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Internal conversion in large molecules 
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In this paper we consider the problem of internal conversion in a highly 
excited singlet state of a large molecule in the statistical limit in terms of a 
consecutive decay problem. The Wigner-Weisskopf approximation was 
utilized to handle the problem of sequential decay. We have elucidated the 
features of the radiative decay, such as the decay pattern, the decay times and 
the quantum yields of a ' statistical ' second-excited singlet state in different 
spectral regions. 

The decaying excited states of large molecules should be described in terms of 
resonance (or compound) states, similar to the formulations used in the theory of 
nuclear reactions [1], scattering [2], predissociation and photoionization [3, 4]. A 
fashionable model for the description of the decaying metastable excited electronic 
state involves [5] a single zero-order Born-Oppenheimer state Cs which carries 
oscillator strength from the ground state r coupled to a ' statistical ' manifold 
{r The {r dissipative quasicontinuum corresponds to a lower electronic 
configuration and is inactive in absorption (and emission) in view of spin selection 
rules (for the case of intersystem crossing), and because of small Franck-Condon 
factors and propensity rules for intramolecular coupling. In the case of internal 
conversion from a highly excited singlet state, when the {r states are electronically 
excited singlets, they do carry oscillator strength to highly excited vibrational levels 
r tw of the ground electronic state. In view of the symmetry restrictions [6] on the 
vibrational part of {~} (which has to contain a promoting mode), each of the final 
r tw states has to be characterized by the same vibrational symmetry as the 
corresponding Cz excited state. Internal conversion from highly excited singlet 
states in the statistical limit thus corresponds to a consecutive (sequential) decay 
scheme. Such a physical situation involving a decay of a metastable state (or 
particle) into another metastable state which subsequently will decay, is encountered 
in many fields of physics. A common case involves radioactive sequential decay 
and the decay of elementary particles (for example, a rr + meson decaying into a/z + 
meson and a neutrino, the former decaying into a positron and two neutrinos [2]). 
In the present paper we provide a theoretical description of internal conversion in 
the statistical limit as a sequential decay process, utilizing the Wigner-Weisskopf 
approximation. The Wigner-Weisskopf scheme is equivalent to the Green's 
function method [2] provided that (radiative and non-radiative) level shifts are 
neglected. The Green's function method, previously utilized to provide an 
incomplete solution to this problem [7] is surveyed in the Appendix, which follows 
the treatment of Goldberger and Watson [2] for sequential decay of elementary 
particles. 
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586 A. Nitzan et al. 

The total hamiltonian for the system H= HBo + Hv + HR + Hint consists of 
the Born-Oppenheimer hamiltonian, Hgo, the intramolecular perturbation, Hv, 
the radiation field hamiltonian,/-/R, and the radiation-matter interaction term Hint. 
The states of HR will be denoted by I vac } (the ' empty '  electromagnetic field) 
and by [ k, e } (a single photon characterized by the energy h] k[ and polarization 
e). The coupling scheme of the (initially produced) non-stationary state [4s; vac 
corresponding to the second excited singlet is t 

where ~0 0w are totally symmetric vibronic components of the ground electronic 
state, ~T s and ~T I correspond to lower triplet manifolds (and the ground state 
manifold) which can be considered a statistical dissipative quasicontinuum and 
provide additional decay channels for the zero-order states q~8 and {~}, respectively. 
The  relevant radiative widths are 

]($,;vac]Hintl$o~ ( l a )  

for the state ~s, and 

Ft=2rr ~ ~ f [(q~t; vac lHint]q~0tw; k', e'>12p/r ' d~k' (1 b) 

for each of the ~bt states where pk is the density of states in the radiation field. The  
pertinent non-radiative (partial) widths for the non-radiative decay of 6s into (6T s} 
and of each r into {r t} are 

ex,= 2~1(r vac ]Hvl~TS; vac ")IZlaT, (2 a) 

and 

A, = 2~r [ <r vac [Hv[q~C; vac }[ 2pT t (2 b) 

for the state Ss (2 a), and for each of the states Ct (2 b). Note that on the basis of 
symmetry arguments we have asserted [6] that the non-radiative decay matrix (in 
the Born-Oppenheimer representation) is diagonal. 

