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We discuss the criteria for the specification of a proper basis set for describing electronic relaxation processes in
large molecules.

[t is now well established that the decaying electronically excited states of large molecules should be described
in terms of resonance (compound) states [1—3] . To assert whether the physical phenomenon of the decay of an
excited electronic state of a “statistical”” large molecule can be described as two independent processes of excita-
tion followed by decay, or as a single quantum-mechanical process, one has to specify the duration of the excita-
tion time relative to the reciprocal width of the resonance. When the temporal duration of the exciting photon
field is short relative to the reciprocal width of the metastable state it is possible to separate the excitation and de-
cay processes and to consider radiative and non-radiative decay times, On the other hand, when the exciting pho-
ton field is characterized by high energy resolution (being switched on for long periods) resonance scattering in-
volves a single quantum-mechanical process and one can then consider the determination of optical line shapes,
cross sections for resonance fluorescence and emission quantum yields. The lifetime is then obtained from the re
ciprocal resonance width. The physical information derived from “short time” and “long time” excitation pro-
cesses is equivalent.

The basic physical model for a single molecular resonance in the statistical limit [1—3] rests on the following
assumptions:

(a) A single zero order state |s) carries oscillator strength from the ground state {0).

(b) Is) is intramolecularly coupled to a zero order quasicontinuum {|N}.

(c) The quasicontinuum is optically inactive.

{d) Other optically active zero order states |b) (which correspond to different vibronic components of the same
electronic state as |s) or to other electronic states) are well separated from |s) relative to their total widths.

Conditions (a} and (c) pertain to the excitation process of the resonance both in “short time” and “long time”
experiments. Condition (b) implies the existence of a finite width of the resonance in “long time” experiments
and intramolecular decay for a *‘short time” experiment. Conditions (a)—(d) were taken to imply that the line
shape is lorentzian (and the decay is exponential); thus if (¢) does not hold, a Fano-type line shape [4] will result,
while if (d) is violated, interference effects in the line shape and in the decay will be exhibited. Several authors
have implied that when conditions (a)—(d) are satisfied the resonance width is given by the Fermi Golden Rule
I’ = 2n)és V!I)lzp, (where the total molecular hamiltonian is separated into H = Hy +V, and where p, is the density
of states {|D}). When radiative decay is also considered, the radiation field provides an additional independent de-
cay width I'p the total width being I', =T + Fg . If molecular systems would adhere to conditions (a)—(d) life
would be simple. However, in real systems the role of off-resonance coupling with other states |b) (see fig. 1) is
crucial, and the simple Golden Rule expression should be modified. This point, which was not realized in several
recent works [7,8] leads to considerable confusion concerning the choice of the basis set for Eie%cribing electronic
relaxation processes.
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Fig. 1. A schematic representation of the relevant molecular states and couplings. Arrows indicate dipole coupling via the interac-
tion with the radiation field. Wavy lines represent intramolecular coupling.

Following classical work in molecular and solid state physics [6] it was widely accepted [1—-3,5] that the zero
order states |s} and {|D} can be taken as Born--Oppenheimer states, whereupon the nuclear kinetic energy opera-
tor provides the coupling term for internal conversion. This approach has been challenged by Burland and Robin-
son [7] and by Sharf and Sitbey [8] who claimed that the “Herzberg—Teller coupling is more effective in causing
radiationless transitions than the breakdown of the Born—Oppenheimer approximation” (7] . In view of this lively
controversy we shall attempt to consider the problem of the nature of intramolecular coupling in internal conver-
sion by discussing the general separation of the hamiltonian, the form of the resonance width in a realistic system
and the general criteria for the choice of a basis set for specifying electromnic relaxation processes.

Consider the dissection of the molecular hamiltonian & = TR + T, + U(r, R) where r and R represent electronic
and nuclear coordinates, T represents kinetic energies, while U(r,R) is the potential energy. Let jnv) be any com-
plete set of molecular zero order functions where electronic and nuclear motion has been separated arbitrarily (so
that the first index refers to the electronic state, while the second index labels the vibrational state). We can then
define the projection operator P, = Inv) . Utilizing the completeness assumption n,uvEny = 1, and the trivial
relation H = in’ UPHUHEH’ vin, v We can then define

H=Hy +V, (1

where
HO=§ P HP (1a)

and

V=2 2P HP,, . (1b)
nunuv
netn'y

We shall now consider the adiabatic (A) and crude adiabatic (CA) basis sets assumning that each set is complete?.

