
RADIATIONLESS TRANSITIONS

JOSHUA JORTNER

Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

ABSTRACT
This review will be concerned with some questions which arise whenever
one thinks of analyzing experimental radiative decay times and optical
line shape data in polyatomic molecules, and how these quantities are related

to fundamental electronic relaxation processes in a large molecule.

1. INTRODUCTION
Radiationless processes in excited electronic states of large molecules can

be classified as follows:
(a) Radiationless decomposition1:

(al) Molecular predissociation.
(a2) Molecular autoionization.

(b) Intramolecular relaxation2:
(bi) Electronic relaxation processes which involve internal con-

version and intersystem crossing.
(b2) Unimolecular photochemical rearrangement reactions in

excited electronic states of large molecules such as cis-trans isomeriza-
tion or electrocyclic reactions.

The present review will be concerned mainly with electronic relaxation
processes. From the historical point of view it has been known since 1888
that many organic molecules in a dense medium exhibit a strong afterglow
(or rather, phosphorescence) when excited by ultraviolet light, this emission
invariably being at lower frequencies than the fluorescence (if any) of the
compound3. These observations were followed in 1933 by the phenomeno-
logical description of the three level system by Jablanski4. The modern focus
on the importance and generality of intramolecular relaxation processes
was emphasized by the work of Lewis and coworkers and by Kasha5. During
the last twenty years extensive studies were performed which elucidated some
important features of electronic relaxation processes of polyatomic molecules
imbedded in a dense medium (e.g. solutions, rigid glasses, mixed crystals)2.
These studies resulted in several generalizations:

(a) The Kasha rules2.
(b) Shortening' of the experimental radiative lifetimes of large molecules,

accompanied by a reduction of the emission quantum yield2.
(c) The Robinson—Frosch6 energy gap law.
(d) The deuterium isotope6' .
In view of the bulk of experimental data concerning radiationless transi-

tions in a dense medium it is not surprising that early theories by Gouterman8
and by Robinson and Frosch6 considered the molecule-medium coupling
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as an essential ingredient which will provide a pathway for electronic
relaxation. An impetus for a drastic revision of theoretical ideas concerning
this problem was provided (as usual in theoretical chemistry!) by recent
experimental data93 which demonstrate conclusively that radiationless
transitions occur in an 'isolated' low density gas phase molecule. About
three years ago theoretical studies by Henry and Kasha2", Robinson14 and
Bixon and Jortner'5 provided a firm basis for the idea that a radiationlss
transition in a large molecule involves an intramolecular relaxation process.

I would like to discuss some aspects of recent work on the interpretation of
optical line shape data and radiative decay times in large molecules, and how
this information relates to intramolecular electronic relaxation processes
in large molecules.

IL COMMENTS ON COMPOUND STATES
How does a relaxation process take place in a microscopic system? Three

major points have to be amplified in this context:
(a) The description of the decaying state.
(b) The preparation of the metastable nonstationary state.
(c) The relation between the decay time and the optical line shapes.
Suppose that the system under consideration is described by the Hamil-

tonian

H=H0+V (II.!)
where H0 is a 'convenient' zero order Hamiltonian (e.g. independent
particles Hamiltonian in the case of autoionizatio&6, of the Born—Oppen-
heimer Hamiltonian in the case of predissociation)1 7—19, while V is a per-
turbation term which includes whatever we have left out of H0. The zero
order eigenstates of H0 are now partitioned into two sets: a (dynamic)
sparse subset which is characterized by a small number of discrete levels

4)2 and a dissipative part 4E which is characterized by a continuous
spectrum. As the zero order states of the two subsystems are degenerate,
extensive 'configuration interaction' is induced by the (small) interaction
term V which couples the dynamic and the dissipative part. An atom or
molecule in a stationary state cannot make transitions to the other states
which are induced by the small terms in the molecular Hamiltonian'
(i.e. V in equation (11.1).) Obviously all time dependent transitions between
stationary states are radiative in nature. However this conclusion does not
apply when the molecular system is prepared by some experiments in a
nonstationary state of the system's Hamiltonian. To obtain the physical
information concerning the relaxation process it will be convenient to proceed
as follows'6' 1

(a) The molecular eigenstates 'E of the system are constructed (e.g. the
eigenstates of H in the absence of the radiation field) as a time independent
superposition of the zero order states. For convenience we shall consider
only a single state 4)1 in the dynamic subset, so that

I'E = a(E)4)1 + (bE(E)4)Ep(E')dE' (11.2)

where p(E) is the density of states in the zero order continuum, and a(E) and
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{bE'(E)} correspond to expansion coefficients. Note that the eigenstates 4E
form a continuous spectrum.

(b) The resonance width F(E) is given for a single resonance by the Fermi
Golden Rule:

F(E) = 2i<]VI/iE>I2p(E) (11.3)

For the case of a dissipative continuum one expects that it is a slowly
varying function of the energy in the vicinity of the E =E1, which is the
energy of the zero order state 4.

(c) The Breit Wigner Formula. The amplitude square of the zero order
state 4 is given by the distribution:

a(E)2 = (172)/[(E — E1 — y)2 + (Ff2)2] (11.4)

where y is a level shift. Thus the effect of configuration interaction is to
'dilute' the discrete state 4 through a manifold of stationary states. The
profile of the distribution is a Lorentzian characterized by the width:

A = F (11.5)

(d) The transition matrix element of the transition operator i for optical
(or other type) excitation from the ground state 4 is determined by:

<4Th/JE> = a(E)<4014) + (bE'(E)<4o i'14E>p(E')dE' (11.6)

(e) The line shape A(E) for optical excitation will be determined by the
square of the transition matrix element:

A(E) cc (11.7)

(I) Lorentzian line shapes. The absorption profile will be Lorentzian only,
provided that the continuum does not carry oscillator strength, i.e.

= 0 for all 4'. Then

A(E) cc a(E)2 (1/1 + c2) (11.8)

where the reduced energy parameter e is

= E — E1 — y1/(F/2) (11.9)

(g) Fano type line shapes. In the general case, when the continuum does
carry oscillator strength from the ground state, interference effects in
absorption will be observed arising from the contributions of <40IT1>
and <oT5E> which will interfere with opposite phases on the two sides
of the resonance. The line shape function will then be

(11.10)

where the line profile index q is determined by the ratio transition moments
for the discrete state and for the continuum.

<401D141>
(11.11)
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Note that equation (11.10) is reduced to the Lorentzian form (11.8) provided
that q — cxi This situation will be realized when:

(1) the coupling between the zero order states is negligible.
(2) when the oscillator strength of the background absorption is negligibly

small, relative to the intensity carried by 4.
(h) A compound state of the system will be described as a time dependent

superposition of time independent zero order states. The choice of the basis
set is merely a matter of convenience. One possible choice of the basis set
involves the stationary states of H or, alternatively, the basis set of H0 may
be used. Let p(E) correspond to the excitation amplitude of frE then two
alternative forms for the time dependent excited state can be immediately
written:

!P(t) = ip(E)I1JE exp( — iEt/h)p(E)dE A(t)4 + BE(t)Ep(E)dE (11.12)

It should be noted that the compound state involves an admixture of zero
order discrete and continuum states.

(i) The time evolution of the amplitude of the discrete state can then be
given

P(t) = P(t)>
2 = p(E)a(E) exp( —iEt/h)p(E)dEI 2 A(t)j

2
(11.13)

Thus the decay law is determined by an energy distribution function. It
should be noted that, unlike the line shapes which are definitely experimental
observables, the quantity P(t) may not always be amenable to experimental
observation.

