithfully accounted for by
Eqs. (II1.38)-(II1.40). Eight intensity distributions
are obtained, while six of these transitions are allowed.
The results presented in Fig. 2 demonstrate the behavior
of the system in the separated bands case limit when
A>us®, In this limit the deviations of the relative in-
tensities of the absorption bands from unity is small, the
centers of gravity exhibit a linear concentration de-
pendence, while the bandwidths just depend on
(CaCg)'2. This situation corresponds to a good ap-
proximation to two independent subbands where
molecules of one type contribute to each subband. It
should be noted, however, that even in this case the
effects of “impurity scattering’ on the broadening of
the optical absorption lines is appreciable. As is evident
from Fig. 2, the & and ¢ polarized components in the
mixed crystal will not be resolved.

(2) CyHg/CiDs, which corresponds to the persist-
ence case. The pertinent data are”™ 2.

|A] =115cm™;  pf=1410 cm™!
and the positions of the two Davydov components!:21!
are:

h=-—T78 cm™; to=-+78 cm™1,

The results for this system are displayed in Fig. 3. The
integrated relative intensities reproduce faithfully the
results of the approximate intensity calculations
reported by us.® The intensity of the higher-energy ac
component diminishes with increasing concentration
and this may be the reason that this weak transition was
not detected. The deviation of the relative intensities
from unity demonstrates the fact that in the persistence
case each of the subbands cannot be associated just with
molecules of one type.

A rough idea concerning the location of the four
Davydov components is the mixed crystal we have made
use of, Eq. (II1.39"), which is only approximate for this
case.

The centers of gravity of the intensity distributions
are in qualitative agreement with the experimental
results of Sheka? [reproduced in Fig. 3(b)] for the
maxima of the polarized absorption maxima in this
system. A quantitative comparison with these photo-
graphic data cannot be made as the concentration of
Sheka’s mixed crystals was not determined but rather
inferred on the basis of the Broude-Rashba® approxi-
mate scheme. Furthermore, the general theory just
yields an approximate value for the center of gravity
and not the maximum of the absorption band.

Finally the widths of the form absorption components
reveal a typical (CiCg)'? behavior as demonstrated
in Fig. 3. This broadening of the bands with increasing
concentration reflects again some quantitative con-
sequences of impurity scattering and its effects on the
optical linewidths.

(3) C1Hs/CyoHiD corresponds to the amalgamation

limit. For this system
|A] =21 cm™; u?=1410 cm™;

fh=—T78cm™; t=—+78 cm™1.
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The features of the two polarized intensity distributions
are summarized in Fig. 4.

The results obtained herein are gratifying but in-
complete because of the following reasons: (a) exact
results cannot be obtained for the persistence case;
(b) these data do not provide any information con-
cerning the actual shape of the absorption bands which
may ‘“‘come in such a questionable shape.”# For this
purpose we have to start introducing some approxima-
tions.

IV. LOCAL APPROXIMATION FOR
THE SELF-ENERGY

A feasible approximation based on physical intuition
involves the ansatz.

10—
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04 -
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(1) @ 8“

Ecm' (2
"~
37 T

(j) Relative Intensity

a8
0

A
(]

31600, .

Losor®

31500&:1:; oy
0

05
C(CDHB)

1.0

& 4
0 02 04 06 08
C{CipHg)
CioHg /CioDg
I = ac polarization higher band
2= ac polarization lower band

3= b polarization higher bond
4= b polarization lower band

10

¥16. 3. Relative intensities (a), experimental data? for the
location of the Davydov components (b), and theoretical data
for the centers of gravity of the Davydov components (c), for
CioHs/C1oDs mixed crystals. The curves in (3c) were calculated
by the interpolation formula (IT1.39’).
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(a) and line broadening (b) in 5
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N
_
% 05 10
C(C\pH;D)
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j=2 b polarized

Assumption (H) The self-energy operator in Eq.
(I1.14) is assumed to be local in the localized excitation
representation.?3

Equation (11.16) will be now replaced by
Onamp (3) = (1t | £(2)| #00)umbas=0na(#)Sambag  (IV.1)
or, alfernatively, using the superposition (I1.14’) we set
(IV.1")

Since £ is invariant under crystal space group opera-
tions, we can set gaq(2)=04(3) for all n. Equation
(I1.19) is greatly simplified, being just

lap(3, K) =04(2)dag, (IV.2)

and the matrix element of £ in the | kj) representation
[Eq. (I1.18) ] is reduced to the form

(kj | 2(3)| K'§')=0ukr 3 Baj*(K) Bajr (K)ou(3). (IV.3)

S = | n0t)ona(z) (x|

If the molecules in the unit cell are crystallographi-
cally equivalent and can be mapped one to another by
the factor group operations, the matrix elements
0«(2)=0c(z) are independent of the site index a. From
now on we shall limit ourselves to this situation. The
orthogonality of the | kj) basis set now implies

(kj | 2(2)| K )=dadsio(2).