T It can easily be demonstrated that a molecular function can be expanded in terms of either the (orthenormal) adiabatic or the
crude adiabatic set. This is a necessary but not sufficient condition for completeness.
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In the Born—-Oppenheimer representation |nv) = pA(r,R) x,(R) where the electronic ¢4 and the nuclear X3,
wavefunctions satisfy the well known equations

[T, + U R} (7, R) = E,(R)GMrLR) [T +E, (R) + 6 T lo®1xA (R) = E4 X (R) 2
s0 that

Hy = nzflso,? Xp Emon o )
while

WMOU/BR gAY 5 32
A _ A n n A 1, A A 97 ) A A
Ve = 2 HE,U,l‘pn X¢u> {(X‘:UIE‘"(R) _En'(R) a_R'xn'v'> +‘2(X,,,,'<‘Pn IaRgl‘Pn’u')lx:}'u') <‘pn )(:’u'l s 4
nvEn'y'

where () denotes integration in the electronic r space, while () denotes the integration in the nuclear R space. In
the crude adiabatic representation nv) = gSA (5, R g) XA (R) where the electronic ¢4 and nuclear xCA wavefunc-
tions satisfy

- CA

(T, + UG, R )] eSA = E, R eSh [Tg +ESAR ) +@CHAUGERIEM] XA R) = Eg xot R) . (5)
where AU = U(r,R) — U(r,Ry) and Ry is an arbitrary fixed nuclear configuration. In this representation

A _ CA _CA A, CA CA
Hg - nzl;l‘pn Xnv )Egv (¢n Xory I (6)

A _ CA CAy ,CA CA CA . CA\, CA CA 7
e _sz; :L?.' ’50" Xnv )((wn Xp 'TR +AU(”R)|“9n' xn'u'))@n' xn'v'l' M

nuen'y'

Eqs. (6) and (7) provide a self-consistent definition of the zero order hamiltonian and the perturbation in the CA

basis. The following remarks should be made at this point:

{1) Both A and CA (untruncated and complete) sets are adequate from the formal point of view.

(2) The vibrational wavefunctions x* and xCA are different in the two approximations, see eqs. (2) and (5).

(3) While the adiabatic potential surfaces £, (R) are known from theoretical calculations no information is avail-
able concerning the CA potential surfaces (SA |AU(r, R)eG™). In particular, it should be noticed that in the
limiting case of R - o the crude adiabatic potential surfaces dissociate to the wrong energy ¥ Thus the high
vibrational wavefunctions and zero order levels in the {|D} manifold may differ appreciably in the A and CA
representations.

(4) Both A and CA basis sets are diagonal within the same electronic configurations, i.e.

(™A |y ANy = (o CANT + AU RV AN =0 for vy’

This point is well known concerning the A set but was not clearly realized concerning the CA basis.

(5) The interstate coupling matrix elements [eq. (4)] were conventionally treated [1-3,5,6] by the application
of the Condon approximation: (a) replacing the energy denominator in eq. (4) by the constant electronic en-
ergy gap and (b) assuming that the matrix element (g2 [3U/3R l«pﬁ-.) is independent on the nuclear configuration.
The Condon approximation is invalid, both in solid state and molecular physics. We have recently [9] applied
Feynman’s operator technique in the weak electronic—vibrational coupling limit for the twa electronic level

-
+ We are grateful to Professor J, Musher for an illuminating discussion of this point.
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system relaxing both approximations (a) and (b)T. For near resonance coupling between [s) and |} we ob-
tained
WA r, R U/3R) ¢ oA RS
= Q si, If
GBI et xg) =7 Fal, (®)
5 s I Al (AEiI/ha) A
where F f{" ¥ is the Franck—Condon factor between the adiabatic functions, AEiI is the effective electronic en-
ergy gap [3} (modified by a promoting mode) and ¢ is an average frequency. This is just the Condon approx-
imation modified by a correction factor n, which exhibits {9] a linear dependence on AEY, 4¢3 and a weak de-
pendence on the coupling strength. Thus for near resonance coupling, eq. (8) is practieally independent of the
energy gap, removing the paradox of Burland and Robinson [7] concerncing the appreciable difference be-

tween A and CA resonance coupling, in the weak coupling limit. For off resonance coupling in the A basis (say
with state b) in the weak coupling limit we have n = 1 so that

CA CA
GAYAIA A A ) =<"°s i(@U/3Q) oy ™)
(e Xl V™ oy X ) .

(AE” fRd)

Thus, off resonance coupling in the A basis is small.

(6) In the CA basis the coupling terms are of the same form for both near resonance and off resonance coupling
CTAXGA VAo AxER) = WA MIFEY (oA X IVER I A G = (Sh (UL MFEDE . (10)
Thus the off resonance matrix elements in the CA basis are relatively large. The ratio of the off resonance cou-
pling terms in the CA and A representation is AE /A =~ 10.

The last point brings up the major difficulty associated with the use of the CA basis. Let us consider the exten-
sion of the Bixon—Jortner model (fig. 1) where the role of other excited states (which always exist in real life) is
included. We shall provide a general expression for the resonance width from the optical line shape {(although any
other *“‘short time™ or “long time’ experiment could be considered). Including the effects of radiative coupling to
first order, the line shape L(E) for absorption from the ground level [0} is [10]

Sl &)

L(E) = ImOluGul0) , (11)
where the Green operator is

GE)=(E-H+i)™"; -0+ (12)
and u is the dipole operator. Provided that conditions (¢) and (d) hold the line shape (in any basis) is
LE)=tmu, G p, - (13)
The diagonal matrix elements of the Green function are

G, (E) = GIGE)s) = [E- E, - D(E) —iT(E)] ! . (14)
The level shift D(£) and width I'(E) are [11}

D(E) = Re(sIRls) ; T(E) = Im(sIR |8 (15)
being defined in terms of the level shift operator [11]

R=V+V(1-PCE-P)V, (16)
where

t Recently Orlandi and Siebrand [15] have calculated the correction term arising from bypassing assumption (a). Sharf and Silbey
[¢{6] have provided an approximate scheme, relaxing both assumptions (a) and (b).