(i) Decay of state 'prepared' initially in 4.
The A(0)12 = 1 or p(E) = a(E);provided that F(E) is a slowly varying function
of the energy on exponential decay law results:

P(t) cx exp(—f't/h) (11.14)

The half lifetime is just hf' 1 and the simple decay law is related to the width
of the amplitude distribution a(E)2. This is again a 'theoretical exercise'
which will not always be realized in a real life experiment.

The foregoing arguments are general, leading to the conclusion that there
is a set of features common to all compound states of a wide class of systems.
The shapes of resonances encountered in nuclear, atomic, molecular and
solid—state physics are nearly the same and the decay rates of many different
kinds of metastable states have the same functional form.

For radiationless decomposition processes the dissipative channel is
well defined (e.g. a dissociative continuum for the case of predissociation and
an ionization continuum for autoionization). The details of the relaxation
process (e.g. decay times and line shapes) will be determined by the coupling
matrix elements, the transition moments and the line profile index. At first
sight it may appear that there is an apparent basic difference between radia-
tionless decomposition and intramolecular relaxation as in the latter case
a 'true' dissipative continuum is not involved. In this context several statements
have been made concerning non—radiative intramolecular relaxation pro-
cesses. It was stated by Herzberg° in 1966: The mechanism of (internal)
conversion is not well understood as yet but is presumably connected with
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strong perturbations between the two states involved.' At about the same time
Kistiakowsky and Parmenter13 stated that their experimental observation
of a radiationless transition in the isolated benzene molecule 'may be
incompatible with the laws of quantum mechanics'. The questions that come
up in relation to intramolecular relaxation processes in large molecule can
be summarized as follows:

(a) What is the nature of the intramolecular coupling?
(b) Do radiationless transitions take place in an isolated large molecule?
(c) What is the nature of the intramolecular dissipative channel?
(d) What are the criteria for irreversibility of an intramolecular relaxation

process?
(e) What are the implications of intramolecular coupling and a background

quasicontinuum of states concerning intensity distribution in optical
absorption?

(f) Under what conditions can the intramolecular decay be considered as
a simple rate process with the rate constant being given by Fermi's 'Golden
Rule'?

(g) What are the consequences of the coupling between radiative and
non—radiative decay processes in a large molecule?

III. INTRAMOLECULAR COUPLING
The nature of the intramolecular coupling responsible for radiationless

transitions was elucidated many years ago by Franck and Sponer2' and by
Kubo22 who pointed out that the nuclear kinetic energy operator provides
the major interaction term which is responsible for the occurrence of radia-
tionless processes in large molecules. Naturally, other intramolecular
interaction terms may modify the mixing. Thus, for example, spin—orbit
interactions have to be included in the case of mixing of quasidegenerate
vibronic components which correspond to two electronic states of different
multiplicity.

The electronic states of a molecule are conventionally classified within
the framework of the Born—Oppenheimer approximation, into separate
electronic and nuclear motions. Let us focus our attention on the conven-
tional Born—Oppenheimer (BO) adiabatic approximation for the two level
system.

The higher excited electronic state, s, is characterized by the zero—order
BO levels 4(r, Q) which are coarsely spaced, each of which is coupled
to the dense quasicontinuum of vibronic levels tjp(r, Q). These functions
are usually approximated in the form:

4(r, Q) = ø(r, Q)x(Q)
4,(r, Q) = 01(r, Q)x,(Q) (111.1)

where r represents the electronic coordinates, while Q Q1, Q2,.. . Qk
• (111.1) correspond to the nuclear coordinates. t9 and x represent electronic

and vibrational wavefunctions. The potential surfaces in the two electronic
states will be denoted by E(Q) and E1(Q) while the energies of the vibronic
components will be represented by E and E1, respectively.

As is well known, the BO representation is diagonal within a single
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electronic manifold while (hopefully small) matrix elements connect different
electronic states. These off diagonal matrix elements are given in the general
form:

= IQxJQ) (9(q Q) 9,(q, x1(Q)

—
(dQxs(Q)(es(q 91(q, Q)-x1(Q) ) (111.2)

The electronic matrix elements appearing in (111.2) can be expressed in the
exact form:

= 9.(q, Q)— e1(q, Q) (III.3a)

— <e(q, Q)ôU(q, Q)/aQ,k91(q, Q)> b—
E(Q) — E1(Q)

(111.3 )

where U(q, Q) corresponds to the molecular potential energy term.
The breakdown of the BO approximation will be encountered under the

following circumstances:
(a) Strong interaction between degenerate or quasidegenerate electronic

origins. This situation corresponds to the Jahn—Teller and Renner coupling
in molecules.

(b) Intersection of potential surfaces: the electronic matrix element
(111.3) is a rapidly varying function of the nuclear coordinates, whereupon
near the intersection (where E(Q) — E1(Q) = 0) a new representation of the
vibronic wave functions has to be found in a manner analogous to the
treatment of the Jahn—Teller problem. Such situations which involve a large
configurational change between two electronic states will be encountered in
the field of organic photochemistry.

(c) Case of near degeneracy. Now we encounter small configurational
change between two electronic states. The electronic integral J1 is a slowly
varying function of Q and we expect that J1ciAE 1, where AE = E0 — E10
corresponding to the electronic energy gap between the origins of the two
electronic states. AE is appreciable and the v1p terms are small not only in
view of the energy denominator but rather as they involve extremely
small6' 23—26 Franck—Condon vibrational overlap terms. However the small-
ness of the v terms does not insure the validity of the BO approximation. The
adiabatic approximation is expected to hold only provided the energy
difference between the zero order vibronic states is large relative to the
coupling matrix element (111.2) so that

— E1 I (111.4)

When a situation of near degeneracy is encountered we expect the BO
approximation to break down even provided that the v terms are small.

Let us now consider the behaviour of the excited electronic levels of a
complex molecule. The zero order vibronic level of a higher excited state
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is quasidegenerate with a manifold {} of vibronic levels which correspond
the lower excited electronic states and to the ground state. The density of
vibronic states of these lower configurations is determined by two factors:

(a) The number of vibrational degrees of freedom.
(b) The energy gap between the zeroth vibronic levels of the two electronic

states.
The density of vibronic states at energy tEabove the origin of an electronic

state can be approximated by the semiclassical expression in the harmonic
approximation27:

______ I h \—1
=1 II (hv,i( 1 + v1/AE ) (111.5)fl—i). \ .j /

where n is the number of the vibrational degrees of freedom, characterized
by the frequencies y. To obtain some feeling for the order of magnitude of
the density of these background states we have displayed in Table 1 estimates

Table 1. Density of vibrational states in a series
of hypothetical polyatomic molecules where all

v1 = 1000 cm' and = 1eV.

No.of
atoms

p
cm

3 0.06
4 4
5 50
6 400

10 4105

of the vibrational density of levels in a hypothetical polyatomic molecules,
characterized by an energy gap of I eV, while in Table 2 we have assembled

Table 2. Densities of vibronic states in some aromatic hydrocarbons.

System lower state upper state LE
cm'

p
cm

5 x 1010Anthracene 3B2 'B2 12000
Napthalene 'B, 'B2 3400 2 > iO
Napthalene
Azulene

'A,
'A,

3B2
'B,

20000
14000

8 x 10"
10"

Benzene 3B, 1B2 8400 8 x i0

some data for real physical systems. Obviously in view of the overwhelm-
ingly large densities of vibronic states encountered in large molecules we
expect that even small coupling matrix elements (equation 111.2) will lead
to appreciable level mixing. Under these common circumstances, when a
discrete zero order level is quasidegenerate with a background manifold of
vibronic states, the Born—Oppenheimer separability conditions break down.
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Thus in general the excited electronic states of large molecules cannot be
considered as 'pure' BO states.