Thus the local approximation to the self-energy com-
bined with a mild symmetry restriction leads to a self-
energy operator which is diagonal in the | kj) representa-
tion. The general treatment of Sec. I can be now greatly
simplified. The effective Hamiltonian is now

(kj | Hest | K'j') = biacrdjje[e+e;(k) +o(2) .

(IV.4)

(IV.5)
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where we have separated the (complex) function
Res + 2 o{E—1i0%) = Rec(E—10*)+¢ Imo(E—10%). The shape
s e of the optical absorption bands is obtained in the form
1008 | m()
. i P . IR = (T)
-10 -05 1 +05 +10 E
/ 17005/ el o Imo (E—10%)
! _M 8“=0é5 [E—eé—t;— Rea( E—i0*) P4-[Imo(E—i0") 2°
[

1.0 ,,‘0%5’ 40 E
o
o7 ws=|
//’ CA=O|
$=1.0
#=-045

(b)

Fic. 5. A schematic representation of the location of the
maxima of the Davydov components in a binary isotopically
mixed crystal containing two molecules per unit cell. This figure
displays the features of a graphical solution of Eq. (IV.10).
The dashed arrows represent the limit of the allowed and almost
allowed excited states. (a) corresponds to the amalgamation
limit while (b) represents the persistence or separated bands
cases. The heavy arrow in (b) represents the position of the pole
of the self-energy. The intersections of the two straight lines
with the curve Ref+¢ yield the location of the Davydov com-
ponents in the mixed crystal.

The diagonal representation of the averaged Green’s
function takes the simple form (for the diagonal
elements)

g(k,j,2)=1/[z—e—ej(k)—0o(z)], (IV.6)

while the off-diagonal elements (11.23) vanish. g(k, 7, 2)
is related to g°(k, 7, z) by the Dyson equation
g(k, 7, 2) =g°(k, j, 2) +¢°(k, 7, 2) o (2) g(k, 7, 7).

(IvV.7)

Finally the spectral density matrix (I1.28) is diagonal,
and its diagonal elements (i.e., the spectral density
functions) can be conveniently displayed in terms of the
‘““pseudo-Lorentzian’’ shape
S(k) ja E)= (W—l)
% Img (E—:0%)
[E—é—e;(k) — Rea(E~—i0t) P+4-[Ima(E—i0T) P

(1V.8)

(IV.9)

The broadening is determined by Ime while the term
Reo can be considered as a level shift. This result
provides us with further insight concerning the in-
tensity distribution in absorption. Provided that
Imo(E—140%) is a relatively slowly varying function of
E over the band region in the amalgamation case and
over the region of each of the two subbands in the
separated band and persistence cases, we can then assert
that the peak of the distribution of intensity in the
absorption bands will occur at the energies which satisfy
the relation

FE—&—t;— Reo(E—i0")=0; (1V.10)

This result is of interest as the behavior of Res deter-
mines the number and location of the absorption
maxima. Using the moment expansion method it was
demonstrated by Velicky e al3 that g(k,7,2) is ex-
pected to vanish at z=—¢ for all k and j [see Eq.
(I11.20)7], whereupon the self-energy in the local
approximation takes the form [see (IV. 6)7, in the
vicinity of this point,

o(z)~z—e—e;(k)—[g(k, 4,2) ]
=z—e+e;( k) + (CaCpA2—u") / (3+€)

j=1-++0p.

which has a pole at = —&. In the vicinity of E=—¢
Rea(E—i0F) =[CaCpA*—plJ(E4-6)7!

so that the level shift diverges and changes sign at this
point. Furthermore, when E—® we expect, of course,
that Reo—E™L, On the other hand, in the amalgama-
tion limit we expect that Res will be a slowly varying
function of the energy throughout the whole band region
decaying at large distances as E~L. From these general
considerations we can assert that:

(a) In the amalgamation limit Eq. (IV.10) is
expected to exhibit ¢p solutions which correspond to
the maxima of the op differently polarized Davydov
components in the mixed crystal. Thus in the amalgama-
tion limit the number of the Davydov components in
the mixed and in the pure crystal is equal. This result is
not surprising as the amalgamation limit corresponds
closely to the virtual crystal.