Following conventional time dependent perturbation theory the compound 
state of the decaying system at time t can be represented in the general form 

r162 vac }+  E Cl(t)]r vac ) +  ~ E CTt(t)[r Tl; vac ) 
l l T 

+ • CT,(t)[r vac )+ E Z Cowk,(t)lr k, e) 
T ke w 

+ Z Z Co w ,l o W; k, (3) 
ke w l 

The first two terms in equation (3) represent the time evolution of the zero-order 

~- This physical model has been applied by us previously to the study of the decay of an 
excited state which is separated by a small energy gap from a lower lying electronic state [6]. 
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Internal conversion in large molecules 587 

vibronic levels corresponding to the second and to the first singlet the third and 
fourth terms represent the coupling of those vibronic components to the lower 
triplets (and the ground state), while the last two terms correspond to the radiative 
decay of the ~s state and of the {q~l} manifold. 

We shall now extend the Wigner-Weisskopf approximation to handle the 
sequential decay. Adopting the treatment of Bixon et al. [8], the contribution of 
the amplitudes of the final dissipative s t a t e s  [(gTS; vac ), [~T l, vac ), I~0w; k, e)  
and ]401w; k, e)  can be eliminated and recast in terms of a complex energy 
contribution. The equations of motion for the vector coefficient C( t )=  Cs(t), 
{Cz(t)} are displayed in the form [6] 

d c( t )=( i . iBO+ i i ) i 3~ H v - 2 r -  2 ix c(t)  (4) 

where r is the (diagonal) radiative damping matrix, while A represents the 
(diagonal) non-radiative damping matrix. Displaying the expansion coefficients 
in the interaction representation aj(t) = Cj(t) exp (iEfl) the equations of motion (4) 
take the form 

&,= - i  ~Vslal  exp (iEs, z t ) -  �89 As)as, (5) 
l 

&l = - i ~ Vstas exp ( - iEs, zt) - �89 + Al)at, (6) 
1 

where Vst = (~s ]Hvlr and where Es, t = Es - E1 represents the difference between 
the zero-order levels. As the manifold {q~t} is taken to be quasicontinuous we can 
now replace the summation over the states of this manifold by an integration, i.e. 

~ - +  ( dElpt, (7) 

where pt is the density of states in this manifold. We can now also define the non- 
radiative width Ast due to the non-radiative decay of ~s into {~bt} in the conventional 
form 

Ast = 27r [ Vsl[ 2pt, (8) 

and assume that this width is a slowly varying function of the energy around E = Es. 
Now if we substitute the new variables fis(t) and {fil(t)~ defined by the relations 

~s(t) = fis(t) exp (1 _ 7st), (9) 

at(t) = fit(t) exp ( - �89 (10) 

where the total widths of the (zero-order) states are )'s = Us + As and Yt = Pt + At, we 
get 

fis= - i  Z Vstfit exp [ - �89  +iEs, #], (11 a) 
l 

fit = - iVstfis exp [ -  �89 - yt)t - iEs, #]. (11 b) 

Integrating equation (11 b), we get 

f t t' t' fit(t)= - i V t s  exp [ - � 8 9  t ]fls( ) at'. (12) 
0 

The lower bound is taken to be zero in view of the initial conditions imposed on fit. 
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588 A. Nitzan et al. 

Equation (1 l a) now takes the form 

f l s - - -  ~1Va[Zffo fls(t')exp [ ys-Yl2 ( t ' - t ) - i E s ,  , ( t ' - t ) ]  dt'. (13 a) 

Now we shallassume that the widths yl are slowly varying functions of the state index 
and invoking the same assumption concerning the width As, (equation (9)), we get 

fls(t) = --�89 tfls(t), (13 b) 

so that 

fis(t) =exp ( -  �89 zt) (14 a) 

and 

as(t) = exp ( - �89 

where the total width of the Cs state is now 

~s=ys+ As, t= Ps+ As+ As, ,. 

Inserting (14 a) into equation (13 a) we get 

fit(t) = iVls exp [ -  iEs. z t -  �89 yz)t] - 1 
iEs, ~ + �89 Yt) ' 

so that 

(14b) 

(15) 

(16) 

at(t) = iV, s exp [ -  iEs, # -  �89 - exp [ -  �89 + At)t] (17) 
iEs, t + �89 Ft - A,) 

From these results we finally obtain 

[Cs(t)[ 2 = exp ( - yst), (18) 

] Ct(t) [ 2 -  [ Vs, ]2 Es, ,2 + [�89 - P, - At)] 2 {exp ( - ~,st) + exp [ -  (P, + At)t] 