One has to distinguish very carefully between the consequences of intra-
molecular coupling and intramolecular relaxation. In particular, it should
be borne in mind that coupling can be exhibited while relaxation does not
occur. We shall, therefore, attack the problem in two steps which will be
analogous to the general problem of relaxation already considered.

(a) The molecular eigenstates of the system will be constructed230' 2a, 15

(b) The conditions for irreversible decay will be then established30—32' 15

Iv. MOLECULAR EIGENSTATES
A proper representation of the molecular eigenstates can be obtained

from a superposition of zero order Born—Oppenheimer states.

= acb + b7q5 (IV.1)

The Hamiltonian is given by
Hei HBO + H (IV.2)

where HBO corresponds to the Born—Oppenheimer Hamiltonian while
H,, contains the nuclear kinetic energy, spin—orbit coupling etc. q and I4}
are eigenstates of HBO. Notice how the near degeneracy of levels in a large
molecule resembles the situation encountered in the treatment of the pseudo
Jahn—Teller effect. However, in the present case the coupling between many
quasidegenerate zero order states must be considered rather than that
between only a few states. The configuration interaction scheme15'28
employed herein is similar to the treatments employed many years ago by
Rice'7 in the study of predissociation, and by Fano'6 in the study of auto-
ionization. However, it should be stressed that unlike the cases of autoioniza-
tion and predissociation, in the present case the dense manifold of states is
discrete.

The model I would like to discuss is grossly oversimplified but transparent.
First we assume that the levels in the {,} manifold are equally spaced with
spacing p j. This is not too bad. However the second assumption is rather
serious. We shall assume that all the coupling terms are equal and set

<4)IH, I4> = v. This immediately leads to a simple eigenvalue
problem:

E—E v v...
v E1—E 0...

= 0 (IV.3)
0 E2—E... !?2

The solutions for the energies E of the molecular eigenstates (111.1) can be
obtained from the equation:

E — E — icv2pCotan[itp(E, — En)] = 0 (IV.4)

which can be solved numerically. The expansion coefficients representing
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the weights of the zero order states in the molecular eigenstate J/,, are

given by:
2

n2_ V
1V5a5 —

(E — E5)2 + v2 + (mv2p)2

Two points have to be made at this stage:
(a) The choice of the BO basis set to describe the molecular eigenstates

is arbitrary but extremely useful. In principle all the eigenstates of H0 have
to be included in (IV. 1). In the BO representation the admixture of higher
excited states (whose electronic origin is located above 4)will be very small.
On the other hand if we had chosen a poor zero order representation which
involves electronic wavefunctions at a fixed nuclear configuration (the crude
adiabatic approximation')34 the admixture of these higher states which are
not quasidegenerate with & would have become important.

(b) The zero-order BO state 4 plays a special role as this state carries
oscillator strength from the ground state while the manifold {} is devoid
of oscillator strength. Thus the intensity distribution in absorption will be
determined by Ia 2•

The following comments should be made at this point concerning the
square of the expansion coefficient (IV.5):

(a) The distribution is Lorentzian.
(b) The width zi of the distribution is given by the dominant term in the

denominator which is either v2 or (irv2p)2.
(c) The condition for strong interstate coupling is

vp ' 1 (IV.6)

This condition implies, of course, that A is determined by v2p rather than
by v itself. Equation (IV.6) will be valid provided that one of the following
situations is realized:

(ci) Strong interaction with a sparse manifold or, alternatively,
(c2) Relatively weak coupling with a dense manifold. Conditions (ci) or

(c2) imply that the width of the distribution will be determined by the simple
relation

A = 2tv2p (IV.7)

(d) The criterion (IV.7) for strong mixing is just equivalent to the break-
down of the BO approximation (equation 111.4).

When the strong electronic coupling condition applies, the intensity (in
absorption) of the zero order states is distributed among a manifold of
molecular eigenstates. Two cases have to be considered:

(i) Coarsely spaced molecular eigenstates. The levels are well separated
relative to their radiative and inhomogenous widths2e. The individual tran-
sition moments will be given by:

(IV.8)

Thus the intensity is-distributed over a coarsely spaced well resolved manifold
of states.

(2) The statistical limit. The molecular eigenstates are densely spaced
relative to their rediative widths and equation (IV.6) is valid. Now, we cannot

397



JOSHUA JORTNER

expect to resolve individual levels in the optical spectrum. The following
implications are evident:

(2a) The line shape in absorption is:

A(E) a 2
(E — E)2± (nv2p)2

(IV.9)

(2b) The absorption line shape is Lorentzian, the half line width being
given by (VI.7).

(2c) The Lorentzian line shape is due to the fact that the background
continuum does not carry oscillator strength.

(2d) The situation in this case is completely analogous to the Lorentzian
distribution of amplitudes and the line shape obtained for a single resonance
which results from the interaction with a real' continuum (see section II).
Thus the dense quasicontinuum acts as an effective continuum.

This situation will be referred to as The Statistical Limit.
To conclude this discussion it is interesting to point out that the description,

presented herein, of the strong interstate coupling in molecules bears a close
resemblance to the problem of intermediate structure in nuclear reactions3 .
In the latter case compound states of the nucleus are constructed as a super-
position of a single excitation and more complex excitations in a manner
completely analogous to equation (IV.!). The single excitation which can
be reached via the incident channel is referred to as a 'doorway state' and is
formally analogous to the BO state in the molecular case.

V. DIFFUSENESS AND INTERFERENCE EFFECTS IN THE
ELECTRONIC SPECTRA OF LARGE MOLECULES

We shall now consider the implications of the effects of intramolecular
interstate coupling in molecules for the understanding of the intensity
distribution in absorption.

(a) Strongly coupled sparse manfold. Singlet excited states of small mole-
cules such as SO2, NO2 or CS2 are quasidegenerate with a relatively low
density of vibronic states belonging to the lower triplet state and the ground
state. However, because of favourable Franck—Condon vibrational overlap
factors (due to changes in the molecular geometry in the excited states) the
vibronic coupling terms are quite large. Thus, we expect that vp> 1. The
occurrence of vibronic coupling in moderately small molecules implies the
redistribution of the intensity of the zero order component 4, and this
redistribution induces the appearance of many new lines (corresponding to
all the molecular eigenstates 1i) into the spectrum. A situation of this type
probably explains the high resolution spectrum of NO2, where a large num-
ber of irregularly spaced lines is observed. The general conclusions cited
concur with those of Douglas3 6

(b) The statistical limit: The breakdown of the BO approximation in the
statistical limit results in line broadening which arises from a differential
distribution of intensity among a large number of closely spaced molecular
eigenstates. This diffuseness' of the spectral lines occurs as an intramolecular
phenomenon.

What are the experimental implications of this result for spectroscopic
studies of large molecules?
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(a) Intravalence excitations. Intramolecular coupling with a dense
vibronic manifold leads to broadening of higher excited states, arising from
intravalence excitations in large molecules. To assess the role of intra-
molecular coupling on the line broadening 'trivial' broadening effects have
to be eliminated. In the elegant work of Ross et al.37 the following 'irrelevant'.
broadening mechanisms in the gas phase spectra of large molecules were
considered:

(i) Doppler width
(ii) Rotational broadening
(iii) Spectral congestion
(iv) Photo dissociation
(v) Non-radiative decompositions (autoionization and predissociation).