(b) In the separated bands and in the persistence
case Eq. (IV.10) is expected to exhibit 2¢p solution
{¢p within the region of each subband). Thus the
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number of Davydov components in the mixed crystal
will be doubled relative to that of the pure crystal. The
spectral distribution of intensity in these Davydov
components was discussed in Sec. IIT.

In Fig. 5 we present the general features of the real
part of the self-energy in the two cases discussed above
with an application to a crystal characterized by two
molecules per unit cell where the Davydov components
in the pure crystal are located at the two band edges.

V. THE COHERENT POTENTIAL APPROXIMA-
TION FOR EXCITED STATES OF MIXED
MOLECULAR CRYSTALS

Following the work of Soven® and of Velicky ef al.,*
we shall now proceed to present the general expression
for the self-energy based on a self-consistent approxima-
tion, which rests on multiple scattering theory. The
effective Hamiltonian is considered as an unknown of
the problem and one is seeking a self-consistent ap-
proximation based on the restriction that a single
molecule (of type A or B) which scatters the electronic
excitation should not produce on the average further
scattering. Let us rewrite the crystal Hamiltonian

H=H+AY L (V.1)
and the (exact) effect Hamiltonian
Hur=Hyt T Sne. (V.2)

The generalized perturbation resulting from the devia-
tions of the crystal from its average behavior is

V=H“Heff= E (Agna— ﬁﬂm)E' Z Una: (V3)

Excitation scattering due to the deviation of the mixed
crystal configuration from its averaged behavior can be
described by the total T matrix

T=V+V(GT. (V.4)

The relation between G(z) [Eq. (I1.11)7] and (G(2))
[Eq. (11.12) ] is just given by the following version of
the Dyson equation:

G(2)=(G(2) + (G(2))T(G(2))

which leads to the exact condition for neglecting
molecule-molecule spatial correlations [Assumption
(G), Sec. IT]. This self-consistency condition implies
that the spatial average of T vanishes, i.e.,

(T'(2))=0,

whereupon Eq. (V.6) can be considered as an exact
definition of (G(2) ). Now the T matrix can be expanded
in terms of “molecular” f,, matrixes associated with
each site#:4

(V.5)

(V.6)

ba= '”na+'vna<G>tna (V7)
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so that

T= E tna+ E tna<G> Z tMﬂ+' "o (V8)
na na mB#Ena

The second- and higher-order terms in Eq. (V.8)
represent multiple scattering effects. The CPA rests on
the following assumption.’:®

Assumption (I} Multiple scattering contributions to
the self-consistency condition (V.6) are negligible.

Thus Eq. (V.6) is replaced by the approximate

relation
(tna(z) >= 0 (V9)

Making use of Egs. (V.3) and (V.7) we can write the
operators

for all no.

tha(2) =[1=02a(2) (G(2) )T 0ma(2),  (V.10)
Vna(8) = Abng | n0)(net | —Zna(z).  (V.11)

The spatially averaged {f..) is
{tra)=Cals+Cutp, (V.12)

where ta and ¢g correspond to the { matrices for an
impurity of type A and B, respectively, located on the
lattice site na. Making use of the definition of £.,
[see Eq. (I1.4b) ] we immediately have

A= (1-—'L‘A<G>)'—1‘DA,

tw= (1—vp(G)) vg, (V.13)
where R
1a=ACy | na)(not | — Zna,
vp=—ACa | na)(na | — S (V.14)

Equations (V.9) and (V.12) now imply
Ca(1—=02{G)) a+Cr(1—-1p(G)) =0 (V.15)
which leads to the Soven equation®
Cava+Crvs=24{(G)vs, (V.16)
or alternatively one can write the operator equation:
Sna= (ACn | nar)(nor | —£na) (G(2) )
X (ACx | na)(na | +2aa).  (V.17)

This result is somewhat more general than that obtained
previously by Velicky et al® However, in order to
obtain a manageable expression we have to invoke again
the local approximation for the self-energy (see Sec. IV)
so that

ina=aa(z) } na)(na ’7 (VIS)
whereupon
a'a(z) = [ACB—'Ua(Z) ](”a KG(Z) >| m)[ACA+°'a(Z) ]
(V.19)

For a crystal characterized by crystallographically
equivalent molecules in the unit cell the matrix element
of (G) in the localized approximation can be displayed
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in the form
{ne |{G)| nar)
= (1/Nop) Xkl 2 || Bas(K) [F/[2—&—e;(k) —a(2) ]}
= (1/Nop) ? 2 [z—e—e(k)—a(z) T
=[{p"(E")dE'/[z~0(2) — E'J} =f*[3—e—0(2) ].
(V.20)

Furthermore, in this case ¢,(2) =0 (2). This leads to the
equation of Velicky ef al.?

o(2) =[ACp—0(2) If*[3—&—0c(2) LACA+0(2) ].