- 2 R e  exp [- iEs,  t t -  l (rt  + &+,Ps)t]}. (19) 

Turning now to an experimental situation, the decay of the system is followed by 
monitoring the fluorescence in different spectral regions. The differential photon 
counting rate P(t)= dP/dt (over the whole energy region) is 

+ f dg2k ~ ~ ]<r k, e>]2]. (20) 

We have previously demonstrated [6] that this expression takes the form 

P(t) = r s  I Cs(t) [ 2 + Z P, ] Ct(t) 12. (21) 
z 

Equation (21) consists of two contributions corresponding to radiative decay 
channels of different zero-order states. The first term in equations (20) and (21) 
corresponds to the r162 ~ emission (the s region) while the second term represents 
the {r162 w} radiative decay (the l region). In the statistical limit we can safely 
assert that the s and I regions are well separated in energy. The differential photon 
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Internal conversion in large molecules 589 

counting in the s region is 

Ps(t) = Ps I Cs(t) 12 = r s  exp ( - ~,st) (22) 

while in the l region we have for the differential photon counting rate 

Gtl 2 

x {exp ( - ~,st) + exp [ -  (Pt + At)t] 

- 2Re exp liEs, tt - ~-(Pt + At +ys)t]}. (23) 

Invoking the simplifying assumption that the widths Pt and At are constant for all l, 
and making use of equation (8) the last expression reduces to the form 

P t ( t ) - -  I?tAst {exp [ - ( P t +  At)t]-exp (-yst)}.  (24) 
ys - Pt - At 

From these results we conclude that: 
(a) The statistical limit for internal conversion can be considered as a 

simultaneous consecutive decay scheme, whereupon the zero-order state Cs decays 
radiatively and non-radiatively and can also decay into a {r continuum, which in 
turn exhibits again simultaneous radiative and non-radiative decay. 

(b) The contribution of the I Cs(t) 12 term to the radiative decay will be exhibited ' 
in the energy region close to the electronic origin (0-0) band of the $2-S0 transition. 
This radiative decay will be exponential and characterized by a lifetime 
(Ps+As+  As, t) -1, so that the coupling with the quasicontinuum provides an 
additional decay channel and an additional width As, t to the decay of the Cs zero- 
order state. The quantum yield for emission in this energy region will be 

Y s -  r s  (25) 
F s + A s + A s ,  [ 

These results are not surprising as they just correspond to the decay of a single 
resonance in the statistical limit. 

(c) The second contribution Pt(t) to the radiative decay will occur to highly 
vibrationally excited states of the ground state, and will be exhibited in the spectral 
region close to the S1-S0 transition. This decay pattern will exhibit a short-time 
behaviour of the form P t ( t ~ O ) = P t A s ,  tt and a long-time behaviour 
P t ( t ) o c e x p [ - ( F t + A t ) t ] .  The long-time decay pattern in this energy range 
corresponds to the decay from the lowest excited singlet. The quantum yield for 
the radiative decay in this spectral region will be 

PtAs, t (26) 
Yt = Ys(Pt + &)" 

(d) The experimental decay times in the two well separated spectral regions 
where the Cs state and where the {r manifold contribute to the radiative decay will 
be appreciably different, being ~s -1 in the ' high'  energy range and (Fl + Az) -1 in 
the ' low ' frequency region. Thus, the emission spectrum is constituted of a high 
energy short lifetime range and a low energy long lifetime region. 
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590 A. Nitzan et al. 

(e) The total yield for emission is given by 

F8 FzA~z 
Y = Y8 + Yz = =- -~ (27) 

while the ratio of the fluorescence quantum yields in the ' l o w '  and ' h i g h '  
frequency regions is 

R -  Y~- FiAs, 1 
Ys Ps(Fz+ Al) 

(f)  As we have assumed, the radiative and non-radiative decay patterns of each 
of the zero-order states are independent, thus the physical situation in the statistical 
limit for internal conversion is, in fact, satisfactorily represented by conventional 
kinetic expressions. Thus, equation (22) represents a conventional kinetic formula 
for the parallel decay of the zero-order states into three decay channels, while 
equation (24) represents a consecutive classical decay scheme, where states in the 
{r manifold are populated by the decay of the es levels and then can decay by two 
parallel radiative and non-radiative channels. 

(g) Interference effects in the radiative decay will not be exhibited and quantum 
beats will not be observed in the statistical limit for internal conversion. The 
situation is analogous to the decay of a single resonance. 