In solid-state spectra of molecules trapped in low temperature matrices
effects (i), (ii) and (iii) are missing; however the following additional sources
of broadening have to be taken into account:

(vi) Phonon broadening, which can be eliminated by utilization of
Spolski matrices for the observation of zero phonon lines.

(vii) Vibrational relaxation of higher vibronic components.
(viii) Site splittings.

Ross et al.2325' 38 havesystematically demonstrated that no trivial mechan-
ism can explain the diffuseness of higher intravalence excitations in the gas
phase.

(b) Extravalence excitations. The situation with respect to line broadening
is radically different when extravalence excitations, such as transitions to
molecular Rydberg states in large molecules are considered. In the gas phase,
these absorption lines corresponding to the Rydberg levels are quite sharp39.
Thus, for example, the line widths of the 3R Rydberg states of benzene are
of the order of a few cm1, i.e. about one or two orders of magnitude lower
than the line widths of the i —÷ lr*lAig —+ transition. The situation is
reminiscent of relatively weak vibronic coupling in these Rydberg states.
This observation can be easily rationalized by nOting that the vibronic
coupling terms involve one electron operator of the form .3 V/ÔQkwhere V
is the molecular coulomb potential energy while {Qk} correspond to the
nuclear coordinates (see Section IV). Hence the coupling between the large
radius Rydberg orbital and the ground state orbital via the V/Qk terms is
expected to be relatively weak.

(c} Interference between resonances. Even when the background quasi-
continuum does not carry intensity interesting effects are expected to be
encountered when the widths of several Lorentzians (e.g. several vibrational
components in a given electronic state) exceed their spacings. Under these
circumstances, we cannot limit ourselves to a single resonance as inter-
ference effects between resonances are expected to be encountered31. No
definite experimental evidence for this effect in molecular spectra is at present
available.

(d) Intermediate structure: Electronic states of large molecules which are
characterized by a small electronic energy gap reveal some interesting
structure in the optical absorption. Thus the second singlet excited state of
the naphthalene molecule which is separated by about 3000 cm from the
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first singlet exhibits some relatively sharp lines superimposed on a diffuse
background40. This fine-structure is sensitive to the nature of the host
crystal (which affects the energy gap) and to the isotopic composition of the
molecule. Now, it is obvious that in real life not all the states in the [4,}
manifold couple to the with the same strength. In the statistical limit this
problem is of minor importance; however in the present intermediate case
these strongly coupled levels will borrow most of the oscillator strength and
will be resolved in the spectrum.

(e) Interference with background absorption. Up to this point we have
considered only an isolated resonance. In this case, the background' states
(} do not carry out oscillator strength so that no Fano-type interference
effects are expected to be revealed in the optical spectrum. An interesting
relevant situation is encountered when Rydberg levels overlap an inhomo-
geneously broadened it — m transition. Such a situation prevails for the 2R
Rydberg state of benzene which in the gas phase is quasidegenerate with the
'Aig 1E1ir —÷ ir transition41. In the case of the naphthalene molecule,
the n = 5 to n = 13 Rydberg levels overlap a medium intensity (f 0.1)
transition located near 62000 cm . The gas phase optical spectrum of
napthalene, as reported recently by Angus, Christ and Morris41, reveals
several sharp antiresonances. Morris and Jortner42 discussed the nature
of the interference effects which give rise to this unique behaviour in the
optical spectrum of an isolated large molecule42 between resonance and
potential scattering.

VI. INTRAMOLECULAR NON-RADIATIVE DECAY

We now study some of the consequences of statistical mixing, and consider
the time development of coherently excited states. The molecule in the
ground state is subjected to a radiative perturbation, which in the dipole
approximation is

H'(t) = p.&5(t) (VI.1)

where is the electric field acting on the molecule. For simplicity we have
used a delta function excitation. The excited state at time t =0 can be
described in terms of a superposition of molecular eigenstates:

W(t = 0) jP0n'n (VI.2)

where On is the transition dipole moment to the molecular eigenstate i/is,
which can be displayed in the form

= aji (VI.3)

The wave function at time t is given by

P(t) >iUOnti/n exp( — iEt/h) (VI.4)

Consider now the time development of the amplitude of the zero order
state in the excited state which is given by

P(t) = W(t)) 2 = Is(t)
2 (VI.5)
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In the kernel S(t) is:

S(t) = a 2
exp( — iEt/h) (VI.6)

so that the relaxation rate will be determined by the Fourier transform of the
line shape function Ia12Under the limiting conditions

vp > 1 (VI.7)

t hp (VI.8)

The relaxation process is exponential

P(t) cc exp( — t/tnr) (VI.9)

where the non-radiative decay time is given by the Fermi Golden Rule:

tnr = h/2irv2p (VI.1O)

Up to this point we have considered the relaxation process within the
framework of a simple model system. A more general treatment can be easily
performed which, as in the case of the absorption coefficient (section V), will
lead to a more general criterion for the validity of the statistical limit. Con-
sider again the alternative representation of P(t) in terms of the BO
basis set. Making use of the orthonormality properties of the expansion
coefficients a and b in equation (IV.1), the initial state (VI.2) can then be
represented in the form:

W(t 0) Ps4s (VI.11)

The time evolution of the excited state can now be displayed as the time
dependent superposition

P(t) = A(t)4 + B1(t)çb1 (VL12)

Making use of conventional time dependent perturbation theory results in
the equation of motion for the amplitude A(t):

h2A(t) —Jdt'A(t')
2

exp
[iEi

— —

t')]

= — 27r$$dEdt9A(tF)IvsiI2ex[1
— E8)(t —

t')]o(E
— E1)

= — $$dEdt'A(t')A(E)exp[i
— —

t)]
(VI.13)

where

A(E) 21rIvstI25(E E,) (VI.14)

In the statistical limit A(E) is the slowly varying function of the energy33'43
and thus we set it to be a constant A = A(E). The expression for A(E) in the
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statistical limit is just the half line width (IV.7). One now immediately obtains
the exponential decay law:

It4(t)12 = A(O)12 CXP(t/tnr) (VI.15)

Vu. IRREVERSIBLE INTRAMOLECULAR DECAY I1 THE
STATISTICAL LIMIT

When the background density of vibronic states in a large molecule is
extremely high this manifold is expected to act as an effective continuum
with respect to line broadening and to intramolecular relaxation. The general
criteria obtained for the statistical limit can be summarized as follows:

VP 1 (VII.1)

t hp (VII.2)

A(E) = 2ir v1 I 2ö(E — E1) (VII.3)

is smooth.

It should be borne in mind that while conditions (VII.1) and (VII.2)
were obtained for a simple model system, equation (VII.3) is general and
model independent. The simple model calculations provide us with physical
insight concerning the general features of the non-radiative decay process
which can be summarized as follows:

(a) Equation (VII.!) provides a necessary condition for line broadening
and for the occurrence of intramolecular non-radiative decay: however,
this energetic condition is by no means sufficient.

(b) The relation (VII.2) establishes the time scale for' the occurrence of
the non-radiative decay. In fact tR =hp corresponds to the recurrence time
for the decay of the zero order level & into the quasicontinuum. For times
longer than tR, the amplitude of & in I'(t) will increase towards its initial
value. However, for large molecules these recurrence times considerably
exceed the time scale of any experiment.

(c) The definition of the recurrence time introduces the notion of irreversi-
bility of the intramolecular radiationless process. This recurrence time
introduces a Poincare cycle for the irreversible process. An intramolecular
radiationless process in the limit of a sufficiently large density of vibronic
levels corresponds to an irreversible process on a time scale which is shorter
than tR.