(V.21)
This last result can be recasted in the form
flz—e—o(2)]
=0(2)/{CaCsA*—a(2) A(CA—Cr)—[c(2) P} (V.21)

which is equivalent® to the Toyozawa—Onodera result®
previously applied by Hong and Robinson® and by us®
for excited states of isotopically mixed organic solids.
In this approximation all the physical information can
be derived from the density of states function of the
pure crystal, without invoking any approximations for
the nature (short or long range) of the intermolecular
interactions.

It seems to us that it was useful to derive the CPA
results for a multiply branched exciton band and to
discuss carefully the approximations involved in this
somewhat extended treatment. We shall now consider
some limiting cases within the framework of the CPA
approximation with emphasis on the optical properties:

(a) Low conceniration of one component: As it is well
known,¥:3:2.23 the CPA reduces to the Koster Slater'

Ii(E)= | m{ /) |*{p°(E—&) CaCBAY[E—~&—1,— CaCpA? RefO(E—5) P+ [mp"(E—€) CACsA*?}.

The dependence of the linewidth on the product C,Cz is
identical with the functional form of the second moment
in the amalgamation case (see Sec. III).

(¢) The atomic limit: When p"—0 we expect that
flz—eé—o(2) 1o1/[2—é—0o(2) ] and Eq. (V.20) to first

order in o (2) reduces to the form
0(2) =CaCA¥/[z—é4A(Cs~Cs)].  (V.28)

This limiting equation was derived previously by
Hubbard,* Edwards,* and by Velicky ef al.3! It should
be noted that Ime(E—40*) =0 in this limit, which is
reasonable as the unperturbed band corresponds to a
delta function. The real part of the self-energy is

Reo(E) =CaCpA¥/[E—é+A(Ca~Cr)], (V.28

while the optical properties are now obtained from

Downloaded 22 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

HOSHEN AND J. JORTNER

single impurity equation. It will be, however, useful to
consider in this context the intensity ratios in somewhat
greater detail than done before. In the low-concentra-
tion limit Ca—0, Cs—1, and o(2)—0. Retaining terms
up to the order Cy in Eq. (V.21) leads to the equation
first derived by Edwards.*

o(2) =Cal¥%(z2—&) /[1-Af(2—5&)]. (V.22)

The transition dipole strength takes the form given by
(IV.9). If f*is real (corresponding to a state outside the
band), then Tmo=0 and we get

I;(E)= | m( §)|%{ E—é—d;—~[Cab?¥°/(1- 4 T}.
(V.23)
The position of the (narrow) line is obtained from the

Koster Slater relation 1 — Af*(E,) =0, while the intensity
is given by the Rasba equation®®

L(E) = [ m(§)[PCa/(E,—e—d;)%.  (V.24)

(b) The virtual crystal: When A—0 ¢(z)—0; first-
order correction terms to the self-energy take the form
of the weak coupling equation®4

0(2) = CACnAY*(2—7). (V.25)

This result is useful in the amalgamation limit. A
reasonable approximation for the line shapes of the op
Davydov components are obtained from Eq. (IV.9).
Let us split ¢ into its real and imaginary parts:

Reo(E—i0+) = C,CpA? RefO(E—7),
Imo(E—i0%) =CxCrAlmp®(E—¢),

where p° is the density of states of the pure crystal while
Ref® corresponds to the level shift in the single impurity
Koster Slater scheme.'* We thus obtain from (IV.9)

(v.26)

(v.a2n
Eq. (IV.9)
I;(E)= |m(j)|%[E—~é—t;— Rea(E)]. (V.29)
Let us define an auxiliary function
R(E)=E—&— Res(E), (V.30a)
whereupon
[R(E)T'=[Ca/(E—ea) ]+[Cn/(E—es)]. (V.30b)

We develop the delta function in (V.29) in the con-
ventional manner which results in

I(E)= N2 o
{(E)= 1 m(DF 2 3R (5 /oF Jaem

where the roots E, are determined from the equation
R(E) =1; (V.32)

8(E—e), (V.31
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or
[R(E)T'=Ca/(E~ea)+Cs/(E—es) =t (V.33)

Equation (V.33) is expected to yield two solutions for
each j branch as the atomic limit corresponds obviously
to the case of completely separated bands.