=[E-H,-(1-PV1-P)] ", P=194Gl . (17)
The resonance width is just I'(E,) (in the vicinity of £ =~ E ). It is important to notice that this total width does
not correspond just to the width of the zero order state |s) due to its decay into {|D}, as the role of the {|b}} states
has to be included, This is immediately apparent from the expansion (where only a single b} state has been in-
cluded for simplicity)

SRIN=V G, V), + E VGV + ? V.GV + ZIDE v

rs

GV - (18)

Note that in the simple prevmus model {1-3] only the last term in (18) is retained. Now making use of the oper-
ator identity (E ~ H)~! =(E~ Hy)~} +(E - Hy) =1 V(E - H)~1, eq. (18) takes the exact form

N(E) =Ty(E) +Im[E ~ B, —iC (E)] "1V, ta+if)(V,, +a* +i*), (19)
where
Fo(E) =7 ZIDWHFS(ES ~E) (20)

is just the Golden Rule width. While
o= PP Z) v,V (E-Ep, 1)

ﬁ=w§3msaws—@ 22

represent “mixed type” level shifts and widths connecting the states lb)f:d |s} via [}, Finally, the zero order gen-
eralized width of the state |b) (neglecting a level shift term) is I'y (£) = I[Vbl|25(Es — E;). Note that |8|2 =
To(E )Ty (E ). Itis amusing to note that eq. (19) is formally equivalent to the Fano line shape formula [4] (taken
at a single point) and can be recast in the form
qrs2 + 55_2 + 2q e cost
1+ ef ’

where e, = (£, — E})/T',(E,) and g, exp(i@) = (V, + a)/P.

For internal conversion the matrix elements are real and we get the final exact result

Ly EN(V,, +)? + AE, - E)BV,, +0) + TW(E)E, Eb)2
nE)=—-"" - ; (24)
(&, - E,)? +{T,(E))

For the validity limit of eq. (11) [see assumption (d)] we can assert that
Fb(Es)<(Es Eb) H (25)

N(E) = T'(E,) (23)

whereupon
WV, +a) Ty (Y, +a)?
+ i

= T ) 4 26
)=o) (26)
Eqs. (24) and (26) provide us with the corrections for the Golden Rule expression. The first correction term in
(26) represents the coupling of s — b — ! — s while the second term [being small under condition (25)] represents
double coupling between s — I'and b — 1. In the limit (25) we get

20V (EFE)V, (EFENV,
PE)=T(E)+ E -, I(EI=Es) . 27
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This result brings us to a basic principle for the choice of the appropriate basis set for describing electronic relax-
ation processes. In real molecular systems conditions (a)—(d) are necessary but not sufficient for describing the
relaxation rate in terms of the Golden Rule and we have in addition to assert that:

() the coupling between [b) and [s} and between |5) and (D) is negligible.

Thus the appropriate basis set has to be chosen to satisfy conditions (2)—(d) and to minimize the non-diagonal

off resonance coupling terms ¥V, (E/=E,) and Vs From these general considerations we conclude that:

(7) The adiabatic basis set is conceptually superior to the CA basis for describing electronic relaxation processes, as
it involves much smaller off resonance coupling terms and thus can be described by decay in a two electronic
level system.

(8) The appreciable contamination of the zero order states [s) and [/} by other |b) states in the CA scheme {12]
implies that is is meaningless to consider the decay of an initially crude adiabatic state, as pointed out by Le-
febvre [13].

(9) The a priori reason for choosing the Born—Oppenheimer basis for describing radiationless transitions is to min-
tmize the off resonance coupling terms. If all the off resonance states were included, the CA basis is perfectly
adequate,

(10) The choise of the basis set is arbitrary and does not reflect on the physical features of the problem. However,
al the present state of our ignorance of the fine details of molecular coupling terms, only the adiabatic basis
provides a sound physical description of a “two electron level system” where the role of other states is dis-
regarded.

Finally, we would like to state one interesting shortcoming of the A basis. It can be demonstrated [14] that the
adiabatic {IN} quasicontinuum does in principle carry oscillator strength from the ground state, pg; # 0, so that
strictly speaking the optical line shape is fanoian. The same result is obtained for the CA multilevel system [14].
However, the Fano line shape index is [14] g = #co/T, so that in most cases of physical interest ¢ > 1 and the line
shape is reduced to eq. (11).

The theory of electronic relaxation processes has been fraught with conceptual difficulties concerning the prop-
e choice of the basis set. We hope that the present treatment will remove this confusion.
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