(d) Electronic relaxation in large molecules (see Table 3) obeys the restric-
tions (VII.!) and (VII.2). Thus these can be considered as legitimate intra-
molecular relaxation phenomena.

Obviously the simple relations (VII.!) and (VII.2) are gross oversimplifica-
tions based on a 'coarse graining' procedure. Let us consider now a real
physical system where the necessary and sufficient condition for irreversible
non-radiative decay is given by the smoothness' of A(E) (equation VII.3).
This restriction is more general and enables us to ascertain the salient
features of the intramolecular decay in a large molecule. We note that a
'hidden assumption' involved in the simple model calculations implies that
the zero states {4,} have zero widths. If these levels are characterized by
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Table 3. Parameters descriptive of radiationless transitions in large molecules.

System
•

tflr
sec

v
cm'

p
cm

vp hp
sec

Anthracene
'B2 — 3B2 5 i0 6 10' 5 ,< 1010 3 >< 1010 0.25
E = 12000cm'
Napthalene
'B2 — 'A,9
E = 20000

2 10—14 8 x 1015 80 4 x 1O'

Azulene
'B1 — 'A, 6 >, 10h1 2 x 10' 1011 2 x 106 0.5
E = 14000cm'
Benzene
'B2 — 'B, 10_6 1.5 >< i0' 8 < iO 1.5 4 x

finite widths {F,} then the resonance width should be altered by replacing
each delta function in the sum (VII.3) by a Lorentzian33'43:

(rI)\ 2 2
— L / .) V1 — V1" ' L

(E — E)2 + (F i/2)2
—

m (E — E1) + iF1/2
1 1

Obviouslywhen F, —* O we regenerate equation (VII.3). In order to consider
an upper limit tm for the decay process, Freed43 adds an imaginary part
Ih/tm to the energy E so that

E-E+-- (VII.4)

Such a trick is common in scattering theory and amounts to describing the
decay process in terms of a (complex) Green's function G(E + h/tm). Usually
one sets h/tm —÷ O; however as pointed out by Freed43, this is not really
necessary, as the inclusion of the imaginary factor introduces a term of the
form exp( — t/tm) in the decay process and thus erases all the behaviour
of the system for long times, e.g. t

The general form of the resonance width is then

Iv 2(+hV Si 2 tm
(V115

\2 tm)
This result exhibits a superposition of generalized Lorentzians, each charac-
terized by the strength Iv, 2 and by the width

F, h—+—.
2 tm

A general condition for the smoothness of A(E) is that the widths of suc-
cessive Lorentzians considerably exceed their spacings. Stated mathemati-
cally
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+ h/tm>> E,1 — E, h/p (VII.6)

Hence the general condition for irreversibility will be displayed in the form:' h/tm + F,/2 (VII.7)
The following cases should now be considered:

(a) Intersystem crossing in the lowest triplet in an isolated molecule. In
this case the line widths F, are negligibly small, as the levels {çb,} do not carry
oscillator strength to the ground state or to any of its vibronic components.
Setting F, —+ 0 one immediately obtains the simple relation (VII.2).

(b) Internal conversion in an isolated molecule. Now the dense manifold
{4,} is connected by nonvanishing radiative coupling terms to high vibronic
levels of the ground state. This is, of course, the reason for the observation
of fluorescence radiation from the second (and any higher) singlet to high
vibrational levels of the ground state. Hence F, > 0. Two pertinent cases
have to be considered:

(a2) A large energy gap between two excited states of the same multiplicity.
Thus for example the first ('B2) and the second (1B) singlet excited states
of anthracene are separated by AE = 15000 cm .In this case we expect that

F, >> p (VII.8)

and the function A(E) is smooth on any time scale as we can set tm -CX).

(b2) A small energy gap between two states of the same multiplicity.
A good example in this category involves the 1B2 and the 1B3 excited states
of the naphthalene molecule where the energy gap is AE = 3400 cm . In
this case p' 10 cm . Now p 1 >> F, and again the condition tm hp
has to be applied for the decay of the 1B2 state.

(c) Internal conversion and intersystem crossing in a condensed medium.
Getting away from the isolated molecule and considering for a moment the
medium effects at low temperatures, we note that now F, has a substantial
contribution (1O_2_10_1 cm 1) due to vibrational relaxation. Hence the
condition F, >> p is usually satisfied. We can neglect t with respect to
F, and the decay process is irreversible for long times. Obviously, states which
correspond to intermediate cases for the molecule in the low pressure gas
phase will reveal irreversible decay when the molecule is embedded in a
medium.

To summarize this discussion, the following relations are of interest:
(a) For the case of intersystem crossing

rrud(t) >> hp >> t >>

(bi) For internal conversion (large energy gap):

00 tm>> hp >> tra4(1)

(b2) For internal conversion (small energy gap):

rrud(s) trad(l) >> hp >> tm

(c) For a molecule in a dense medium:

00 tm>> hp >> Trad(S) tv rO)
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where tr and v r correspond to lifetimes due to radiative decay and to
vibrational relaxation, respectively.

VIII. THE COUPLING BETWEEN RADIATIVE AND NON
RADIATIVE PROCESSES IN LARGE MOLECULES

A large bulk of physical information now available concerning intra-
molecular coupling and electronic relaxation in polyatomic molecules comes
from lifetimes of molecular luminescence. Clearly, a complete theoretical
description of the radiationless transition process should emerge from the
description of the. radiative decay. It should be recalled that we are now
considering a phenomenon associated with the decay of a manifold of a
large number of closely spaced levels453 (e.g. the molecular eigenstates).

We shall now consider a simplified version of the theory of the radiative
decay of polyatomic molecules29—33. One pedantic comment should be made
at this point concerning the molecular eigenstates representation. When
radiative decay processes are considered the molecular eigenstates are no
longer proper eigenstates of the Hamiltonian

(VIII.1)
As before, the molecular Hamiltonian, Hej, consists of the BO term HBO

and an intramolecular perturbation H (vibronic, spin—orbit, etc.). H is
the Hamiltonian corresponding to the free radiation field while H1 is the
radiation-matter interaction term. The time evolution of a nonstationary
state of the system can be described either in terms of the eigenstates of HBO
(the BO basis set) or of H (the molecular eigenstates basis). Obviously, the
choice of the basis set is merely a matter of convenience and thus does not
affect any observable quantities. The questions that have to be answered
by a complete study of the radiative decay of a polyatomic molecule are as
follows:

(a) Are simple kinetic schemes, as applied for years by the experimentalist,
adequate?