The intensities of the transitions are given by

ILi(E) = | m(j)| [(.-?B Efie;)2/i—¥.la '(—E,’,C_ET'):] .
(V.34)

The results just derived for the atomic limit are
identical with the equations obtained by Broude and
Rashba? on the basis of the “excitation democracy”
hypothesis. Thus the Broude-Rashba scheme corresponds
to the extreme case when the perturbation strength A
greatly exceeds the pure crystal exciton bandwidth.
Thus for most cases of physical interest this scheme is
not applicable.

VI. DISCUSSION

In this paper an attempt was made to present a
systematic study of the excited electronic states of
isotopically mixed crystals with an emphasis on the
optical properties. The mathematical techniques based
on the time-independent Green’s function method are
completely general and very physical in nature, pro-
viding a powerful tool for the study of the variety of
problems related to the electronic states of disordered
systems. As approximate schemes using the Green’s
function methods have to be handled rather carefully,
we hope that the present treatment minimizes the
number of uncontrolled approximations and defines
clearly the range of validity of the approxischemes.
When these methods were applied to the excited elec-
tronic states of a simple mixed crystal the following
information was obtained:

(a) The properties of an effective Hamiltonian for
excited states of a mixed crystal characterized by a
multiply branched exciton band were considered.

(b) Information on intensity distribution in optical
absorption can be obtained from the moments of the
spectral density function for a randomly substituted
heavily doped crystal. The moments of the absorption
bands can be expressed in terms of the positions of the
Davydov components and the moments of the density
of states in the pure crystal.

(¢) In the amalgamation limit the configurationally
averaged isotopically mixed binary crystal is character-
ized by op (polarized) intensity distributions while in
the persistence and separated band cases 20p different
(polarized) intensity distributions are observed.

(d) Invoking the local approximation for the self-
energy operator it can be demonstrated that for any
general form of the pure crystal exciton band the self-
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energy can be specified by op complex functions. For a
crystal characterized by a unit cell containing crystal-
lographically equivalent molecules a single complex
function can be used to describe the self-energy in the
local approximation.

(e) General expressions for the line shapes and for
the Davydov components can be obtained in the local
approximation.

(f) The CPA approximation was extended for a
multiply branched exciton band.

(g) The Soven—Velicky—Kirkpatrick-Ehrenreich-
Onodera-Toyozawa equation for the self-energy in the
local approximation is applicable for a multiply
branched excited state in a crystal where the molecules
in the unit cell are crystallographically equivalent.

(h) The optical properties of the virtual crystal can
be applied to obtain the line shapes of the ep Davydov
components in the amalgamation limit.

(i) The atomic limit, which exhibits the extreme case
of separated bands, reduces to the Rashba Broude
formula.

(j) Davydov splitting and the appearance of
polarized absorption bands will be exhibited by a
substitutionally disordered molecular crystal described
by a Hamiltonian which is characterized by a random
diagonal part and translationally invariant off-diagonal
part. The number of the Davydov components is
determined by the perturbation strength.

The coherent potential approximation is very satis-
factory in view of the following features®3.2.3
(a) symmetry in the concentrations C4 and Cy of the
two components; (b) faithful reproduction of various
limiting cases such as the low concentration, the vir-
tual crystal, and the atomic limits; (c) the asymptotic
expansion of Heg in powers of 27! up to 275 is identical
with the exact result; (d) the CPA self-energy for
CaCBA™> e reveals a pole at 2= —g, whereupon in the
persistence and split band limits 2¢p Davydov com-
ponents will result as in the exact treatment.

The major disadvantages of the scheme used in this
work are:

(a) The “‘coarse graining” procedure which focuses
attention on the configurationally averaged crystal
neglects important clustering effects. “Fluctuations” of
the Hamiltonian are averaged out. Such fluctuation may
lead to localization near the band edges and to formation
of localized states in the band gap.1®V

(b) The effects of multiple scattering effects were
neglected. These may be considered®* by taking the
higher terms in Eq. (V.8).

We have performed? detailed numerical calculations
based on the CPA for a number of model systems. These
calculations demonstrate the general features of the
density of states in substitutionally disordered organic
crystals, the erosion of Van Hove singularities, and the
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intensity distribution in optical absorption. The general
study was also extended to handle tertiary mixed
crystals which are of some experimental interest.” The
most interesting problems which deserve further theo-
retical study are the following:

(a) The localization problem with an attempt to
provide criteria for excitation localization.

(b) The “spreading” of the bands near and within
the gap in the persistence and the separated band cases.
This effect may contribute to the experimental failure”
to observe the fourth Davydov component in the
CmHg/ CioDs system. '

(c) Energy transfer phenomena and the role of
Impurity scattering on excitation transfer in heavily
doped crystals. '
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