A P P E N D I X  

Consecutive decay by the Green's function method 

We shall present a treatment of consecutive decay using the Green's function 
method, following very closely the general techniques developed by Goldberger and 
Watson [2]. Consider a simplified model system where an initial state Is) is 
coupled to a quasicontinuum {]l)}, while each of the states [l) decays into a 
quasicontinuum {[j)}. We should note in passing that on the basis of physical 
arguments we can assert that, in fact, each of the [l) levels decays into its own 
quasicontinuum {[jl)} and interference effects can be disregarded. However, in 
what follows, we can replace the double index j / b y  a single indexj. Let us denote 
the operator which couples [s) and {[l)} by V1, while the operator which induces 
the consecutive decay step, by V2. For the case of internal conversion from the 
second excited singlet state, V1 = Hv, while V2 = Hint. We should also note that 
these two coupling operators may originate from the same physical perturbation 
(say Hv). Such a physical situation may be encountered for the decay of the first 
excited singlet state into the second triplet, which in turn decays into the first 
triplet manifold. In this case we shall utilize the following projection operators: 

P,=ls><sl, Q= Y I/><Zl= YP, 
l l 

and 

in terms of which we define 

o =  E IJ><Jl = E Ps, 
J s 

V1 = PHvQ + QHvP, 

v2 = QH~O + OH, Q, 

(A 1) 

(A 2) 
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Internal conversion in large molecules 591 

where we have made use of the assumption that the initial state Is) is not coupled 
directly to the final continuum {lJ}}- 

The pertinent matrix elements of the Green's operator are [2] 

1 
(s ] G(E)Is ) - E -  E - Rsfi(E)' (A 3) 

1 
(llG(E)[l> = E_Et_RuL(E), (A 4) 

1 1 
(IlG(E)IS}=E_Et_RuL(E) RtsS(E) E_Es_RssS(E) , (A 5) 

where RaJ = (a] R I ] b} and 

1 
R s= VI+ V1(1 -Ps)  g - H o - ( 1  -Ps)gx(1 -Ps)  (1 -Ps)gx (A 6) 

1 
R L= V2+ V2(1 - P l )  E -  H 0 -  (1 - Pt) V2(1 -Pt)  (1 -PI)V2. (A 7) 

In terms of these matrix elements the probability to find the system in the initial 
state is given by [Cs(t)[ z where 

Cs(t)=2~ i f edE exp (-iEt)Gss(E) (A S) 

and the probability for finding the system at time t in the intermediate continuum is 

E [ C,(t) l 2 
l 

where 

Cz(t)--2~ i f ,  dE exp (-iEt)G,s(E). (A 9) 

e is a contour which goes from infinity to minus infinity above the real axis. 
Applying the usual assumptions about the smoothness of the functions RssS(E) 

and RI~L(E) (as functions of E) one defines [2] 

Ft RuL( E~) ~- Dt - i -2 , 

s ,.~ .Ps Rs~ (Es) - D s -z  ~ ,  

where D and F are level shifts and widths, respectively. 
(A 9) and (A 11) may now be performed using the 
Goldberger and Watson [2], the results are (neglecting branch cut contributions) 

Cs(t)~_exp [- i (Es+ Ds)t-~ Fst] (A12) 

and 
Rzs Cz(t)-_ 

Ei -Es+ Dz-Ds+ i ( P s -  Pl) 
2 

(A 10) 

(A 11) 

The complex integrations 
procedure described by 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
T
a
n
d
F
 
t
i
t
l
e
s
]
 
A
t
:
 
0
8
:
1
8
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



592 A. Nitzan et al. 

These results lead to 

and 

[ Cs(t)[ 2 = exp ( -  Fst) (A 14) 

= (dEzp(Ez)  iRa [2 exp ( -  r~t) IC,(t) 12 
, J 

x ( 1 - 2 e x p ( F ' - F ' t )  

+ exp [ -  ( F s -  Ft)t] 

1 
- F s -  Fz (exp [ -  F t t ] -  exp [ -  Fst]) x 2rrp(Ez)[Rsl[ 2 

_ Fs (exp [ -  F l t ] - exp  [-[ 's t ]) .  (A 15) 
F s -  F~ 

Substituting these results in equation (21) we shall of course obtain the final 
result (equation (24)). [Note that here we have excluded some of the additional 
decay processes which were included in the Wigner-Weisskopf scheme.] 
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