(b) When will interference effects be observed in the radiative decay?
(c) How can details of the decay process (e.g. quantum yields and experi-

mental radiative lifetimes) be elucidated?
hi order to handle the radiative decay of a large molecule, consider the

initial excited state at time t = 0 which is a nonstationary state of H, and no
photons are present. The initial excited molecular state m(O) can always be
expressed as a superposition of either the molecular eigenstates {km} or
the BO states 4., {4}. The initial state of the system is:

P(0) 'm(0)It'"i> = aj0)I/i;vac> = bj0)I4; vac>

+ b1(O)j4,; vac> (VIII.2)

where Ivac> is the zero photon state. In many cases of physical interest the
initial excited state of the system can be visualized as being prepared by a
coherent excitation, by a short light pulse or by a chaotic broad band source
whereupon:

a(0) =
b,(O) = (VIII.3)
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Obviously, the completeness of the molecular eigenstates basis and the fact
that 4' is the only state which carries oscillator strength immediately imply
that in this case:

W(O) =<&h/i>h/j;vac> &;vac> (VIII.4)

We now proceed to provide a simple description of the decay process. A
more elaborate treatment was recently provided by Freed and Jortner. The
final states of the system consist of one photon ground state 4 = ;k,e)
where 4 is the ground electronic state while k and e correspond to the wave
vector and the polarization vector of the emitted photon. The time dependent
state of the system is given by:

1'(t) = a(t)j/i; vac> + c(t)I4; k,e> b5(t)I45; vac>

+ b1(t)4,; vac> + d,,(t)ç&0; k,e (VII1.5)ke

with the initial conditions given by equation (VIII.3) and C&e(O) = dk, (O) 0
for all k and e. The probability A5(t) for the decay of the system is given by:

Ajt) <P(O)IP(t)>I2 (VIII.6)

Making use of the initial conditions (VIII.3) we get for the decay rate of the
excited state, which corresponds to the total number of photons emitted per
unit time:

(t) = 1'5 an(t)an(O)12
"5

(VIII.7)

where f' is the radiative width of the zero order state &. equation (VIII.7)
reveals the following features of the decay process:

(a) When the BO basis set is employed we have to focus our attention on
the decay channels of the zero order state 4.

(b) When the molecular eigenstates basis is used the decay rate contains a
contribution from interference effects between closely spaced levels.

Equation (VI11.5) provides us with a proper description of the time
dependent compound state of the system which is presented as a super-
position of time independent zero order states. In order to elucidate the
features of the decay process we have to establish the equations of motion for
the coefficients {ajt)} or {bjt), b1(t)}. This can be accomplished by the follow-
ing methods:

(a) A self-consistent extension of the Wigner—Weisskopf method54 to
account for the decay of a large number of levels30.

(b) The 'unitary relations' method employed in the field of elementary
particles physics56' 57 which is based on general conservation rules30.

(c) The Fano configuration interaction method16 whereupon the radiation
field provides a dissipative continuum30' 31•

(d) The Green's function method adopted to the decay of a large number
of metastable levels33.

406



RAD1ATIONLESS TRANSITIONS

All these methods lead to the following result: let the time dependent
compound state be given in the general form

W(t) = vac> + (VIII.8)j kg
where the set x is any general complete set (molecular eigenstates, BO basis
or other). If we define the row vector

(t) = x2(t) (VIII.9)

the equation of motion is 30,55

(t) He11 (t) (VIII. 10)

He11 = H1 F (VHI.1 1)

where F corresponds to the damping matrix. In discussing phenomena of
radiative decay it is customary to introduce the radiative lifetime of states.
The damping matrix F is defined for some (arbitrary) set of zero photon
excited states in the form:

= (2ic/h) 'dQk <xi; ; vac>p,, (VIII.12)

where >cdQk corresponds to the integration overall propagation direction

in the k space and summation over all polarization directions of the emitted
photon. Pk is the density of photon states. Thus equations (VIII. 10) and
(VIII.12) provide us with the general decay law for a manifold of closely
spaced levels. The following comments are now in order:

(a) The damping matrix provides a generalization of the Fermi Golden
Rule' transition rates.

(b) The damping matrix F is in general non-diagonal.
(c) The matrix He11 which determines the decay is non-hermitian (or

rather antihermitian). This observation can be rationalized by noting that
equation (VIII.10) factors out only a finite number of (zero photon) states
of the system instead of considering the infinite number of states which
characterize the Hamiltonian (V1IL1).

(d) When a non-diagonal representation of He11 is employed (which is
usually the case) the states x; vac> do not decay independently, e.g. they
cannot be characterized by simple exponential decays. This is the case
provided that the off diagonal terms of the damping matrix are large, so that

IE — E — (F —
F.1.)( (VIII.13)

This effect is known in level crossing, where the decaying states are indis-
tinguishable (e.g. characterized by the same symmetry).

(e). In principle, one cai find a set of zero photon states characterized by
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exponential decay, provided that Hej1 is diagonalized by a complex orthog-
onal matrix S. so that

SHeffS' = A (VIII.14)

The real and imaginary parts of the diagonal matrix A provide us with the
energies and lifetimes respectively of the states for which He1 1 is diagonal.

(f) In the BO basis {&4} the effective Hamiltonian is:

(E. — 1'sl

v1 E1 0 ...
(VIII.15)

Vs2 0 E2...

so that H, is off diagonal while the damping matrix is diagonal.
(g) For the molecular eigenstate {I'} basis the effective Hamiltonian is

given in the form:

if11 if12
2 2

E if 22 (VIII.16)2"
Now Hd is diagonalized; however, we pay the price by having the damping
matrix in a non-diagonal representation.

This general formalism can be immediately applied for the following cases:

Table 4. Long radiative lifetimes of small molecules.

Molecule Transition t(expt.)
sec

t(integrated f)
sec

NO2

SO2

CS2

'B2 — 'A, 44
4300A
3000A 42
'B, — 'A,
3200A 15

—

lit — l

x 10-6

x 10_6

x 10

0.3

0.2

3

10_6

x 10
< 10

(i) Long radiative lifetimes of triatomic molecules (see Table 4). Under
these circumstances the levels in the {4} manifold are coarsely spaced,
considerably exceeding the radiative widths of the molecular eigenstates.
Application of the molecular eigenstates basis implies that for the off diagonal
elements of the damping matrix

F < jE — E — f(f — (VIII.17)
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so that these off diagonal terms are negligible. Thus in this limit we get:

(Heff)nn' = (E — fFn)önn (VIII.18)

where F,, is the radiative width of the molecular eigenstate c/i, so that:

= F <c/,>2 = rnaI2 (VIII.19)

where the coefficient a' is given by equation (IV.1).

The decay law is given by a sum of exponentials

(t) an(O)2 exp(—f'nt/h) (VIII.20)

Since aI2 < 1 we have from equation (VIII.19)

En <F, for all n (VIII.21)

We thus have the explanation for the anomalously long radiative lifetimes
of small molecules30. The occurence of vibronic coupling in triatomic
molecules implies the redistribution of intensity of the zero order component
4 and the 'dilution' of the decay times of the molecular eigenstates each of
which now decays independently.

(ii) Short radiative lifetimes of large molecules.
In the statistical limit the decay law is

(t) = (F,/h)exp( — {F, ± A/h} t) (VIII.22)

Thus the radiative decay in the statistical limit is exponential and the
experimental radiative decay time consists of independent contributions from
non-radiative and radiative components.

The quantum yield determined on a time scale appreciably shorter than
the recurrence time is given in the form:

Y = FSIFS + A (VIII.23)

This does not imply that the large molecule acts as a photon trap, but rather
that only a fraction Y of photons will be emitted on the time scale t 4 hp,
or stated more generally, on the time scale t 4 t,,, (see section VII).

To conclude this discussion of the statistical limit we should notice that
two legitimate complementary descriptions of the decay of an excited state
of a large molecule can be given:

(1) Interference effects between a large number of closely spaced zero
order levels (e.g. the molecular eigenstates) give rise to the shortening of the
radiative lifetime.

(2) The excited state corresponds to a resonance which is coupled to two
different continua. Just as the photon continuum allows for irreversible
radiative decay, the {4} manifold acts as a second dissipative channel.

To conclude this discussion we shall briefly consider the general features of
radiative decay of polyatomic molecules.

Intramolecular coupling, intramolecular relaxation and no observable
radiative interference effects are expected in the following cases:

(a) Intramolecular radiationless decomposition. In the well understood
cases of predissociation and autoionization we encounter a conventional
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relaxation phenomenon. Line broadening is observed and the branching
ratio for fluorescence is lower than unity. Obviously, the reduction of emission
is a much more sensitive criterion for radiationless decomposition than line
broadening.

(b) The statistical limit. In large molecules the dense quasi-continuum can
be considered for all practical purposes as an effective decay channel. Line
broadening and intramolecular relaxation effects are exhibited in this limit.

Intramolecular coupling will be exhibited while no intramolecular
relaxation and no radiative interference effects will be observed in the follow-
ing cases:

(c) Accidental degeneracy of two levels corresponding to different elec-
tronic terms in a diatomic molecule. A small molecule may exhibit the effects
of strong vibronic perturbations between pairs of accidentally degenerate
levels. These perturbations considerably exceed the radiative width. A
complex spectrum results which is sensitive to external fields; however no
radiative interference effects will be exhibited. A typical example involves

— 2fl mixing in the CN molecule58.
(d) Sparse intermediate case. The density of vibronic states in the {}

manifold is rather small (p 1 cm); however the coupling matrix elements
are large. The situation corresponds to the coarse strongly coupled distribu-
tion discussed in section IV. These small molecules will exhibit long radiative
lifetime".

Finally we have to consider the circumstances whereupon radiative
interference effects will (or may) be observed:

(e) The resonance limit. A pair of levels which split by intrinsic or external
perturbations and which are spaced within their radiative widths will exhibit
quantum beats in the radiative decay.

(f) The dense intermediate case. A small electronic energy gap in a large
molecule (e.g. the second excited singlet state of napthalene and pyrene
which are separated by 3000 cm1 from the first singlet). In this case one has
to consider separately the weakly and strongly coupled levels in the vibronic
manifold {4}. Under these circumstances the width of the zero order state
is shared between several closely spaced resonances. Several interesting
effects can now be encountered for the radiative decay resulting from inter-
system crossing in the isolated molecule which corresponds to this situation.
Emission will take place from the highly excited vibronic component of the
lowest singlet to high vibronic components of the ground state.

The following effects may be observable33:
(1) 'Lengthening' of the radiative lifetime of some strongly coupled

components.
(2) A possible observation of quantum beats due to interference between

a small number of closely spaced levels.
(3) Non-exponential decay due to 'smearing out' of the interference

effects, when the number of the strongly coupled levels is too large (but
insufficient for the validity of the statistical limit).

(4) Effects of external fields on the level mixing and the decay characteris-
tics.

(5) All these phenomena will be erased when the molecule is embedded
in a dense medium in view of external vibrational relaxation effects.
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In summary, we have presented in Table 5 the experimental phenomena
related to intramolecular coupling and intramolecular relaxation while
Table 6 presents some of the characteristic features of the radiative decay
of small, medium sized and large molecules.

TableS. Experimental phenomena related to intramolecular coupling and relaxation in molecules

Radiationless Sparse level Dense Statistical
Classification decomposition

predissociation
autoionization

(a)

distribution

(b)

intermediate
case

(c)

limit

(d)

System Small and
large molecules

(a) 22I_2 coupling
in CN

(b) SO2, NO2, CS2

Small gap in
large molecules

Large gap in
large molecules
case (c) in solution

Experimental (1), 2, (3), 6 1, 2, 3, 4, 5 1, 2, 3, 4(5) 1, 2, 3, 4, 6
methods

Intramolecular
interstate + + + +
coupling

Radiative
interference +

Intramolecular
relaxation + — (+). +

Experimental methods (1) Decay times
(2) Line shapes or intensity distribution in absorption

(3) Fluorescence yields
(4) Fluorescence spectra

(5) External yields
(6) Population of final state

IX. THE NON-RADIATIVE DECAY PROBABILITY AND THE
ENERGY GAP LAW IN THE STATISTICAL LIMIT

The theory outlined in the preceding sections provides a unified formal
description of electronic relaxation processes in large molecules. However,
this formalism will be viewed with suspicion by the experimentalist as it
does not provide predictions of the non-radiative decay probability. Further-
more, we have been concerned up to this point with electronic relaxation
processes and have paid no attention to photochemical rearrangement
reactions. Recently, a general theory of non—radiative processes was con-
sidered in the statistical limit by Lin and Bersohn26 and by Englman and
Jortner59a, and by Freed and Jortner591'; this is based on the following
assumptions:

(a) A two electronic-level system was considered, consisting of a small
number of levels 4, 4... etc. (the dynamic part) and the dissipative
channel The second index lables the vibrational states. The general
form of the BO functions is

42p(r,Q(2)) = ea(r,Q(a))xap(Q(a)) (IX.1)

where r represents the electronic coordinates, Q labels the nuclear normal
coordinates in the electronic state , while 9a and x represent electronic
and vibrational wave functions.
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(b) Interference effects between the compound states constructed from
each of the components of the dynamic part are disregarded. Hence, the
non-radiative decay probability is displayed in the form:

= —
E13) (IX.2)

where p(si) is the population of the initial state si> and the coupling matrix
elements are

= <&IHI4i> (IX.3)

(c) It was assumed that the normal modes and their frequencies are the
same in the two electronic states except for displacements in the origin.

Let the normal coordinates be denoted by Q)j = 1 . . N) with the effective
masses M and frequencies w1. The equilibrium configuration of the electronic
state s is characterized by the configuration Q?(SkJ = 1 . . . . N). Let AQr) =
Q(l) — Q9(s) correspond to the displacement of the Q normal coordinate
in the equilibrium configuration of the electronic state 1 relative to the elec-
tronic state s. It will be also useful to define a set of dimensionless coordinates
and displacements:

q = (M.w/h)4(Q3 — Q9(s)) (IX.4)

= (M.w/h)AQJ° (IX.5)

(d) The molecular vibrations are harmonic and anharmonicity effects
were disregarded. The adiabatic potentials W and W1 for the two electronic
states are then given in the form:

W = hwq (IX.6)

W1 = — A)2 — AE = W — — AE + EM (IX.7)

The most important energy parameter introduced at this point is the energy
gap between the lowest vibronic components of the two electronic states:

AE = E50 — E10 (IX.8)

= hco3A corresponds to the linear coupling term for the jth mode. The
energy term

EM = hwA (IX.9)

represents the molecular nuclear relaxation energy, or rather half the Stokes
shift, due to the reduced displacement A.

These assumptions seem to be rather pedestrian and were in fact used
before. In spite of considerable activity in the field conventional computa-
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tional methods as employed before cannot be expected to yield reliable
information for a large molecule which is characterized by a large number,
N, of vibrational degrees of freedom. In view of the complexity of the problem
encountered in the calculation of 'r, 1 in the statistical limit, conventional
'quantum chemistry' type methods seem to be inadequate. General problems
related to the calculation of expressions of the form of equation (IX.2) were
encountered in solid state physics. Such a task was considered by Lamb6°
and by others61'62 for the Mössbauer effect. The nuclear recoil problem for
the displacements in the momentum space requires the same treatment as
a harmonic lattice. Indeed, analogous problems were encountered in the
theory of line shapes and zero phonon lines in the absorption spectra of
impurity centres in solids63' 64 Finally, similar methods were introduced65'66
for the study of radiationless transitions (e.g. thermal ionization) in solids.
Engiman, Freed and Jortner attempted to consider the problem of radiation-
less transitions in a large molecule from the point of view of multiphonon
processes. Indeed, for a large molecule when N 1 it seems a logical step
to transfer the problem from the field of molecular physics to the realm of
solid state physics and to consider the problem of 'phonons in large molecules'.

Two physically interesting cases have to be considered at this point.
(a) When the molecule is inserted into an inert medium which acts as a

heat bath, thermal equilibrium among the si levels can be assumed. Provided
that the vibrational relaxation (and excitation) rates considerably exceed the
non-radiative decay times we can set:

p(si) = exp( —flE8j/ exp( — fJE,) (IX.1O)

where /3 = (kBT) 1, so that when thermal equilibrium prevails, one has
1 = 2it/h exp( — f3E)l 1I2i(E — E1)/ exp( — fiE,) (IX. 11)

(b) For the case of an isolated molecule (in vacuum or, even better, in outer
space) we can consider a coherent excitation of a single vibronic state /,
whereupon p(si) = . When this zero order vibronic level Si' corresponds
to si the transition probability is given by (IX. 11) in the zero temperature
limit (or rather for /3 -+ ce).

Now, the approximate expressions for the non-radiative transition
derived above are completely analogous to the formal expressions for the
line shape in optical absorption in solids. Indeed, in this approximation
the non-radiative process can be formally regarded as a (symmetry forbidden)
optical emission process in the limit of zero energy. Equation (IX. 11) can be
handled by the application of the generating function method. The main
advantage of this technique is that it handles the generalized density of states
function of the form (IX.1 1) (e.g. the density of states weighted by an arbitrary
operator) without the necessity of factoring out these expressions into
products of matrix elements and the vibronic density of states.

The non-radiative transition probability can be recast in the form of a
Fourier transform:

= C2/h2 exp(—G)Jdt exp[(—iAEt/h) + G÷(t) + G_(t)] (X.12)
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where C is the non-adiabatic coupling matrix element58'59 and the functions
G(t) are given by

G+(t) A(ñ + 1) exp(ko3t)

G_(t) = Añexp(—iwt) (IX.13)
and

n = {exp(fJhco) — 1]
—1

(IX.14)

ii3 is the number of excited vibrations with frequency co, at thermal equili-
brium. The dimensionless quantity G is defined in the form

G = G÷(O) + G_(O) = A(2n + 1) (XI.15)

which corresponds to the change in the number of vibrational quanta in
the radiationless transition. This quantity is referred to as the coupling
strength. The general result derived herein can be recast in a more transparent
form for certain limiting cases, which are determined by the magnitude of
the coupling strength G (equation (IX.l 5)). In order to obtain an approximate
estimate for the coupling strength we make use of equation (IX.9) and write
the approximate relation

G EM/h<co> cot h (IJh<w)/2) (IX.16)

where <w> = N 'co is the mean vibrational frequency. The low and high

temperature limits are:
G = EM/h(co>; flh<w) I (IX.17)

G = 2EM/f(h<w>)2; fh<w> < 1 (IX.18)

The various coupling limits can be defined as follows:
(a) On the strong coupling limit G 1 or alternatively,

G > h(w) coth (flh<w)/2).

At low temperatures the strong coupling limit will be encountered where-
upon EM exceeds the mean vibrational frequency so that the relative dis-
placement of the potential energy surfaces are large, and the Stokes shift
will considerably exceed the vibrational frequency. Under these circumstances
it is possible for the energy surfaces of the two electronic states to cross or to
intersect in the vicinity of the minimum of the upper surface. Such a situation
was examined thirty years ago by Teller67.

(b) The weak coupling limit is encountered when G 1 or (at low tem-
peratures) EM h<co). Thus the relative displacement for each normal
mode is relatively small.

In the strong coupling limit the general expression can be reduced to a
closed form:

— C2(2ir) exp[ —(iE — EM)2/4EMkBT*] (IX 20mr —
h(2EMkBT*)

. )
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where the effective temperature is defined in the form:

kfiT* = h(w> coth (fh<o)>/2) (IX.21)

The Gaussian dependence on the energy parameter (AE — EM) in the strong
coupling limit is of course analogous to the Gaussian line shape (near the
band maximum) devoid of phonon structure for impurity centres. However,
equation (IX.20) contains some further interesting information. Inspection
of equations (IX.6) and (IX.7) reveals that the potential surfaces and W1
intersect on the hypercurve (actually on the (N- 1)-dimensional surface). The
intersection point of minimum energy EA measured from the energy origin
E0 — Ois

EA = (AE — EM)2/4EM (IX.22)

The following result is finally obtained in the strong coupling limit

tnr =
h(EMkBT*)

exp( — EA1kBT*) (IX.23)

This equation has the general appearance of a conventional rate equation
where the energy EA plays the role of the activation energy as might have
been guessed by the intelligent chemist on intuitive grounds. It is important
to stress that the concept of the activated complex' does not enter in any
way into this treatment. The rate equation results from quantum mechanical
transition between greatly displayed potential surfaces.

In the weak coupling limit the integral (IX. 12) can be evaluated by the
method of steepest descent. The low temperature result is to the lowest
order58' 59

— 1 C2(2ir)= exp(— yAE/hcoM)
h(hWMAE)

y = log() — 1 (IX.24)

where 0M and AM are the frequencies and the reduced displacement of the
modes of maximum frequency (e.g. the C—H or C—D modes) and

d

diM = hwMA.

This equation immediately exhibits:
(a) The energy gap law.
(b) The isotope effect in the weak coupling limit.
The main accomplishments of this treatment can be summarized as follows:
(a) From the general structure of the theoretical formulae we can ascertain

the relative displacement of the two potential energy surfaces expressed in
terms of the coupling parameter G determines whether the molecular system
corresponds to the strong or to the weak coupling limit. This classification
provides a link between the Teller picture67 and the conventional tunnelling
model for radiationless transitions. In the statistical limit, as it is well-
established, the weak (and possibly sometimes the intermediate) coupling
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scheme is appropriate for the description of a large number of radiationless
transitions (e.g. electronic relaxation) in aromatic molecules.

(b) In the strong coupling limit the transition probability is determined by
the mean molecular frequency, provided, of course, that the A values for a
substantial number of different frequencies are non—vanishing. On the other
hand, in the weak coupling case the non—radiative transition probability
is dominated by the highest molecular frequency 0M

(c) In the strong coupling limit the transition probability is determined
by the energy EA corresponding to the point of minimum intersection energy
located above the origin of the higher electronic state. In the weak coupling
limit the transition probability is essentially determined by the energy gap

(d) A proper theoretical interpretation of the energy gap law' for radia-
tionless transitions in the weak coupling limit is provided. This general
energy-difference dependent behaviour is characteristic of many molecular
relaxation processes, such as vibrational relaxation.

(e) Following the considerations presented in (b), some features of the
intramolecular isotope effect on radiationless transitions can be elucidated.
A pronounced isotope effect can be encountered only in the weak coupling
limit.

(f) Medium effects resulting from coupling to an inert medium are now
elucidated59.

(g) From the chemist's point of view the different features of the isotope
effects, the energy gap law and the temperature dependence encountered in
the weak and strong coupling limits can be summarized as follows: the
weak coupling limit corresponds to a tunnelling mechanism between zero
order vibronic levels which correspond to different electronic configurations,
while in the strong coupling limit we encounter the situation in which
adiabatic potential surfaces cross or intersect. It is gratifying that both limits
results as particular cases of the same general formalism.

Although conventional radiationless transitions in large aromatic mole-
cules correspond to the weak coupling situation, the strong coupling limit
is of considerable physical interest for the interpretation of many reactions
encountered in the field of organic photochemistry.
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